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In this paper, a two-stage approach is presented for analyzing flexible beams undergoing
large rotations. In the first stage, the symbolic forms of equations of motion and the
Jacobian matrix are generated by means of MATLAB and written into a MATLAB
script file automatically, where the flexible beams are described by the unified
formulation presented in our previous paper. In the second stage, the derived equations
of motion are solved by means of implicit numerical methods. Several comparison
computations are performed. The two-stage approach proves to be much more efficient
than pure numerical one.
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1. INTRODUCTION

There are many practical structures which have beam-like shapes and
undergo large overall motions, such as satellite antennas, helicopter
blades, robot arms, etc. Many works have been done in formulation
of flexible beams undergoing large rotations. Yoo [1] used a non-
Cartesian variable along with two Cartesian variables to describe
the small elastic deformation of a flexible straight beam, with shear
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and rotary effects being neglected. Valembois [2] compared several
methods for modelling flexible beams in multibody systems, such as
finite segment method, finite element method and assumed mode
method. Pedersen [3] described the system only by the position of the
nodes in the inertial frame which yielded a constant mass matrix. It
resulted in a faster numerical integration, but the formulation was
restricted to isoparametric shape functions which had only transla-
tional degree of freedoms. So beam elements were not applicable.

For short and stubby beams, the effects of rotary inertia and shear
deformation become important, especially when higher modes of
vibration are considered, and their neglect can lead to significant
errors. On the other hand, for slender beams, it will cause large errors
in response analysis to neglect the second geometric stiffness matrices
and nonlinear forces induced by elastic deformations when large
deflections in elements and/or large axial forces are involoved. In
Bakr’s formulation [4] the effects of shear deformation are considered.
And in Mayo’s formulation [5] the higher order stiffness matrices and
higher order nonlinear forces induced by elastic deformations are
considered.

As for numerical integration methods, implicit methods such as
BDF(Backward Differentiation Formulas) method and implicit
Adams method are frequently used. Andrzejewski and his co-workers
gave a survey [6).

There are two different kinds of formalisms, the numerical and the
symbolical ones. The numerical equations of motion have to be
generated for each time step of the integration code and for each
parameter variation. The symbolical equations, however, need to be
generated only once, so they are especially helpful for real time
applications and parameter optimization [7]. Symbolical formalism for
the dynamic analysis of rigid multibody systems has been successfully
used for more than a decade. But applications to flexible multibody
systems are very few [8]. Nevertheless, the drawbacks in symbolic
computing, in particular for the flexible multibody system are that
only simple structural elements can be described by means of a
symbolic approach for the displacement field. Furthermore, a large
number of degrees of freedom may result in long expressions, which
may be difficult to handle by a computer algebra system.

Finite difference approximation of nonlinear ordinary equations
results in nonlinear algebraic equations. Jacobian is essential for the
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solution of the algebraic equations. Normally, the Jacobian is
approximated numerically, which results in a lot of additional
evaluations of the right hand side term of the state equations.
Furthermore, in each evaluation of the right hand side term, the
system matrices such as mass matrix M, damping matrix C and
stiffness matrix K and force vector F should be assembled from the
element level. It is very time-consuming.

In our previous paper [9], a unified formulation was presented and the
pure numerical formalism was adopted. In the formulation, up to the
second order geometric stiffening effects, as well as the rotary and shear
effects were considered, therefore it was suitable for various beams,
from stubby ones to very slender ones. Nonlinearity in this formulation
arises from two sources. These are namely geometric elastic non-
linearity and inertia nonlinearity. Geometric nonlinearity is the result of
retaining the quadratic terms in the strain-displacement relationship.
This results in the classical geometric stiffness matrix, the second
geometric stiffness matrix and the nonlinear elastic forces, with rotary
inertia and shear deformation effects being considered. On the other
hand, inertia nonlinearity arises from the gross rotations of the beams in
which the reference motion and elastic deformation are coupled.

In present paper, a two-stage approach for analyzing the flexible
beams is proposed. The first stage is to generate the symbolic forms of
equations of motion and the Jacobian matrix by symbolic toolbox of
MATLABS.3 from the unified formulation and to write them into a
Matlab script file OdeF.m automatically. The second one is to solve the
derived ODE by means of implicit numerical methods. This approach,
may be mentioned as a symbolic numerical approach, proves to be
much more efficient than pure numerical one and is suitable for real
time computation. For the completeness, the unified formulation is
summarized here.

2. FORMULATION OF ROTATING FLEXIBLE BEAMS

2.1. Coordinate Systems

The configuration of the object system is determined by three
coordinate systems, that is, inertia coordinate system XY, floating
reference frame X;Y; which is fixed at the beam under undeformed
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configuration and shares the same rigid rotation as the beam,
and elemental coordinate system (X,Y,, for example) which rotates
simultaneously with X;Y7. Uy, and U,, in Figure 1 are the elastic
displacements in X, and Y, directions of an arbitrary point P,
respectively.

The generalized coordinates of the beam are given by

y=100 ¢V (1)

where 0 is the rigid body rotation, and q is elastic node displacement
vector.

To consider the rotary inertia and shear deformation effects, the
following shape function [10] is used for Timoshenko beam elements.
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where [ is the length of the beam element, £ =x/I, n=y/l and ¢ is the
shear deformation parameter which is given by
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FIGURE 1 A beam undergoing large rotation.
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where k is the shear coefficient, G is the shear modulus, 4* is the cross
sectional area, and EI is the flexural rigidity of the beam.

2.2. Kinetic Energy
Kinetic energy of the beam is expressed as follows:

oS4 oo (Y [l 2592}

i

where n, is the number of elements, p’ and 7 are the mass density and
the position of arbitray point in element i, respectively. The submatrix
M,, is constant, while Mgy(y) and My,(y) are time-variable. Refer to
Bakr and Shabana [10] for the explicit expression of element mass
matrix.

2.3. Strain Energy

Strain tensor for finite strain deformation is

1 (/0w Ow 0w du
S I Sl (B MW, B W Boide A

Gk =€ +E 2 <6xk + ox;  Ox; Bxk) (5)
where e}, and €% are linear part and nonlinear part of the strain,
respectively. The strain energy expression U of a Timoshenko beam

can be written as follows [4]:

U=§/e§de+ZG/e§de (6)

Using Eq. (5) and neglecting small terms, one obtains
U = Ug + Us + Un1 + Unnz + Unn2 ()
where Ug, Us, Uun1, Uanz and U,p are linear axial, linear shear,

classic geometric elastic nonlinear, shear geometric and higher
order geometric elastic nonlinear components of the strain energy,
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respectively. These components are expressed as:

=5/ (5) ®
w=3/ [(%)2+(%) {ga)lv o

6ux Ouy 2
Ui = T (—6—;) av (10)

A,
Un2 = 8/(814,,) (12)

U is different from that of Bakr [4] in existing the last term, and from
that of Mayo [5] in considering the rotary and shear effects.

Using the shape function of Eq. (2) and summing over the ele-
ments of the whole beam, the strain energy expression can be re-
written as:

1

where the system stiffness matrix is

K = Kg + Ks + Kun1 + Knniz + Kun2 (14)

where Ky and Kg are constant matrices, while K,;; and K,;, are
composed of linear terms of ¢, and K,,;, is composed of the second
order terms of q.

Mayo [5] indicated that those formulations which do not include the
fourth order terms of strain energy (i.e., the second geometric stiffness
matrix and the nonlinear elastic forces) may lead to wrong responses
in applications involving large deflections in the elements and/or large
axial forces.
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After applying Lagrange’s equations, the equations of motion for a
flexible rotating beam can be given by

M@y)j+(C+GW)y + Ky =F(y,1) (15)

F(p,) = Fex(y, 1) + Qu(¥) + Qg (y) + On(¥) (16)

where F,(y,f) is the generalized external force vector, G(y) is
gyroscopic matrix which is skew-symmetric, Q,(y) arises from the
variability of the mass matrix, Q,(y) and Qu(y) are nonlinear elastic
forces induced by the elastic deformations. The former is the axial
nodal force vector which is composed of the second order terms of y,
and the latter includes transverse force and moment of nodes, and is
composed of the third order terms of y.

We added the terms reflecting the effect of shear deformation into
Mayo’s formulation, and corrected the errors existing in the
expressions of higher order stiffness matrix and nonlinear elastic
forces in Mayo’s paper.

3. NONLINEAR ANALYSIS APPROACHES

3.1. Numerical Formalism

After transforming the equations of motion into state equations,
methods for the 1st order ODE can be applied. In the present work,
several solvers in the ODE suite [11] are adopted.

Meog(v)V = Foq(v, ) (17)

where,

Ma)= [0 §)s v=[7] (19

Feq(v7 t) — [ﬁ‘(yv t) - (C + G(y))p - K(y)y] (19)
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The following steps should be performed for each function
evaluation:

(1) Compute M., and F,,

(2) Decompose M ={JDLT by Cholesky method
=

(3) Solve v = [ (()LDL " Y F,

When rigid motion is prescribed, the governing ODE will be
reduced to that with a constant mass matrix, and the step (2) above
can be performed only once in advance.

The numerical formalism is described as Figure 2(a). The state
equations should be generated from the element level for each
evaluation of ». In addition, the numerical computations of the
Jacobian matrix of the equations result in increase of evaluation
number of .

3.2. Symbolic Formalism

In symbolic formalism (see Fig. 2(b)), the whole problem can be
divided into two independent stages, i.e., the generation of the model
and the solution of the equations of motion. The state equations and
the Jacobian matrix need to be generated only once.

In the first stage, we use symbolical tool box of Matlab5.3 to
generate the equations of motion in the form of state equations and
the Jacobian, and to output them to a Matlab subroutine. In the
second stage, we adopt the implicit solvers odel5s, ode23t and ode23tb

| Model description l I Model description I
& _Jperivation of Equationsl [Derivation of Equations—l
0
l Q
0 g Tical :
& lNumerical equations I n Symbolical equations,
D o Jacobian
X
) 1 L
2 ODE solvers | Y ODE solvers I
2
| Result output l ' Result output ]
(a) Numerical formalism (b) Symbolical formalism

FIGURE 2 Comparison of two formalisms.
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in the ODE suite to solve the governing ODE. The odel5s is a variable
order solver with the order from low to medium, which includes both
BDF method and the Numerical Differentiation Formulas, or NDF
method. The ode23t is an implementation of the trapezoidal method of
order 2 and is suitable for moderately stiff problem, while ode231b is an
implicit Runge—Kutta formula with a first stage that is a trapezoidal
rule step and a second stage that is a BDF of order two. Because the
equations and Jacobian matrix are given explicitly, the solution
process becomes much more efficient.

4. EXAMPLES

Let’s consider a slender beam, rotating around the hinge with the
following given function of angle-time relationship.

] (ws/t:)(2)2) + (85/27)? 2nt/t) — 1)) for t< ¢,
Aoty 15

where steady-state angular velocity w,=6m/s and spin-up time
t,=15sec. Relative parameters are shown in Table 1.

4.1. Comparison of Numerical
and Symbolical Formalisms

Table II compares efficiencies of the following three approaches in the
cases of DOF=18 and DOF=48:

(1) pure numerical approach (num)
(2) symbolical-numerical approach without explicit Jacobian (symb1)
(3) symbolical-numerical approach with explicit Jacobian (symb2)

It is shown that symb2 is the most efficient in solution of the
governing ODE, much faster than num, although it takes long time to

TABLE I Relative parameters of the example

Lengths of beams 10m Elastic modulus 7 x 10" N/m?
Area of cross section 4 x 10~*m? Linear density 1.2kg/m
Area moment of inertia 2 x 10~ "m* Damping matrix C neglected
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TABLE II Comparison for the three approaches

Case of DOF=18 Case of DOF=48
Items num symbl symb2 num symbl  symb2
time for deriving Ode - 184 1165 - 1553 39398
time for solving Ode 643 27 9 54678 54 23
successful steps 349 114 114 5147 98 98
failed attempts 229 27 27 3792 22 22
function evaluations 5336 408 225 182555 269 173
partial derivatives 114 5 5 1712 1 1
LU decompositions 314 52 52 5255 43 43
solving linear systems 1117 222 223 16490 171 171

derive the ODE. The symb1 takes the shortest total time for derivation
and solution of the ODE. The derivation of Jacobian is time-
consuming. In the pure numerical approach, much more time steps
and function evaluations are necessary, much more failed attemps
happened, and each function evaluation implys more computations
than that of symbolic approaches. Table II says that the ratios of the
CPU times for solving the governing ODE by the three approaches are
71.4:3:1 when the degree of freedom of the problem is 18, and
2377.3:2.3:1 when the degree of freedom becomes 48. Obviously,
as the scale of the problem increases, the symbolical-numerical
approaches become much more and more efficient than the pure
numerical one in solution of the governing ODE. Of course, when
using symbolical-numerical approach, the scale of the problem is
limited by the algebraic computation ability under the available
computer conditions. Approach sym?2 is suitable for real computation,
sym1 could be used when pursuing shortest total CPU time, while num
is suitable for large scale problems in which symbolic softwares can
not work.

4.2. Comparison of Solutions of 3 Approximate Models

The solutions of the following three approximate models are
compared as shown in Figure 3.

model 1: Constant stiffness matrix

model 2: Up to the first order geometric stiffness matrix

model 3: Up to the second order geometric stiffness matrix and
nonlinear elastic forces
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FIGURE 3 Tip displacement of 3 approximate models.

Figure 3 describes the tip elastic displacements in transverse and
axial directions of the three models by the NDF method, for the case
with the length of 10 m. It shows that, for a slender beam, results of the
last model are apparently different from (actually, better than) those of
the first two models.

4.3. Comparison of Efficlencles of 4 Solvers

Comparison of computation costs of 4 different solvers (see Tab. IV) is
performed with the same parameters shown in Table III, where N, is
the number of elements, L is the length of the beam, tspan is the time

TABLE III Parameters for computation

N, L tspan order  RelTol AbsTol
4 10m [0,15.2] 2nd 0.001 0.000001

TABLE IV Comparison of efficiencies of 4 solvers

Methods BDF NDF ode23t ode23tb
successful steps 911 757 1864 706
failed attempts 383 328 259 512
function evaluations 6080 5841 5173 10547
partial derivatives 146 149 50 272
LU decompositions 584 496 835 800
solving linear systems 2429 2115 3922 4460

CPU time (s) 1293 1149 1019 2042
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interval, RelTol is the relative error tolerance and AbsTol is the
absolute error tolerance. The results are obtained by the pure numeri-
cal approach.

Table IV shows that the implementation of the trapezoidal
method(ode231) is the most efficient for the problem. And the next is
the NDF method. It may mean that the problem is mildly stiff.

5. CONCLUSIONS

In this paper, a symbolic-numerical approach is presented. Symbolic
toolbox of MATLABS.3 is used to derive the equations of motion and
Jacobian from the unified formulation. Then implicit numerical
methods are used to solve the governing ODE. The approach proves
to be much more efficient than the pure numerical approach.
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