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This paper outlines a methodology to study the stability of Takagi-Sugeno’s (TS) fuzzy
models. The stability analysis of the TS model is performed using a quadratic Liapunov
candidate function. This paper proposes a relaxation of Tanaka’s stability condition:
unlike related works, the equations to be solved are not Liapunov equations for each
rule matrix, but a convex combination of them. The coefficients of this sums depend on
the membership functions. This method is applied to the design of continuous controllers
for the TS model. Three different control structures are investigated, among which the
Parallel Distributed Compensation (PDC). An application to the inverted pendulum is
proposed here.
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1. INTRODUCTION

Stability of closed-loop systems with a fuzzy controller has been
studied for several years. Recently, an interesting method has been
introduced using state space models [9]. The models, called TS fuzzy
models, are composed of rules with a conclusion part using a state
space representation. They allow consequently the use of the potential
of linear theory. The first results of stability, due to Tanaka et al. [12],
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are Liapunov based. They resume in a collection of Liapunov equa-
tions to be solved simultaneously. Some other stability properties were
also investigated, using various techniques: for example, an equi-
valence with switching systems [13], or more recently robust stability
of a family of polynomials [8] providing a systematic stability analysis.

For stabilization, linear state feedbacks were first proposed [6, 7] but
their results remained fairly poor since they did not take into account
the potential of TS models. A more interesting approach, called
Parallel Distributed Compensation (PDC), was introduced in [16]. At
this stage, the control law has the same structure as the TS fuzzy
model: using the premises and rules of the model, the conclusion part
is composed of linear state feedback gains. The PDC synthesis is often
performed using a Liapunov approach [10,11] and the obtained
equations are Linear Matrix Inequalities (LMI), for which powerful
resolution tools [3] are available. Some other control laws were also
proposed, based on the dominant model and a high gain controller
[2] or on simultaneous stabilization of a collection of linear models
[14].

Previous results did not focus on the particular values of the
membership functions used, considering that they remain unknown.
Yet, information about their values may be very useful: our goal is
here to incorporate our knowledge of these functions with a view to
derive new interesting stability results. This paper is organized in five
sections. Section 2 introduces background materials about TS models
and recalls the major previously written stability conditions. The third
section presents a theorem that will be used to provide stability
conditions, stabilization theorems using various kinds of controllers
are given in Section 4. The obtained results are then applied to a model
of inverted pendulum in Section 5; the interest of the proposed analysis
method is demonstrated through a comparison between our method
and the classical ones. Finally Section 6 serves as a conclusion.

Notations x(f) € E=R", u(rf) € R™ are respectively the state and con-
trol vectors. For any given integer k, I denotes {1,...,k} and R is
the set of strictly positive real numbers. The symbols < 0 and >0,
applied to square matrices mean respectively positive-and negative -
definite. X > Y, with X and Y square matrices stands for X—Y > 0.
Amin and Apax, applied to a symmetric positive definite matrix P,
denote respectively the minimum and maximum eigenvalues of P.
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2. BACKGROUND MATERIALS ABOUT TS SYSTEMS

Tagaki-Sugeno proposed an effective way to model a complex
dynamical system: the dynamic of a system model is built as a convex
sum of the dynamics of a fixed number of linear subsystems. Con-
sequently, r linear systems S; are considered here.

In a multimodel approach, each subsystem may be a linearization of
the system around M,, i € I,, point of the state space and the subsystem
S, is then all the more representative of the global system that the state
vector x(?) is close to M;, i€ I,. In this case, the Tagaki-Sugeno model
is used to deal with uncertainty through the use of an approximation
of the system. The weighting function of S; is called w{z(¢)), i € I,, with
2(t) =[z1(?) - -z,(H)] € R?, the premise variable vector which depends
either linearly or nonlinearly on the state vector.

Another way to use Tagaki-Sugeno model is to write a given
nonlinear model under the Takagi-Sugeno form: all the nonlinearities
of the system are rejected in the functions w{z(?)), i € I,. Note that the
subsystems and the rule plants do not have in general a physical sense.
An example of such a transformation is given in the simulation section
of this article.

2.1. Continuous-time Fuzzy System

The TS fuzzy model can be seen as represented by r plant rules. The ith
plant rule is:

IF z(¢) is F{ and... and z,(f) is F},
THEN x(t) = Aix(t) + Biu(t)
where 4, R"*", B;eR"* ™,

Using a standard fuzzy inference, the final state of the fuzzy model is
inferred as follows:

() = 3~ () Aix(t) + Bau(0),
i=1

where h;(x) = hi(z(£)) = wi(2(t))/ L=y wi(z(2)) and wi(z(1)) =TT},
Fj(z(0)).
The functions h(z) satisfy the convex sum property i.e.,
1 hi(z2) =1,0<h(z)< 1, i€l,.
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The continuous open-loop system, called CFS-OL, is then

x(t) = (i hg(Z)Ai) x(t). (2.1)
i=1

The stability analysis of the system described by (2.1) is performed in
Section 3.

For the closed-loop system, different control strategies may be
investigated. It is supposed in Section 4 that the state vector is
accessible to measurement. Using a simple linear state feedback,

u(t) = —Kox(t), KoeR"*",
the new model is CFS-LIN:

x(f) = (Z hi(z)(A; — B,-Ko)) x(1). (2.2)
i=1

The interest of such a feedback is that it allows us to do a pole
placement. The stability analysis of (2.2) can be performed in the same
way as for (2.1).

It is also possible to construct a control vector based on Parallel
Distributed Compensation (PDC):

u(t) = — (i h,(x)K,-)x(t), K,eR"*" iel,.
i=1

The idea is here to stabilize each subsystem S; by a linear state
feedback K;, with a view to stabilize the global system. The basic
requirement of a PDC controller is that the pairs (4, B;) are
stabilizable. The dynamics of this system is expressed by CFS-PDC:

(1) = (iijh,-(z)h,-(zxm—leg))xm. (23)

i=1 j=1

An important particular case has to be taken into account: when the
input matrices are positively linearly dependent i.e., 3B R* *™ and
k;>0, ieI,, B;=k;B, then the control

Liz1 (2K
i hi(2)ki

u(t) = — x(t), K;eR"*", i€l
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can be used as demonstrated in [15]. Consequently, the closed-loop
model is CFS-CDF:

x(r) = (2:, hi(z)(A; "BiKi)) x(1). 24)

2.2. Stabllity Resuits

TueoREM 1 [12] Consider the systems (2.1). If there exists a symmetric
positive definite matrix P of R"* " satisfying

ATP+ PA; <0, i€, (2.5)

then TS fuzzy model is globally asymptotically stable.

A TS model sometimes includes a constant part in the conclusion of
its rules, i.e., x(f) = Y_;_, hi(z(2))(Aix(¢) + D;), the stability conditions
are derived in the same way.

THEOREM 2 [11] Consider the system (2.3). If there exist two symmetric
positive definite matrices P and Q of R" ™" satisfying

{G£P+PGii+ (r—-10<0, i€l
((Gy+Gy)/2)"P+ P((Gy + Gp)/2) — @ <0, (L)€L, j>1i,
(2.6)

with Gy= A;— BiK;, (i,j) €2, then the TS fuzzy model is globally
asymptotically stable.

Remark 1 1f, only / fuzzy rules are fired at all time ¢, it is possible to
relax the conditions (2.6) by using / instead of r in the first inequality.

These stability conditions are called “relaxed stability conditions”.
Notice that for Q =0, the stability conditions given by Theorem 2 are
the classical ones. An interesting point is that, these stability con-
ditions can be put in a LMI form, allowing the use of powerful
resolution tools [3, 1,4]. Moreover, some performance properties like
bounded control, bounded outputs or exponential stability can be
taken into account if considered as constraints [11].
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An important particular case has already been studied. If matrices
B; satisfy: Vie I,, 3k; > 0, such that B;=k;B, Vi€ I,, then the coupled
terms (model 4;, B; with control law K}) can be eliminated [5].

Actually, the use of a CDF (Compensation and Division for Fuzzy
models) control law provides interesting and better results. In this
case, a quadratic Liapunov function leads to stabilization conditions
equivalent to the stability ones, replacing 4; by 4;— B;K;, i€ I, (2.5).
The conservatism of Theorem 2 is consequently strongly reduced.

3. BASIC THEOREMS AND STABILITY CONDITIONS

The theorems given in this section are rather general and will be used
to analyse all the previously introduced models. We will see that the
knowledge of the membership functions, and particularly their bounds
may give us, in most cases, better results than Theorem 2 even if the
same type of Liapunov function is used.

3.1. Choice of a Liapunov Candidate Function

To study the stability of the fuzzy models, the following Liapunov
function is defined:

V(x(t)) = x" (t)Px(t), (3.1)

with P a symmetric positive definite matrix of R" *" to be computed
later using a LMI approach.

We can calculate the derivative of V" along the trajectories of the
system:

V(x(t)) = x"Px + x"Px

According to Liapunov’s results, a sufficient condition for the origin to
be globally asymptotically stable is

V=0cx=0,
V<0, VxeE.

With the above defined models, the expression of V is in the form:

f(x,z) =x" (}s: C,-(z)Q,-) X, (3.2)
i=1
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with Q;= QT eR"*" and ({z), i€l, satisfying the convex sum
property. Note that the integer s is not necessarily equal to the
number of models r.

Example 1 Let us consider CFS-LIN and the Liapunov function
defined by (3.1). The expression of V is:

V=xT (i hi(z)((Ai — BiKo)"P + P(A; — BiKO))) X,
p

which can be written as:
V = xT (Z Cj(Z)Qi(P, Ko)) X,
i=1
with ({z) = h{z) and QP, Ko) = (4;— BiKo)"P+ P(4;— BiK,), i€ I,.

3.2. Basic Theorems

Using the expression (3.2), our goal is to find conditions on Q,, i€ I
that ensures the definite negativeness of f(x, z). Note that the values of
all the functions ({z) are known and should be helpfully used.

It is obvious that

z’: G(2)Qi<0, VzeR?, (33)
i=1

is a sufficient condition for f(z) to be definite negative.

Remark 2 The condition (3.3) is not strictly equivalent to f(x,z) <O0.
One may find a certain pair of vectors zy and x, such that the matrix
$1(z0)Q1+- - - +¢(z0)Q; has some positive eigenvalues even if the
quantity x7(¢1(z0)Q1 + - -+ + (s(z0)Qs)xo is negative. Yet, using the
condition (3.3) instead of f(x) <0 will not introduce much con-
servatism in the choice of the matrices Q.

Now, an equivalent to (3.3) is investigated. Consider the assumption
(A1) there exist at least s points z;€ R?, i€ I, such that {{(z;)=1.
Then,
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THEOREM 3 If (A1) holds then the condition (3.3) is equivalent to
0:<0,Viel,

Proof Under (Al), 3.3) = Zle Ci(zj)Qi = Qj <0, Vjel,.
(Q:<0,Vie I,)=>(3.3) is obvious since {(2), i € I satisfy the convex
sum property.

If the condition (41) is not true, it is possible to find a better
condition for the definite negativeness of f(x) than the criterion
“0;<0,Viel”. Let ((2)eR:(T(2)=[¢(2),...,((z)] and D;=
{¢(2)|z€ RP}. Since 0<({{x)<1, Viel, then D C[0,1FCR’. If we
define a second assumption:

(42) there exist g points ;€D je{l,...,q}=1, with ] =
[Tj1,...,Tj] such that any point of D, can be written as a convex
combinaison of these g points:

q9
VhED:,3(0,...,6), 6; >0, O1+---+0,=1, (=D 6T},
Jj=1

we have the following theorem

THEOREM 4  Assume that (A2) holds for the functions ((z), i € I;. Then,
the condition (3.3) is equivalent to

s
Y <0, Yjel,. (3.4)
=1
Proof (3.3)=(3.4) If (3.3) holds for all elements of D¢, then it is
true in particular for the points T, j€ I, leading to (3.4).

(3.4) = (3.3): Let us now consider any point z € R? and suppose that
(3.4) holds. According to (42), we can write {(z) as a convex com-
bination of the points T : {(2)" = [, 6;(x)T, ..., Sy 6(*) Tl
with 6;, j € I, satisfying the convex sum property. Then,

s s q q p
D G@ei=) (Z 9j(Z)Pﬁ) Q=Y 6(2) (Z Pini) :
i=1 =1 \j=1 j=1 i=1

Since 6, j € I, are positive and not all egal to 0, (3.3) holds.

Remark 3 Theorem 4 is also valid when a conic combination is
considered: the assumption
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(42') there exist g points ;€D je{l,...,q}=1I; with I] =
[Tj1,...,Tj] such that any point of D, can be written as a conic
combination of these g points:

q
VRED (61 --,60),0,>0, 61 +---+6,>0, (=D 6Ty,
=1
leads to the same result as (42). For simplicity, only convex
combinations are considered in the following even if both convex or
conic combinations are valid.

The assumption (42) may not be true for every function ¢(z). Yet, it
is always possible to find a bounded convex polyhedron containing D.
It is then possible to consider another assumption:

(43) there exist k points, I;€R’, je{l,...,k} =L with I] =
[Tj1,...,Ty] such that any point of D, can be written as a convex
combination of these k points.

Using this assumption, we can write another stability condition:
THEOREM 5 Assume that (A3) holds for the functions ({z), i€ I,. If

D Tu0i<0, Vj€k. (3.5)

i=1

holds then (3.3) is satisfied.
Proof Obvious according to the previous results.
Note that assumption (43) is always true:

Example 2 Let us consider the s points I'f =[1,0,...,0],
r;=10,1,...,0],...,I7=0,0,...,1]. Any point of D, can be
obtained as a convex combination of these points. This simple
“polyhedric overvaluation” of D¢, is only based on the bounds of the
functions {{(z), i€ L.

3.3. New Stabillity Conditions

The above results can be directly applied for the stability analysis of
continuous time Takagi-Sugeno models:
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THEOREM 6 Consider the system (2.1). Let I';, j€ Iy be k points such
that the functions h(z), i€ I, satisfy (A3). If there exists a symmetric
matrix P> 0, PeR"* " satisfying

S
> Tu(ATP + PA) <0, Vjel,

i=1

then the origin of the system (2.1) is globally asymptotically stable.

Proof Obvious using Theorem 5 with s=r, ((2)=h{z), i€l
and Q; = ATP + PA,.

Example 3 Let us consider a 2 models T'S system with the following

rule matrices: A; = [—61 _?3] , A= [_;)1 0(.)5] and Ay(2),
hy(z) >0.2.

According to Theorem 1, the problem to solve is: find PeR**?,
P> 0 such that AJP + PA; <0 and AJP + PA, <0.

According to Theorem 6, the problem to solve can be reduced to:
find PeR**2, P> 0 such that 0.2(A]P + PA;) + 0.8(ATP + PA) <0
and 0.8(A7P+ PA;) + 0.2(A7P + PA;) <0. The second system of
equation has multiple solutions P >0, for instance P =1, whereas
the other has not (4, is not a Hiirwitz matrix). Moreover, even if in
some cases, both of the systems may have solutions, the proposed
method allows to add stronger constraints on the solution, which is
particularly interesting for stabilization.

Note that if the functions h{z), i€, satisfy (41), Theorem 1 is
equivalent to Theorem 6: the points considered for the polyhedric
overvaluation are then I'l =[1,0,...,0], 7 =10,1,...,0],...,I'T =
[0,0,...,1].

4. STABILIZATION OF TS MODELS

4.1. Case of State Feedbacks and CDF Controllers

When a quadratic Liapunov function is used, the stabilization problem
of TS systems with a linear state feedback or a CDF controller both



STABILITY OF TAKAGI-SUGENO FUZZY MODELS 231

lead to the following kind of matricial inequality:

i hi(z)((A; — BiK;)"P + P(A; — BiK;)) <0,
i=1

Note that with the continuous state feedback, we have K;= K, i€ 1,.
Let us now apply the stability theorem of the previous section to these
controlled systems.

THEOREM 7  Consider the system (2.2) and let T}, j € Iy be k points such
that the functions h{z), i € I, satisfy (A3). If there exists a matrix P > 0,
PeR"*" satisfying

r
> Tu((Ai — BiKo)' P + P(A; — BiKo)) <0, Vj€l,
i=1

then the origin of the system (2.2) is globally asymptotically stable.
Proof Obvious according to the stability results.

THeEOREM 8 Consider the system (2.4) and let T, j € Iy be k points such
that the functions h(z), i € I, satisfy (A3). If there exists a matrix P > 0,
PeR"*" satisfying

r
> Tu((Ai — BiK)"P + P(A; — BiK))) <0, Vjel,  (4.1)
i=1

then the origin of the system (2.4) is globally asymptotically stable.

Proof Obvious according to the stability results.

4.2. Case of PDC Controllers

Using a quadratic Liapunov function V'=x"Px, sufficient global
asymptotic stability conditions are expressed in the form

3 h(a)y(2) (s — BK)"P + P(A; — BK})) <O.
i,j=1
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With a view to apply the stability criterion of the previous section to
the TS system controlled by a PDC regulator, the derivative of the
Liapunov function has to be written in the form (3.2). For instance, in
the continuous case, denoting G;=(4;— B;K)) leads to

Zl h()hy(2) (A — BiK)"P + P(A; — BiK;)
ij=

= Y hi(2)h;(2)(G}P + PGy)
ij=1
B { Y11 #(2)(GLP + PG)+
| Sty i 202 () (G + Gi) [2)' P+ P((Gy + Gii) /2))

Then, it is possible to define s=r(r+1)/2 functions &(z), k€ I; and s
corresponding matrices Ny, k € I, such that

- (Z si(z)zv,-) %,
i=1

with &, k € I satisfying the convex sum property. The r first terms are
&(z) = h,?(z), N; = GLP + PGy, i€, and the other ones are naturally
built using the coupled terms, this is &, 1(z) =2hi(2)ha(2), Npy1=
05((G12+ Gz])TP+P(Glz+G21)) and so on.

An application of this transformation is proposed in the simulation
section.

THEOREM 9  Assume that the above defined transformation is performed
on the derivative of the Liapunov function x” Px along the trajectory of
the system (2.3). Let T}, j € I be k points such that the functions &(z),
i€ I, satisfy (A3).

Consider the system (2.3), if there exists a matrix P>0, PeR"*"
satisfying

5
ZFj,'N,'(P) <0, Vjelk,
i=1
then the origin of the system (2.3) is globally asymptotically stable.

Proof Obvious according to the stability results.
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4.3. LMI Resolution

In the section dealing with stability, the conditions were directly written
in terms of LMIs. In the above written equations, since P and K;, i€ I,
are unknown variables, the terms of the type K] B] P are bilinear. Yet,
these expressions can be easily written in a LMI formulation for an
easy computation of the Liapunov matrix and the controllers.

In the continuous case, the LMI transformation is performed in two
steps. First, the inequalities are left- and right-multiplied by S= P!
Then, defining the intermediate unknown variables U;=S.

K;, i€ I, leads to LMISs inequalities in the variables S and K, i€ I,:

s
D “Tu(SA] +AiS — U'B; — BiU) <0, Vj€L.
i=1
Note that this change of variable is bijective.

The main interest of the obtained LMI is the easy numerical re-
solution using tools like Matlab’s LMI toolbox. Another interest relies
on the adjunction of some performance constraints that can be expre-
ssed as LMIs. When the stabilization problem is considered, it may
be very interesting to add LMI constraints with a view to guarantee
some dynamical properties on the state or control vector. Here, two
examples are considered: constraints on the input and on the decay rate.

4.3.1. Constraint on the Input

Assuming that the initial state condition is a known vector x(0). If the

LMIs
1 x(0) s U
(x(O)T S ) 20, (U,T 721> 20,

hold with v a positive real constant, we have ||u(?)|, <, ¢ >0.

4.3.2. Decay Rate

The speed of convergence towards the origin can be expressed with the
exponential stability. If the condition V(x,z)< —aV(x,z) or
V(x,2) + ax"Px <0 holds, then the guaranteed speed of response
grows with the admissible value of o> 0. Since >,y =1, the
stability/stabilization LMIs are not modified much by the adjunction
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of the term a.P. In most cases, the constant a cannot be considered as
an LMI constraint.

Example 4 Let us consider the stabilization LMIs of TS model with a
CDF controller: (4.1). In the continuous case, the conditions become

r
> Ty((Ai — BiK)"P + P(A; — BiK;) + aP) <0, Vj€l,

i=1

and the usual transformation is performed in the same way.

5. SIMULATION RESULTS

We consider here the following simplified model of an inverted
pendulum:

{X: (1/M)(=fX + mgsin cos 0 + Gu(t)) (5.1)
6 = (1/LM)(g(M + m) sin 6 — f cos 6X + cos 6 Gu(t)) '

with the numerical values

X(@) position of the cart m

0] angle of the pendulum rad

u(t) control vector |4

M total mass of the cart 20Kg

f friction 150N-m-rad !
m mass of the pendulum 0.025Kg

g gravity 9.81ms 2

G F(f) = Gu(f) 50N.v~!

L half-length of the pendulum 0.1m

Our goal is to find a control u(f) such that the state vector defined by
xT =[0,X,X, é], tends asymptotically towards the origin with an even-
tually fixed upperbound for ||u(f)||> or an exponential convergence
rate.

In any domain Dg [—6, +6p], 0 < 8y < 7/2, we will show that (5.1)
can be written exactly as a 4 models Takagi-Sugeno system:

4

(1) =) hilx)(Aix(2) + Biu(1)). (5.2)

i=1
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A(x)x(f) +

It is obvious that (5.1) can be written in the form x

B(x)u(t) with

],

cos(fp), we will now write

é

X
—(f/M)X + ((mg/M)(sin 8/6) cos 8)0
| —f(cos0/LM)X + ((g(M + m)/LM)(sin 6/6))8

(sin fo/6p) and (3(6o)

0
0
G/M
| Gcos8/LM

A(x)

B(x) =

Defining a(6y)

cos @ as a convex sum of 3 and 1, and (sin 6,/6,) as a convex sum of «
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and 1. Then,

(sin 0/9) =Fgn-1+ ngn . (sin 00/00)’F:1in =1 — Fgp,
cos 0= Fey5-1+F'_ -cos B, Floo=1— Feo,

cos
with

Fsn = (1/1 — a)((sin6/6) — o)
Fg, = (1/1 = a)(1 — (sin6/6))
Feos = (1/1 — B)(cos 0 — B)
Fcl:os = (1/1 —'ﬂ)(l - 0080).

Incorporating these functions in the above written models leads to the
T-S model (5.2) with

0 0
0 0
Bi=B2=\ Gm |~ |os
| G/LM 5
i 0 0
0 0
By =Bs= G/M ~los
| G cos 6y/LM 58
i 0 0 0 1
Ay = 0 0 1 0
(mg/M) 0 —(f/M) 0
L(g(M +m)/LM) 0 —(f/LM) 0
T 0 0o 0 1
o 0o 1 0
~ 100123 0 -75 0
| 982 0 -75 0
[ 0 0 0 1
Ay = 0 0 1 0
(mg/M)(sin 6y/6,) 0 —(f/M) 0
L (8(M +m)/LM)(sin 60/60) O —(f/LM) O
F 0 0 0 1
| o o 1 o
1001230 0 =75 0
| 9820 0 -75 0
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I 0 0 0 1
Ay 0 0 1 0
(mg/M) cos by O —(f/M) 0
L (g(M +m)/LM) 0 —(f/LM)cosf O
-0 0 0 1
B 0 o0 1 0
1001238 0 =75 0
| 982 0 -758 0
i 0 0 0 1
Ay 0 0 1 0
(mg/M)(sin 6y/6p) cos 6p O —(f/M) 0
| (g(M + m)/LM)(sin 6o/6p) 0 —(f/LM)cos8y O
T0 0 0 1
3 0 0 1 0
10012308 0 -75 0
| 9820 0 =758 0

The weighting functions are

h(0) = (1/(1 = B)(1 — e))(cos 8 — B)((sin 6/6) — )
hy(6) = (1/(1 — B)(1 — a))(cos 8 — B)(1 — (sin 6/6))
h3(0) = (1/(1 — B)(1 — @))(1 — cos 6)((sin 6/6) — )
ha(6) = (1/(1 = B)(1 — @))(1 — cos )(1 — (sin 6/6)).

The CDF control law can not be used to control this system since the
matrices B;, i € I, are not linearly dependent. Yet, one may use a PDC
control law expressed as u(f) = — Y4, hi(6)Kix(t). The application of
our criterion requires to transform the system into x = (Z}:l /\iG,-) X,
with

(A1 = (m(0))?,..., 2 = (ha(6))?, G1 =A; — BiKy,...,Gy = Ay — B4K4
As =2h1hy, Gs = 0.5((A1 — B1Kz) + (A2 — B2Ky))
A6 = 2h1h3, Gg = 05((A1 - B1K3) + (A2 - B3K1))
$ A7 =2hhs, G7=0.5((A1 — B1Ks) + (A4 — B4K1))
Mg = 2hyh3, Gg = 0.5((A2 - BzK3) + (A3 - B3K2))
A9 = 2hyhy, Gg = 0.5((A2 — B2Ks) + (As — B4K2))
\ Ao = 2h3ha, Gio = 0.5((A3 — B3K4) + (A4 — B4K3)).
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The numerical values of the gains of the PDC depend on the choice of
the stabilization technique. The following figure compares numerically
two stabilization techniques: classical Tanaka (1) and our method.
Note that the results provided by Tanaka’s relaxed stability conditions
are nearly the same as classical Tanaka. We notice that our results are
better than the ones obtained by Tanaka’s theorem:

Constraints Optimization Our criterion Tanaka’s criterion
0=12,1=0 Min(Umax) 79 10.2

Umax =20, §p=1.2 max()) 6.6 1.8

Umax =10, A=0 max(6o) 1.27 1.19
=12, A=2 min(Umax) 109 21.9

The following simulation curves are obtained with the simulation
constraints: optimize uyax With 8g= 1.2, A=2, and the initial position
x5 =11,0,0,0]. The values of the PDC gains are:

Ki=[48 —033 —18 0.50]
Ky=[56 —027 —19 0.59]
K;=[56 —026 —1.9 0.59]
Ky=[97 -0.67 -22 1.1],

with an optimal value upn,, = 10.9 and the Liapunov matrix

1 -0.13 -0.21 0.11
-0.13 0.061 0.043 0.15
-0.21 0.043 0.061 —0.023

011 015 0.023 0.013

P=

In this simulation example, the only goal was to stabilize the system
with a minimization of the control amplitude under constraints. If it is
possible to have a high value for ||u(f)||,, a higher exponential
convergence rate can be used with a view to diminish the time
response. Moreover, If a certain type of behavior is required around
the origin, it is possible to add a state feedback to the PDC regulator.
Since A, represents the linearization of the system around the origin, it
is possible to simply choose K; by a pole placement of A;— BKj;
consequently, the new stabilization problem will only involve the
variables K,, K3, K4, P. Note that, since 6y = 1.2 has been chosen, the
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regulator given above may not be satisfory if the initial angle is not
inside [—1.2,1.2].

6. CONCLUSION

A new method to find a symmetric positive definite matrix P that
guarantees the global asymptotic stability of Takagi-Sugeno’s system
is investigated here. It has been shown that LMIs in P built as convex
or conic combinations of the ones used with Tanaka’s condition may
be considered. The coefficients of the combinations depend directly on
our knowledge of the membership functions, particularly on their
bounds. Due to the convexity of this sum, our set of solutions P is
equal or larger, in the sense of inclusion, than the one provided by
solving the system of Liapunov equations for each rule matrix. The
stability conditions thereby given are presented in terms of LMIs,
which allows to add easily constraints on the control vector or
exponential stability. The proposed simulation of the control of an
inverted pendulum proves comparatively the interest of our method.
Moreover, this new condition can be further applied to discrete fuzzy
system and to the observation problem.
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