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In this paper, the authors consider the issue of the construction of a meaningful average
for a collection of nonlinear dynamical systems. Such a collection of dynamical systems
may or may not have well defined ensemble averages as the existence of ensemble aver-
ages is predicated on the specification of appropriate initial conditions. A meaningful
“average” dynamical system can represent the macroscopic behavior of the collection
of systems and allow us to infer the behavior of such systems on an average. They
can also prove to be very attractive from a computational perspective. An advantage
to the construction of the meaningful average is that it involves integrating a nonlinear
differential equation, of the same order as that of any member in the collection.
An average dynamical system can be used in the analysis and design of hierarchical
systems, and will allow one to capture approximately the response of any member of the
collection.

Keywords: Aggregation; String of dynamical systems; String stability; Average
dynamical system; Averaging

1. INTRODUCTION

Aggregation of large scale systems is important for two reasons —
firstly, it provides clarity in the analysis and design of large scale
systems by providing a simpler but macroscopic picture of the system;
secondly, since the evolution of aggregates can be approximated by
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“reduced order” differential equations, the burden of computing and
obtaining a macroscopic picture of a large scale system is significantly
reduced.

In this paper, we are concerned with averaging a class of
homogeneous collection of dynamical systems. In a homogeneous
collection, the structure of the dynamics of the systems and the
interactions amongst systems is identical. Therefore, averaging the
states of the collection of systems makes sense.

A formal definition of aggregation and restriction for finite
dimensional systems is given in [7]. In [22], we developed a framework
for constructing meaningful averages for a countable collection of
LTI systems.

This research is inspired by our prior work on the modeling of traffic
flow behavior as a function of the adaptive cruise control designs used
by the constituent vehicles in the traffic [21, 22]. The problem is that of
determining the evolution equations for the density and speed of traffic
when vehicles in traffic automatically change their acceleration in
response to changes in their following distance and in their rate of
change of the following distance. In such a scenario, the average follow-
ing distance of vehicles is inversely proportional to the density of traffic
and the average speed of vehicles is a good macroscopic representation
of the traffic speed. Such a macroscopic description of traffic flow can be
utilized to examine the propagation of shock waves in traffic and
consequently, to evaluate different adaptive cruise control systems.

An important issue in aggregation is the sensitivity of the aggregate
to the size of the collection. For example, if the average behavior of a
traffic were to be significantly different with a million and one vehicles
on the highway as opposed to a million vehicles, then that behavior
cannot really be thought of as a macroscopic representation of the
underlying microscopic behavior of traffic. It is this issue that brings
forth the limitations of an ensemble average.

We envision the presented research to have applications in
controlling formations. In [17], the authors consider the problem of
controlling the average position of a platoon of underwater vehicles;
similarly, in [23], the authors consider a problem of controlling the
average position of air vehicles flying in a formation.

If the aggregate of initial conditions of the collection of systems
cannot be well defined, it is quite likely that the aggregate may not be a



AGGREGATION OF DYNAMICAL SYSTEMS 381

meaningful macroscopic representation of the collection. This can be
the case if the initial conditions form a geometric sequence with
a common ratio greater than unity. It is, in this sense, an ensemble
average is limited in its ability to be a meaningful macroscopic
aggregate.

In some instances, the structure of the interactions may be such that
a meaningful macroscopic aggregate may not exist. For example, in
automatic vehicle following systems, collective or string instability can
occur, although, individually, each vehicle can track its predecessor
with a bounded error. However, the bound keeps increasing with the
vehicle index, in some cases, it amplifies geometrically, when there is
string instability. In such a collection, the computation of an ensemble
average of following distances is not really indicative of the density of
traffic; in fact, it is not a meaningful aggregate.

In order to circumvent the need to verify if the ensemble average
of the initial conditions is sensitive to the size of the collection, we
introduce the notion of a meaningful average. A meaningful average
is an ensemble average for meaningful initial conditions and is
dependent solely on the structure of the interactions. We refer to w()
as a meaningful average for a countable collection of systems, if the
initial conditions of all the systems in the collection start close to w(0),
then the state of every system in the collection is close to w(f). In
addition, it is required that if the average of the initial conditions
is w(0), then the average of the states is w(f). What we seek in the
following sections, is a “reduced order” differential equation that
describes the evolution of w(z).

2. PROBLEM STATEMENT

In this paper, we will consider the following class of interconnected,
nonlinear systems with finite interactions:

Xi = filXi, Xic1y .o Xice ), i=1,2,...;
and x;=x, Vi<l (1

Here, x;(t) e R", r is a fixed, finite, positive integer, The vector fields,
f; are assumed to be sufficiently differentiable; in addition, it will
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be assumed that solution to this countable system of differential
equations exist and is unique. The term, u(f)eR"™, is piece-wise
continuous in ¢ and represents the reference information available to
each system; it will be assumed to be bounded. The interconnected
system described by the above equations will be referred to as a
string. The following notation is used in this paper: If a is a vector
in R" ||a|| represents its Euclidean norm. If for every ¢, b(¢) e R",
6()|, represents {f3° ||b(t)|Pde} /7). Notice that the definition of
norm presented here involves integration over time.

The following notion of stability of a solution [4, 20] to the above
system of differential equations, also referred to as string stability, will
be used in the rest of the paper:

DEeFINITION 2.1 (£, stability) Let {x;(0)} and {%;(0)} be two sets of
initial conditions and let {x;(¢)} and {X;(¢)} be the corresponding
solutions. Given e > 0 if there exists a § > 0 such that

sup [|xio — Xiol| <8 = sup [|xi(2) — x:(1)l|, <e,
i 14

then the solution {x;(¢)} is defined to be £, stable.

DerFINITION 2.2 (Spatial Asymptotic £, stability) Let {x;(0)} and
{%:(0)} be two sets of initial conditions and let {x;(¢)} and {x;(¢)} be
the corresponding solutions. Then, {x;(¢)} is an asymptotically £,
stable solution, if it is an £, stable solution and if

lim ||xx(0) — X£(0)|| = 0 = lim ||xx(?) — 5ck(t)||p =0.
k—o00 k—o0

The notion of stability presented here implies continuous depend-
ence of solutions on the initial condition. From the definition of
stability, and from the smoothness of solutions, it is clear that
limyo0 supy [|xk(f) — Xk (#)|| = 0. Otherwise, [|xk(¢) — Xk(¢)||, will be
unbounded for some k. Only in the case of L, stability is there a
need to define an asymptotic (temporal) stability of the solution
and this definition is given in [19]. The notion of asymptotic stability
presented here is related to the attenuation of state with respect to
the system index, and not with respect to the time.

Given any time ¢, a “pointwise in time” or partial state aver-
age, or average in the sense of Cesaro, Xy(f), is defined as:
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in(t) := (1/N) Y xi(f). The partial state average is well defined,
since the solution of the above equation is well defined for all finite i.
We define an “ensemble” state average at a time ¢ as

x() = Nli_rp(» xn(1). (2)

whenever the limit on the right hand side of the above equation exists.

The following countable collection of decoupled first order systems
[22] illustrates the need for choosing a meaningful set of initial
conditions for aggregation:

xi=—x;, x(0)=(-1)'Q2i—=1), i=12,... 3)

For this problem, the partial average exists for every ¢. However, the
ensemble average is not defined for any ¢, because of the manner in
which the initial conditions are defined. Suppose the initial condition is
such that limy_o(1/N) 32V xx(0) exists, then the ensemble average,
%(1) is given by limy_.(1/N) 3.Y x¢(0)e~". As we have seen in the
above example, the existence of an ensemble average is intimately
related to the initial condition. We seek to define an average that is
independent of the initial condition, but, one that is dependent on the
structure of the system. To this end, we ask the following question:
Suppose a candidate function w(f) were given. If the initial condition
of every member of the system is close to w(0), will the resulting
partial state average stay close to w(#)? If, in addition, the initial con-
ditions are such that the ensemble average of the initial conditions
equals w(0), is the resulting trace' of ensemble average equal to the
given candidate function, w(¢), at almost all instants of time?

DeriNiTION 2.3 (Meaningful Average in the strong sense) w(f) is a
meaningful £, average in the strong sense, if the following two con-
ditions hold:

(1) Given € > 0, there exists a § > 0 such that for all solutions, {x(#)},

sup [lx(0) = w(O)l| <& = sup |lxe() = win), <e,

We use trace as in the context of a signal and not in the context of a linear operator.
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(2) For all solutions, {x;(?)}, such that sup||xx(0) — w(0)|| is bounded,
and

N
M
”—;72 xk(O)—w(O)HSI—W, for some M >0, a>1
1

N _
= H%Zxk(t) - w(t)”p < %'Iﬁ, for some M, 3> 0.

Any function of the form Ae™ ' is a meaningful average for the
previously considered collection of decoupled first order systems.

Consider the following countable collection of coupled first order
systems [22]:

jci:-—xi+2Xi—l+u, i=1;2$"‘; (4)
x=0, Vi<0, u=10; x;(0)=0, Vi (5)
}’i =xi' (6)

Denoting the Laplace Transform of x{f) by X(s) and taking the
Laplace Transformation of both sides of the above differential equa-
tion, we get:

Xi(s) = ——=Xi1(8) + 7——

1
s(s+1)°
Then, by an inductive argument, one obtains:

k ) k—j 1
Xi(s) = Z(s+1) sGH1)

j=1

2
s+1

Application of the final value theorem indicates that lim,_, ., xx(f) =
2¥—1. This indicates that lim,_.Xy(f) = (2¥*! — N —1)/N. Next,
consider

2k—l

Xie(5) — X—1(s5) = —(——ITI_)E

()
The right hand side of the above equation can be written as the
Laplace transform of the convolution of functions that are non-
negative at every instant of time. Therefore, xp(f) —x _1(£) > 0. This
implies that given any ¢, the sequence {x(f)} is monotonically
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increasing. Since lim, o Xy = (2¥*! =N —1)/N, given any M >0
there exists a N* > 0 such that lim, ,,, Xy > M, VN > N*. In particular,
lim, o, Xy« > M. Therefore, given any £ >0, there exists a #y. such
that xy« > M — ¢ for all ¢ > ty+. Since, at any ¢, the sequence {x.(?)}
is monotonic, it follows that for Xy(f) > M — ¢ for all ¢ > ¢y and for
all N> N*. Therefore, lim,_,, limy_,o, Xy(f) is unbounded.

In this problem, limy_, Xy(0) =0. While x(1), i=1,2,...,N is
always bounded for all finite N, the limit of the sequence of partial
averages, even if it exists, is always unbounded. A meaningful average
does not exist for this system.

In the first example, lim,_,,,X,(¢) is not defined, whereas in second
example, there is a problem of instability of the string, i.e., value of the
state of the i-th system geometrically amplifies with the spatial index i.
These are two important issues that determine the calculation of an
average or an aggregate solution for a collection of dynamical systems.

In this paper, we are interested in constructing meaningful averages,
if at all possible; in cases, where it may not be easy, we will atleast seek
an approximation for ensemble average for a given initial condition.

3. MAIN RESULTS

Our first result concerns the following string of equations:
X =f(%i, Xi—1, -, X, u(f),  x()=x1(0), V<1, i=1,2,...
Let w(?) satisfy the following differential equation:
w=f(w,w,...,w,u).

We will show that any solution of the above differential equation will
be a meaningful average for the given collection of interconnected
systems in the strong sense, provided f satisfies certain conditions. To
this end, we will make the following assumptions:

(1) The function, fis Lipschitz, i.e., there exist /y,. ..,/ such that

” f(xlax2a v axr,u) _f()’layb' . ’ynu)”
<hllxt = yill + Bllx2 = y2ll + -+« + Lllxr = yr|-

(2) The zero solution of the differential equation,

e=fle+we+w,...etwu)—f(ww,... wu)),
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is exponentially stable. In other words, there exists a Lyapunov
function, V(e, f) such that

aille]* < Ve, 1) < azllel?,

v  ov
—+—5e—[f(e+w,...,e+w,u) —fw,w,...,wu)] < —a3||e||2,

ot
ov
|5 || <l

for some ay, as, az, as > 0.

(3) In addition, it will be assumed that the interactions between the
systems are sufficiently weak, i.., that 3 ; <1, where I will be
defined later.

THeorEM 3.1 (Computation of a meaningful average) Under the
assumptions given above, w(f) is a meaningful average in the strong sense
if and only if it satisfies

w=f(w,w,...,wu).
Proof First, we will show that if w(?) is a solution of w = f(w,w, ...,
w, u), then w(?) is a meaningful average.
Let us define ex(t) == xx(f) — w(t). Then,
ek =f(ek +we1+w,.. ek W, u)
—f(w,w,...,wu), with ¢ =¢ ifi<l.

Let us define Vi := V(e, f). Therefore,

. _aVk Vi
Vi —-W‘i'ge;[f(ek‘l'wﬂk—l + W,y ekt +w,u) —f(w,w,...,w,u)]

=%+Z—Z‘V(ek+w&k—1 +w,...,e—ri1+wW,u)

—flex+w,ex+w,...,ex+w,u)
+f(ek+w,ek+w,...,ek+w,u)
—f(w,w,...,w,u)]

— aslexl)? + callenl| (Bllex — sl + -+ + Lllex — exrall)

IN

IA

r
—a Ve + Z@ij—j+1,
2

where a; = (a3 — (3/2)as Y 5 j) /a2 and &; = (as/204)lj, j=2,...,r.
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We will say that the interconnections are weak if I = (20304/
a4(304 + a3)), and we will assume that it is the case here.
If the interconnections are weak, it follows that a; > Y, &.

CLAIM  If the sequence of initial condition errors, {e(0)}, is bounded,
then

a0
sup sup |lex(?)|| < 4 [————=7—<sup ||ex(0)]|,
ap 54p ex(0)]| < || 2= TS (O]

(e 7Xe31
sup |lex (D], < 4 [————=—sup |lex(0)||,
ap len()ly < 4 gy sup e O]

Proof of Claim The central idea of the proof is the same as that
in [20]. If {ex(0)} is a bounded sequence, then {V,(0)} is a bounded
sequence.

r
Vi =—-a1 Vi + E&ij—jH,
2
r t
= Vk(t) < e_&"Vk(O) + Z@j/ e“a'(t_T)Vk_j_;.](T)dT,
2 0
LA
= IOl <O + 3 Z Wiy O

r d
and  ||Villo, < Vie(0) + Ea_j, I Vie—1ll oo
2

Since ) &; < @y, it follows that

a0
sup sup ||ex (9| < | ————=7—sup |lex(0)||, and
up sup e )] < 1 -2 —ssup ek O)]

aj
sup ||Vi(2)||, < ——=7—sup Vi (0),
kpll k()llp_&l_zgdj up k(0)

g

<)\ ——— .
Sl’:p "ek(t)”2p =\ (C_Yl — Z; aj) S‘,tp "ek(o)"
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Let us define zy(f) = (1/N) 3_) ex(f). This implies that e(0)=
Nzp(0)— (N —1)zy—1(0). Pick some g > 1. If ||xx(0) — w(0)|| < (M/NY)
for some M >0, then ||(ex(0)/N)|| < (2M/N?). Therefore, Vy(0) <
(4M%ay [N?2),

From the I/O properties of discrete LTI systems, it follows that if
Vn(0) < (My/N*72), for some M, >0, g > 1, it follows that for some
My, M3 > 0,

M,
sup VN(t) < 53 N2a- A29—2

and

M,
IVH(Ol, <

Therefore, it follows that both sup,q|len(t)|,llen()lly, are
bounded by some sequence of the form (M* /N‘l“) for some g > 1.

Therefore, w(¢) is a meaningful average.

Now, we will show that if w(¢) is a meaningful average in the strong
sense, then it satisfies the differential equation, w = f(w,w,...,w,u). If
w(?) is a meaningful average in the strong sense, consider the solution
of the string corresponding to the initial condition sequence, {w(0)}.
The corresponding solution for the string is the sequence, {x(¢)},
where x = f(x, x,...,x,u) and x(0) = w(0). From the definition of a
meaningful average, it follows that for some M,(3>0,|x(f)—
w(t)|| < (M/NP) for all N. Since the left hand side of the inequality
is independent of N, it follows that x(f) = w(¢) for all instants of time.
Therefore, w(r) satisfies the differential equation. |

Remark Notice the equivalence of £,, averages, since the proof does
not really depend upon p, as long as p > 2. This is important, since we
now know that a solution to

w=f(w,w,...,w,u)
is a meaningful average in any £, sense. |

We will now deal with a collection of systems that have the same
state space dimension, but not necessarily identical dynamics.

Xi =fi(xi’xi—1,xi—21- e 7xi—-r+17u(t))a i= 1527' ..

We are interested in a construction of an ensemble average
corresponding to the case when all initial conditions converge to wy.
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THEOREM 3.2 We make the following assumptions as a first step
towards analyzing the above system of differential equations:

o The vector fields, f;, i=1, 2,... are smooth and furthermore, they
converge uniformly to a smooth vector field, g on every compact set K
inR" x R" x --- x K" x R” and that ||fi — g||., <M for some M >0
and for all its arguments.

o The vector field g satisfies the conditions 1, 2, and 3 of Theorem 3.1.
Then, the solutions of

Xi = fi(Xiy Xi1 o oy Xip1, U),

and .
w=g(w,w,...,w,u),

are such that
o |[xk(t) —w(O)|loo is uniformly bounded in k and limy_o||xk(t)—
w(t)”oo = 0’ lfllmk—»oo"xk(o) - W(O)" =0.

Proof We will define ex(#) := x(f) — w(?). From the previous theorem,
there exists a sequence of Lyapunov functions, for the following string

5c,-=g(x,-,x,-_1,...,x,-_,+1,u), i=1,2,...,

such that ,
Vk < - O_qVk + Z aij—j+1-
Jj=2

For the string under consideration, differentiation of the Lyapunov
functions yields:

. oV, oV,
Vk—Ft“-l-—a—e;ek
oV, OVy
=3t“+56—k[fk(ek+w,ek—1+W,---,ek_r+1+w,u)
—g(w,w,w,...,w,u)]
oV, a9V,
=~5+——’5[g(ek+w,ek_1+w,...,ek_,+1+w,u)—g(w,w,...,w,u)]
ot Oey

Vv,
+6_£[fk(ek +w,... y€k—r+1 + w, u)
(973

_g(ek+waek—l + W, 8krt1 +w,u)]

r
Vi
< -dV iVi—j My/—.
< -a k+§ QjVi—jr1+ 04 Val

=
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Ciam I supi||Vi(0)| < M1, where M > (a2M?/oq(a1 — 35 &),
then Vi(t) < M, for all k and for all instants of time t. Furthermore,
if [|Vk(0)]| — 0 as k — oo, then limy_,cosup; > ollex(£)]| = 0.

Proof of Claim Otherwise, pick the smallest K such that
sup,s o ||Vk(f)|| > M. Note that on the surface, Vi =M, Vg <0,
provided ¥; < M;, 0 < j < K, which is the case here. Consequently,
if V3(0) < M, it must follow that V;(¢f) < M,. This is a contradiction.

Since, we have just proven that ||ex(?)|| is uniformly bounded, every
ex(1) is contained in the same compact set in ®R". Since the vector fields,
fx converge to g uniformly on every compact set, it follows that
my. := supy||fi — g|| goes to zero as k — oo. Consequently, the equation
for Vj can be rewritten as

r
Vi< —a1Ve + Zo?ij—jH + asMymy,
2

LA, «
= IVe®lloo < Y =L Vik—jitllgo + Vi(0) + = Mymy.
= o oy

From the comparison principle [15] and the properties of stable dis-
crete filters with decaying inputs, it follows that limy_, || V()| = 0.
Consequently, limy_,q ||ex(?)|| .= 0. |

Remark Clearly, the ensemble average for this collection of
dynamical systems and for this set of initial conditions is w(¢). Since,
fi’s may deviate significantly from g, it is difficult to establish that w(r)
is a meaningful average for the collection of dynamical systems.

4. CONCLUSIONS

In this paper, we have considered two countable collections of
dynamical systems — in the first collection, all constituent systems
have identical dynamics, while in the other collection, there is a limit
for the dynamics of its constituents. For the first collection, we have
shown, under the conditions of stability of individual responses
and the weakness of interaction among systems, there is a meaningful
average that is a solution of finite dimensional ordinary differntial
equation. For the second collection, the result is as follows — if one
considers a countable collection of dynamical systems having the
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limiting dynamics, similar to the first collection, and if a meaningful
average can be constructed for such a system, then an ensemble aver-
age can be constructed for the second collection, if it has a limit for the
sequence of initial conditions.
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