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A manpower planning problem is studied in this paper. The model includes scheduling
different types of workers over different tasks, employing and terminating different types
of workers, and assigning different types of workers to various trainning programmes.
The aim is to find an optimal way to do all these while keeping the time-varying demand
for minimum number of workers working on each different tasks satisfied. The problem is
posed as an optimal discrete-valued control problem in discrete time. A novel numerical
scheme is proposed to solve the problem, and an illustrative example is provided.
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1. INTRODUCTION

This paper considers a manpower planning problem. Suppose there
are n different types of workers and there are m different kinds of work
(tasks) to perform. Each type of workers must be able to perform at
least one specific task. The wages, the costs to employ, and the costs to
terminate employment are different for each type of workers. Suppose
type i workers can perform tasks {ij,i,...,i,} and suppose type j
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156 H. W.J. LEE et al.

workers can perform not only tasks {i1, i, ...,i,} but more, say, tasks
{i1, B2, ... ipsJ1sJ2s - - - »Jq}» then, the wages, the costs to employ, the
costs to terminate employment for type j workers would be higher
than those of type i. Some organizations would assign workers to
undergo various trainning programmes. Thus, workers of the “lower
wages” type can be “upgraded” to a “better wages” type with the
additional skills gained from the trainning programme. Workers
entered into the trainning programme, although not engaging in
the workforce, would still be receiving their old wages until they
have completed the trainning programme. After that, they would
be receiving the “better wages”, as they are upgraded to a “better
wages” type.

Different tasks have different time-varying manpower demand
requirements to satisfy. That is, for every task, there is a minimum
number of workers required to work on that task at each specific
time. The objective is thus to find the optimal combined policy
of employment, scheduling, and trainning over the planning horizon
such that the cost is minimized subject to these specifications and
requirements.

In [7, 5], the problem of finding the optimal policy of the training
of manpower is presented. However, the model involved only
considers two types of workers, namely the “skilled” and the
“unskilled”” labour. Moreover, the employment policy, the scheduling
of workers, and the manpower demand constraints are not included
in the model.

Staff scheduling has attracted considerable attention in the
literature. Nevertheless, the majority of the literature considers mainly
the requirement to allocate available manpower to meet the demands
for staff. In general, this problem is formulated as a static, integer
optimization model. An early survey is given in [1]. [2] gives another
survey on the works published in recent years. [6] considers full-time
and part-time employees, but only a single type of jobs. [11] considers
a heterogeneous workforce, and propose a heuristic to tackle the
problem. [12] investigates a single shift scheduling problem, which
contains multiple categories of workers whose capabilities can be
structured hierarchically. Genetic algorithms and simulated annealing
have also been applied to tackle the staff scheduling problem; see, for
example [3,4, 13, 16].
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In this paper, we aim to provide a more complete mathematical
model of this problem. It turns out naturally as a discrete time optimal
discrete-valued control problem. The control transformation techni-
que proposed in [10] is used to convert the problem into a sequence
of standard discrete-time optimal control problems. Each of these
discrete-time optimal control problems can be solved by the discrete-
time optimal control technique presented in [14], and hence the
companion software package DMISER3.2 [8] is applicable.

A numerical example is also provided for illustration.

2. PROBLEM FORMULATION

Consider the discrete time setting where the planning horizon is over
t=0,1,2,...,T. Let

Z1 (t)

="

z,,kt)

where z{(t) denotes the number of type j workers engaging in the
workforce at time ¢. Let

algt) gl(t)
oot t
= ||, py= |27

CVn(t) ﬂn(t)

where a/(f) denotes the number of type j workers newly employed
at time ¢, and B(7) denotes the number of type j workers being terminat-
ed at time ¢€{0,1,2,...,T—1}. We assume that for all =0,
1,2,...,T—1,and for all j=1,2,...,n,

(1) €{0,1,2,... .6} (2.1)

Bi(1)€{0,1,2,...,3} (2.2)
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Let wi{f) be the number of type i workers assigned to perform
task j at time ¢, and for all i=1,2,...,n, and j=1,2,...,m, and
t=0,1,2,...,T,

wii(1)€{0,1,2,...,w;} (2.3)

Note that if a type i worker is not able to work on task k, then
wal(f) =0, Vi€ {0,1,2,...,T}. Let T be the index set containing all
(i,/) pairs such that wy(7) are not those constrained as zero for all
t=0,1,2,...,T. Moreover, we define 2 : Z—{1,2,...,||Z||} as a one-
to-one map. We now define w(f) as a vector collecting all wy(#) such
that [w(9)lag, ;= wi?)-

Since different tasks have different time-varying manpower demand
requirements to satisfy, we have, for all 1=0, 1,2, ..., T, the following
all-time-step constraints

dowi)2d(1), j=12,...,m, (2.4)
i=1
Swit) =z(r), i=12,...,n. (2.5)
=1

where d(?), for t=0,1,2,..., T, is the time-varying manpower demand
requirements for task j. That is to say, at time ¢, there should be at least
dft) workers assigned to perform task j. We now define

m 1 r

Uy o2 2
n= L, 6= , Fr=

77” Un rn

where 7;, 0;, and r; are, respectively, the cost to employ a new type i
worker, the cost to terminate a type i worker, and the wage of a type i
worker during employment.

Remark 2.1 1In reality, we note that %, ¢, and r should be time
dependent. However, for short term planning, we may assume that
these quantities are constants. This assumption is made so as to
simplify the complexity of the problem concerned. Our formulation



MANPOWER PLANNING PROBLEM 159

may be considered as an approximation to the actual situation.
Further research is needed for a more general situation.

In general, not all types of workers can be assigned to trainning
programmes for “upgrading”. Among the n types of workers, suppose
there are only n’ (where n' < n) types of workers that can be assigned
to leave the workforce to undergo a trainning programme to be
“upgraded”. Let pu,(f) be the number of type j workers assigned to
leave the workforce to undergo its trainning programme at time
t, where a;€{1,2,...,n'} is the corresponding index. Note that g;
may not be defined for all j€{1,2,...,n}. If g; is defined for some
je{1,2,...,n}, it means type j workers can be assigned to a trainning
programme for “upgrading”, otherwise, there is no such trainning
programme for type j workers. Without loss of generality, we assume
that, if @; and a;, are both defined, with j; < j, and g;is not defined for
allje{ji+1,j1+2,...,jo—1}, then a; +1 = a;,. We can write this in a
more compact form. Let

(1)
u(i) = Mz.(t) ’
pane (1)
where
wi(1)e{0,1,2,...,} (2.6)
for all t€{0,1,2,...,T—1}. Associated with u is its cost vector
G
= :2 . Once workers leave the workforce for trainning, it would
G

take them a certain number of time steps before they can rejoin the
workforce with their “upgraded” skills. Each trainning programme
may have a different length of duration. Suppose for some j, g;
is defined, and the trainning programme takes 7,+1 time steps to
complete, we then define

WY,y (1)

as the trainning states for type j workers.
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The dynamics of the trainning states for type j workers can be
written as:

Y+ 1) = pg (1)
yo(t+1) =y7(t)
Y3 (t+1) =y (1)

Yo (+1) =y7 (1),

Tap+1

or equivalently,

W+ 1) 00 0 07[ ¥ 1
Y (t+1) 10 0 0[] »® 0
aj 9 M
yoi+1) | — o 1 0 0ff Y@ | 4] .
gaeen] Lo oollmiof o

2.7)

To simplify the notations, if g; is defined for some j€{1,2,...,n}, we
let

¥ (®)
y3 (1)
i =1 w0 |,
yZ;-H(t)
and define Cy; as a (7, + 1) x (7, + 1) matrix:

L i=k+1
[Colix = {0, otherwise,

and Dy, as a (74, + 1) x 1 vector:

1, i=1
[D“f]i - {O, otherwise.
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Hence, (2.7) can be rewritten as:
Yi(t+1) = Cgy"(t) + Dgjia (1)
Let p(7) be a vector collecting all y*(7) for all k=1,2,...,7/,
Y=o 20O

Note that y(r) € R" where n’ = z;;l(Tp +1).

Hence, the dynamics of the whole of y(¢) can be written as:

y(t+1) = Cy(t) + Dp(1)

with initial condition

¥(0) = yy,
where

¢, 0 .- 0}
0 C; - 0

C=| . . . ,and
_0 e 0 C"’-n”xn"
Dy 0 - 07
0 D, --- 0

D =
L0 -+ 0 Dylpyn

The overall dynamics of the model is thus given by

[Z(f + 1)} _ [Z(t) +a(t) — B(2) — Ap(t) + By(t)]
y(e+1) Cy(1) + Du(2)

(
Lo ellal+lo o % ol
(

161

(2.8)
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for t=0,1,2,..., T—1 with the initial condition

o= 1)

where 4 and B are n x n' and »n x n" matrices defined by

[A],, = 1, if g;is defined and g; =k,
7k 1 0, otherwsie,

and

(1 keb()
(Bl = {0 otherwise

respectively, b(-) is the index set defined as: if () = {i1, i3, . . . , in}, then
YirsYips -+, ¥, would leave the trainning dynamics and rejoin the
workforce as type j workers.

We can write (2.8) in a more compact form:

x(t+1)=[(l) g]x(t)—}—[(l] e g]u(t) (2.9)

for t=0,1,2,..., T—1 with the initial condition

x(0) = xo, (2.10)
where
a(t)
x(t):[;gg], u(t) = ﬁg(g) . 2.11)
w(t

Note that our decision variables a(z), p(¢), u(t), are for all 1=0,
1,2,...,T—1, whereas wy(f) for each (i,j)€Z are for all t=0,
1,2,...,T. Therefore, to be more precise, we define

a(t)

u(t) = B(1) fort=0,1,2,...,T -1,
H(1)
w
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and
&=w(T). (2.12)

We can now rewrite constraints (2.4) and (2.5) as:

yu)2di(), j=1,2,...,m t=0,1,2,...,T—1 (2.13)
Y EXA(T), j=1,2,...,m, (2.14)

piu(t)=[x1);, i=12,....,n, t=0,1,2,...,T—1 (2.15)

p;[-E:[x(T)]t‘) i:1727"'7n7 (2'16)
where
0, ke{l,2,...,2n+n'}
bl=4 1 Q'(k-Q2n+n))=(,j)ez
0, otherwise,
and

0, ke{l,2,....2n+n'}
[pi]k = la Q_l(k - (21’! +nl)) = (l’ ) €1
0, otherwise,
and we can rewrite the discrete range sets (2.1), (2.2), (2.6), (2.3) as:

w()€{0,1,2,..., 4}, t=0,1,2,....T—1 (2.17)

& €{0,1,2,...,&}. (2.18)

Remark 2.2 Note that #; and & should be state dependent, i.e.,
depending on x(f). However, as a first approximation towards the
mathematical formulation of this important problem, we assume that
they are constants so as to avoid further complexity.

Since workers entering the trainning programme would still be
receiving their old wages until their trainning is completed, we can
then compute the cost associated with y(z) by

¢ Hy(AD )y (1)
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where Hy(AD") is defined as replacing “0” by “1” following any “1”
along the row of the matrix 4D " until reaching just before a column
which contains a “1”, For example,

[1 0 0 0 0 0 0 07
) - 0001 000
if AD' = , then
0 00 0 001
1O OO O 0 0 0 04
1 1 1 0 0 0 0 07
- 0001 T1T1U00
Hy(AD') =
000 0 O0O0T1 1
10 00O OO 0 0 0

Let
¢ =[r",r"Hy(ADT)].
The total cost is thus given by
A1) L[]0 '
¢’ + {cT[ ]+ Ta(t) + 6" B(t) + t},
REIE R C R RO U0
or more compactly,
T-1
¢ x(T) + E{CTx(t) +e'u(1)},
=0
where
eT — [T]T,O'T,;T,OT].
In practice, we usually take
eT = [nT7 aT? c—r'ﬁ 8T]7

where &' is a row of insignificantly small and not evenly distributed
numbers instead of exactly zeros.



MANPOWER PLANNING PROBLEM 165

Now, we can formulate our problem as:
Subject to the set of difference Eq. (2.9) with initial condition (2.10),
the constraints (2.13), (2.14), (2.15), (2.16), and

xi(t) >0, fori=1,2,...,n+n", (2.19)

find a discrete-valued control u( -) with the range specified in (2.17), and
a system parameter £ with the range specified in (2.18) such that the cost

T-1
J(u(-),&) =" x(T) + Z{ch(t) +e'u(t)}, (2.20)
1=0

is minimized. Note that each component of u(-) and ¢ is integer-
valued. Thus, this is an optimal discrete-valued control problem in
discrete time. We refer this as problem (P).

3. A COMPUTATIONAL PROCEDURE

Problem (P) is a discrete time optimal discrete-valued control problem.
It cannot be handled directly by standard technique as reported in
[14,8]. A problem transformation is needed.

In [10], a novel method for solving a general class of nonlinear
integer programming problems is introduced. Basically, the method
transforms the problem with integer decision variables into a discrete-
valued optimal control problem, and then followed by another
problem transformation, called the Control Parametrization Enhanc-
ing Transform (CPET), to obtain a standard optimization problem
involving only continuous values. The combinatorial nature of the
original problem is thus avoided. Motivated by these results, we aim to
replace each u(-) and & in Problem (P) by some control sequences
with continuous range.

For each k, suppose w(f) is replaced by {(Zz_":ﬁl D v’;(t)) — 1} for

t=0,1,2,...,T—1, and & is replaced by {(Ef?:]]p . 19’;) — 1}, where

vi(t)€0,1] forall pe{1,2,...,u + 1},
ke{l,2,....2n+n" + ||Z|}
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and
95€[0,1] forallpe{l,2,...,&+1},ke{1,2,...,|Z|}

and we confine v4(7) and 9% by

T+l &+l

Y@ =1 fort=0,1,2,...,T—1, and Y dk=1 (3.1)
p=1 p=1

respectively. We then define vi(s, ¢) as:

( vllc(t)a 0<s<l
vIZC(t)a ISS<2
Vk(s, t) = . )
\Vlzi—k+1(t)a W <s<u;+1
and dy(s) as:
( D1k, 0<s<l
192,](7 1SS<2
Vi (s) = . '
Ve &<s<&+1,

Thus, from (3.1), we have

u+1
/ w(s,t)ds=1, ke{l,2,....2n+n" +|Z|},
0
1€{0,1,2,...,T — 1}
and

&+1

| oo =1, kg2 gz,

0

For each ke€{l,2,...,2n+n + ||Z||}, and 1€{0,1,2,...,T—1} we
define the variance of v,(-,?) as:

T+ T+l 2
var(vi(-, 1)) =/ s*vi (s, £)ds — (/ svic(s, t)ds) ,
0 0

and for each ke€{1,2,...,||Z||}, we define the variance of J(-) as:
2

var(d()) = /0 e PO (s)ds — < /O o sﬂk(s)ds) .

In view of [10], the following two remarks are in order.
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Remark 3.1 For each 1€{0,1,2,...,T—1}, ke{l,2,...,2n+n+
IZ||}, the minimum value of var(w(-,?)) is (1/12). Moreover,
var(vi(-,1))=(1/12) if and only if v;f(t) =1 for just one value of p
and v () = 0 for all g#p.

Remark 3.2 For each ke{l,2,...,2n+n'+|Z|}, the minimum
value of var(¥(-)) is (1/12). Moreover, var(9(-)) = (1/12) if and only
if 9% =1 for just one value of p and 9% = 0 for all g#p.

From Remark 3.1 and Remark 3.2, we note that var(vi(-,7)) =(1/12)
(respectively var(9(-))=(1/12)) if and only if u.(¢) (respectively &)
takes on integer value in {0,1,2,...,%} (respectively {0,1,2,...,&}).
Thus, by replacing each discrete-valued control variable u(f) with

ue+1
<Zp-v’1f(t)) ~1 (3.2)
p=1

and replacing each discrete-valued system parameters & (f) with

Ec+1
(Zp-ﬁ’;) -1 (3.3)
p=1
and by imposing the additional constraints

e+l
/ w(s,)ds=1, ke{l,2,....2n+n" +||Z|},
0

t€{0,1,2,..., T — 1}, (3.4)

Ee+1
/ Nds=1, ke{l,2,...,IZI}, (3.5)
0

and

1
var(vi(-,?)) =13 ke{l,2,....2n+n +||Z|},
(€{0.1,2,....T=1},  (36)
1

vari()) = 330 ke {12 IIZI, (3.7)

I
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we obtain a standard discrete time optimal control problem, which is
equivalent to problem (P). Denote this problem as problem (P').

In practice, we do not solve problem (P') directly in its present form.
Rather, we would replace constraints (3.6) by

var(ve(-, 1)) < 11—2+6, for cach 1€ {0,1,2,..., T — 1}
ke{l,2,...,2n+n +|Z|}, (3.8)

and constraints (3.7) by

1
—+6, foreachke{l,2,....|ZI} (3.9

var(9g(+)) < P

where 6 >0 is a small positive real number. This newly introduced
parameter 6 is used for the ‘“Variance Constraints Relaxation” as
mentioned in [10]. We denote this new problem as problem (P}).

It can be shown that (P) is equivalent to problem (P'), or problem
(P), in the limiting case when ¢ tends to zero.

Note that all control variables v, ,(#), and all system parameters 9, «
are ranging continuously in [0, 1]. Hence, the combinatorial nature of
the problem (P) is avoided. Problem (Pj) can thus be handled directly
by standard optimal control technique.

In order to adopt standard technique (such as the one reported in
[14,8]) for solving Problem (Pj), we re-cast the problem in canonical
form first. For convenience, we define v(¢) as:

)
v(t) = :
q”
AU
where ¢" =2n+n'+ ||Z|| and ¢ =%y + 1, and ¥ as:
)
A= :
q"”
Red
where ¢"" = || || and ¢" = £, + 1. Hence, we can now rewrite (2.20) as:

T—1
Go(v(),9) = Go(x(T), D) + 3 go(t, (), v(1),9),  (3.10)
=0
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the system dynamics (2.9) as:
x(t+1) =f(t,x(2),»(1),9) (3.11)
for t=0,1,2,..., T—1 with the initial condition
x(0) = xo,
constraints (2.15), (2.16), (3.4), (3.5), (2.13), (3.8) as:
Gi(v(-),®) = ¢u(x(T),9) + ng(t x(1),v(1),9) =

1=0
k=1,...,n, (3.12)

and constraints (2.14), (2.19), (3.9) as:
Gr(v(-), V) = dp(x(T),V) + ng(t x(1),v(1),9) >0,
=0

k=n.+1,...,n (3.13)

with each component of the control v(¢) and system parameters 9
confined in [0, 1].

Note that among all canonical constraints (3.12), those arising from
(2.13), (3.8) are of the form

Ge(v(-),¥) = T),d) + ng (t,x(2), »(1),¥)

t=0

=0+ %min{hk(t, x(1),v(1)),0} =0,

=0

which are non-smooth. We approximate the non-smooth function
gr=min{Ay, 0} by a smooth one, g.(h), where

hy, if i < —¢
gre(h) = —(h —€)*/4e, if —e<hy <k,
0, if he>e.

Define

T-1
Gre(#(),d) = D gre (1, x(1).v(1))
1=0
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and, we may approximate these canonical constraints (3.12) which
arising from (2.13), (3.8) by

Gre(v(),9)+72>0.

In [14], it is shown that if 7 is chosen as £/4, then, for any € > 0, any
feasible solution of this approximate constraint is also a feasible
solution of the original constraint.

The Hamiltonian for each canonical function £=0,1,2,...,n, is
given by

HE (t,x(2),v(8), 9, A + 1)) = g (2, x(2), ¥(2), D)
+ W5+ D] f (2, x(0), 9(2), D),

where
k
k@) = 6(,;1; :%Jr Ak + 1)]T%, t=0,1,...,7%—1
(3.14)
and
[}-k(T)]T — Bqﬁk(x(T),\‘}) .

ox(T)

It can be shown that the gradient formula is given by

8Gk(v()),d) LLoHk , .
! = € R A .
o 3 5 forjed1,2,..., k§:1:(uk+1) (3.15)

t=0

where v; is the jth component of the vector

v=[0)",v(1)",v2)",...,.v(T-1)T]",

and

86, (().9) _ 0ulx(1), )  Tdomt
&91‘ - &9]- + Z 319]'

t=0

M
forje{l,z,...,Z(z;H)}. (3.16)

k=1
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The problem can thus be solved using the Constrained Quasi-Newton
method, or the Sequential Quadratic Programming technique. For
this, we need the values of the cost function and all the costates as well
as the gradient of each canonical functions corresponding to each
(v, V) € R? x R*, where

q qllfl
o=T-) (@+1) and o= (&G+1).
k=1 k=1

The algorithm for computing the gradient can be achieved as
follows:

Step 1 Given an initial guess of v and 9.

Step 2 Solve the system of the state difference Eq. (2.9) forward (with
each u(?) replaced by (3.2)) from t=0to t=T-1.

Step3 Solve the co-state difference Eq. (3.14) with boundary con-
dition (3.15) backward from t=T-1 to t=0.

Step 4 Compute the gradient of Gy by (3.15) and (3.16).

We can now use the Constrained Quasi-Newton method, or the
Sequential Quadratic Programming technique, to solve Problem (P}).
The software packages DMISER3.2 [8] was developed based on this
approach.

4. AN ILLUSTRATIVE EXAMPLE

Suppose there are 2 tasks and 3 types of workers. Type 1 workers
can do task 1 only, type 2 workers can do task 2 only, but type 3
workers can do both tasks. There are trainning programmes for type
1 and type 2 workers to upgrade into type 3 workers. The duration
of the trainning programme for type 1 workers is 2 unit of time,
whereas the duration of the trainning programme for type 2 workers
is just 1 unit of time. Initially, there are 2 type 1 workers, 2 type
2 workers, but none of the type 3 workers. None of the workers
are undergoing trainning programme at ¢=0. The management
can only employ, or terminate, or assign to trainning, at most 2
workers of any type at any time. We are optimizing over the period
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t=0,1,2,...,9. The minimum demand of workers at each time ¢ for
each task is given as follows:

di(0)=2 &y (0)=2
d()=2  dy(1)=3
di(2)=3  d2)=1
di(3)=2 d(3)=2
d@=1 d@#=7
di(5)=2  d(5)=2
di(6)=6  dy(6)=2
di(l)=2  d(T)=8
di®)=2 dB8)=5
di(9)=6 dI)=1

The corresponding costs are given by

Cost to newly Cost to Cost to
employ terminate Wages train
Type 1 workers 1.2 2.0 1.0 0.3
Type 2 workers 1.5 2.4 1.2 0.5
Type 3 workers 3.0 4.0 2.0 -

The system is given by
x1(t+ 1) =x1(8) + w1 () — ua(t) — ur(2)
xo(t+ 1) = x2(2) + ua(t) — us(t) — ug(2)
x3(t+ 1) = x3(¢) + us(t) — us(2) + x(5) + x(6)
xa(t+1) = up(1)
xs5(t+ 1) = x4(2)
x6(t +1) = ug(2)

with constraints

ug(t) + uro(t) = x3()
x1(t) + uo(t) > di (¢)
X2 () + uo(2) > do(t
x(t)>0 i=1,2,...,6.
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In this example, since type 1 workers can only do task 1, and type 2
workers can only do task 2, we simply put wy1(¢) = x1(f) and wy() =
Xz(t).

() €{0,1,2} k=1,2,...,8,
we(t) €{0,1,2,.... %} k=09,10.

We take %g = 10 = 9.

Our initial guess to start the optimization is v;x(f) = (1/u + 1) for
all kand forall 1=0,1,2,...,9. Note that this initial guess is not even
feasible !!

The converged solution computed by DMISER3.2 is as follows:

The control u(?):
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Checking the minimum requirement demand constraints, i.e.,
minimum number of workers engaged on each task

Task 1 Task 2
x1())+uy(?) (= di(1)) x2() +u10(2) (= do(2))

1=0 2A22) 222
t=1 2A>2) 3(=23)
1=2 3(=3) 2(>1)
1=3 3(=2) 4(>2)
1=4 1(=1) (=7
t=5 2(>2) 4(=>2)
1=6 6(>6) 4(=>2)
1=17 2(>2) 8(=>8)
1=8 3(=22) 5(=5)
t=9 6(> 6) (=1

Note that it satisfies all the demand requirements. The converged
total cost is 119.1.

5. CONCLUSIONS

A novel mathematical formulation of a manpower planning problem
is provided with which the model includes scheduling different types of
workers over different tasks, empolying and terminating different
types of workers, and assigning different types of workers to various
trainning programmes. This can be considered as a first attempt
towards the mathematical formulation of the real practical manpower
planning problem, which is of large scale optimization nature,
applicable to corporations in auto-industries, steel industries ezc.,
etc. In view of this, future research can be done to extend the
applicability of the formulation and the computational technique to
the national level of manpower management. People from different
age-group, receiving different levels of education, can be considered as
different “types of workers”. The government may have different
demands on what portions of the population should be participating
in various sectors at different levels from time to time. This can be
considered as different “tasks”. Public money could be spent more
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optimally (to vocational institutes or universities) for manpower
trainnings, when the demands of different tasks vary.
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