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In the present paper Muskhelishvili’s complex variable method of solving two-
dimensional elasticity problems has been applied to derive exact expressions for
Gaursat’s functions for the first and second fundamental problems of the infinite plate
weakened by a hole having many poles and arbitrary shape which is conformally
mapped on the domain outside a unit circle by means of general rational mapping
function. Some applications are investigated. The interesting cases when the shape of
the hole takes different shapes are included as special cases.
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1. INTRODUCTION

Problems dealing with isotropic homogeneous perforated infinite plate
have been investigated by several authors [1-6]. Some of them [1-3]
used Laurent’s theorem to express each complex potential as a power
series, others [4-6] used complex variable method of Cauchy type
integrals.

It is known that [4] the first and second fundamental problems in
the plane theory of elasticity are equivalent to finding two analytic
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functions, ¢,(z) and ¥, (z) of one complex argument z = x + iy. These
functions must satisfy the boundary conditions

ki (1) =t 4y (1) — ¥ (1) = A1), (L.1)

where for the first fundamental problem k| = —1, f{¢) is a given function
of stresses; while for the second fundamental problem k| =y =
A+43p/A+ p > 1, f(t) = 2ug(r) is a given function of the displacement,
A, pare called the Lame’s constants, y is called Muskhelishvili’s constant
and with 7 denoting the affix of a point on the boundary. In terms of the
rational mapping function z = ew({), ¢ > 0, w'({) does not vanish or
become infinite for |{| > 1, the infinite region outside a closed contour
conformally mapped outside the unit circle y. The two complex
functions of potential ¢, (z) and ,(z) take the form

X+iY

¢1(5)=“mlnC+CFC+¢’(C)7 (1.2)
(X +iY) .
Wl(‘)-mlnl+cFC+¢(C)» (1.3)

where X, Y are the components of the resultant vector of all external
forces acting on the boundary, and I',I"* are complex constants.
Generally, the complex functions ¢({), y({) are single-valued analytic
functions within the region outside the unit circle and ¢(oc0) = 0, it will
be assumed that T =T and X =Y =0 for the first fundamental
problem.

The rational mapping z = cw({) maps the boundary C of the given
region occupied by the middle plane of the plate in the z-plane onto
the unit circle y in the {-plane. Curvilinear coordinates (p, ) are thus
introduced into the z-plane which are the maps of the polar co-
ordinates in the {-plane as given by { = pe'.

Substituting w({) into Eq. (1.1), we have

Q)
w({)

bi(ew(£)) — ¢y (ew()) =ty (ew(0)) = flow({)). (1.4)

Muskhelishvili [4] used the transformation z = ew(¢) = ¢({ +m{™") in
Eq. (1.4) for solving the problem of stretching of an infinite plate
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weakened by an elliptic hole. This transformation conformally maps
the infinite domain bounded internally by an ellipse onto the domain
outside the unit circle || = 1 in the {-plane. Also the application of the
Hilbert problem for a stretched infinite plate weakened by a circular
cut is discussed in [4]. The two rational mapping functions

-1
S e o <1), [seeRef.3],  (15)
1 —nl
and
-t
_c%—+—m§—__l, (¢>0,n<1;¢=1,...,P), [see Ref. 6], (1.6)
—n

where ¢ > 0, m, n are real parameters restricted such that z’({) does not
vanish or become infinite outside y, are used by El-Sirafy and Abdou
[5], Abdou and Kar-Eldin [6] respectively in Eq. (1.4) to solve the first
and second fundamental problems of the infinite plate with a curvi-
linear hole C in the same previous domain.

In this paper, the complex variable method has been applied to solve
the first and second fundamental problems for the same previous
domain of the infinite plate with a general curvilinear hole C having
finite poles conformally mapped on the domain outside a unit circle y
by the rational functions

(+ 3l iml!

zZ= CW(C) = c———HJI;l(] _ njC_l)v

(Inj] < 1), (1.7)

where ¢ > 0, m’s and »’s are real parameters restricted such that w'({)
does not vanish or become infinite outside y. None of the authors
discussed Eq. (1.4) with several poles. The interesting cases when the
shape of the hole is an ellipse, hypotrochoidal, a crescent or a cut
having the shape of a circular arc are included as special ones. Holes
corresponding to certain combinations of the parameters m’s and n’s
are sketched (see Figs. 1-6). Some applications of the first and second
fundamental problems of the infinite plate with a curvilinear hole
having several poles are investigated.
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2. METHOD OF SOLUTION

The expression w(¢{™")/w'(¢) can be written in the form

w(c™)
v =)+ B, 1)

where




INFINITE PLATE WITH A CURVILINEAR HOLE 489

Plotting of Parametric Equation of the Mapping
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[”If“ + Z};lmjnlf_j] (Hjl):l(] - ”j”k)) <HjP=l,k;éj(n/€ - "j))_l

[(1 0+ S0 (P - ™ = S /(1 = ).

By =

- (Zﬁ—.lmj”}(ﬂ) E;;I (1/1— njnk)] )
(2.2)

and B(¢) is a regular function for || > 1.
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Plotting of Parametric Equation of the Mapping
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Using Egs. (1.2), (1.3) and (2.1), the boundary condition Eq. (1.4)
can be written in the form

kip(o) = a(o)d'(0) = b,(0) = fulo), (2.3)

where o = ¢ denotes the value of { on the boundary of the unit circle
y, while

V() = w(0) + BO (),

f0) = F() = eky T+ T 4+ NO((0) + (D)),

—_ X—-iY
N(C)=‘r”m.,
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z

and

F(§) = (1) (2.4)

Assume that the derivatives of F(o) must satisfy the Holder
condition.

Our aim is to determine the function ¢({) and (), for the various
fundamental problems, from Eq. (2.3). For this multiplying both sides
of Eq. (2.3) by (1/2zi)de/(c — () then integrating the result around
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the unit circle y and evaluating the integrals thus formulated by residue
theorems, one has

N ()
(—n ' @5)

Uy P
ki (L) + El;z—z [ wo)dla) T A0+
=

Jy G—C

where

AD) = — .igi—v‘[a'm)da, (12> 1). (2.6)
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Using Eq. (2.1) we have

0)¢ z
z_mJ g 27)
where b’s are complex constant to be determined. Hence
—ki$(Q) = AQ) — T + Z FebytNm). (28)
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Differentiating Eq. (2.8) with respect to {, and using the result of ¢'(c)
in Eq. (2.7), we obtain

ckibj + cniT* + dihy(ch; + N(ny)) = —A'(m)),

where
dig =2 (1 = mm) ™2, (k=1,...,P).
Hence
/) kl E /1 d, /\——‘
=
(ki = Iidy)’
where
Ej = —A'(n)) — T"n} — hydiyN(ny). (2.9)

Also, from Eq. (2.3), ¥/({) can be determined in the form

W(E) = ""'C'T - —‘~—-—¢ ©+ fj = ’“ )+ B({) - B, (2.10)
where
$.(0) = ¢'(©) + N (D), BQ) 2;.‘[ f‘:"zda,
and
:%{-}[Ta)%‘-{ (2.11)

3. SPECIAL CASES

(i) For 's=0,0<m; <1,j=1,2,..., P, we get the rational map-
ping function

=c(l+m +m 4 mplP). 3.1
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The physical interest of the mapping (3.1) comes from the

following

1. Acircle of radius ¢ : m; =0, j=1,2,...,P.

2. An ellipse m; =0, j > 2.

3. A square with rounded corners with diagonals parallel to the
x-and y-axis my; =m; =0, j > 3,my = about 0.1. The same
square with its sides parallel to the axis m; =m; =0, j > 3,
my = about —0.1.

4. An ovaloid m; =0, j > 3 m| = about 0.3,m; = about — 0.05.

5. A triangle m; =0, j # 3.

More information and applications on technology for the special

cases of the mapping (3.1) are found in [1, 2].

(i) For mj =0, j>2,m = —1 the boundary C degenerate into a
circular cut with P poles (see Fig. 1, P =1). And for m, takes
values near —1, P = 1, the edge of the hole resembles the shape of
a crescent (see Fig. 2).

Many interesting cases the reader can be derived and used
according to the technology work.

4. EXAMPLES

4.1. Curvilinear Hole for an Infinite Plate Subjected
to a Uniform Tensile Stress

Fork;=—-1,T=p/4, T"=—(p/2)e™®, 0<0<2mand X=Y=
f =0, we have an infinite plate stretched at infinity by the application
of a uniform tensile stress of intensity P, making an angle 6 with the
x-axis. The plate weakened by a curvilinear hole C having finite poles
which is free from stress.

The Gaursat’s functions (3.8)—(3.10) take the form

B0 =5 |exp2it)" +ZhQ' (@.1)
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where
I- n} cos 20 n,? sin 20
Q' = + = )
4 1 — lljdj 1+ hj((,‘
and

P (4.3)

0.0 = O +5

4.2. Curvilinear Hole Having Finite Poles the Edge of Which
is Subject to a Uniform Pressure

For ky = -1, X=Y =T =TI"=0 and f{t) = Pt, where P is a real
constant. The formulae (3.8)-(3.10) become

P P+1 AP — i
d)(C) — Z (”k + "1,/”/( )( I h.l((l-/\) P, (44)
k=t (e =001+ /?i“,’i,k)

and

,J

" w(l@ S - he e -
VO = ¢(é)~cP;('1f+C I”;T—"ﬂ")("’l)' (4.5)

Hence Egs. (4.4) and (4.5) give the solution of the first fundamental
problem when the edge of the hole is subject to uniform pressure P.
Putting in Eqgs. (4.4) and (4.5) —iT instead of P, we have the first
fundamental problem when the edge of the hole is subject to a uniform
tangential stress 7.
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4.3. Uni-directional Tension of an Infinite Plate with a Rigid
Curvilinear Centre

Fork; = 3, T = p/4,T* = —p/2e~20 X = Y = 0, () = 2iPet, we have
the two complex functions

. )

(of" ) P L 0]

_ + 2icue +5 ’

Kb = e+ 2icw j;uk—cxwhjd,;k) P
(4.6)

v() = 2icuean+c(~x£+2u8i)C_l ( )4’ ©)
Jj=I

4

+Zl—n{ ( ) (4.7)

where

0® (x + 2n} cos 26) n sin 20
T T2 Iyde) o b

and

6.0) =40+ 5 48)

Therefore, we have the case of uni-directional tension of an infinite
plate with a rigid curvilinear centre. The constant ¢ can be de-
termined from the condition that the resultant moment of the forces
acting on the curvilinear centre from the surrounding material must
vanish i.e.

M= Re{“wm —f;—De-Zf"c] w'(odc} —0. (49
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Hence, we have

P(1+7y) (Z 1+ N) sin 20
4,u[] +L,nj+L]

& =

where
P 12492
_ﬂ hjn;ny
2 b
Jke=1 (1 - l1jllk) ( - h,'dj ,\»)
P P+3 P—j+2

I — Z n, +m,n, ' (4.10)

5 (U= ) (2 + i)

Case 1 Bi-axial tension with k =, X =Y =0, =T = P/2,T" =0
and f(t) = 2ug(¢) under the same condition of example (4.3), one
obviously will have ¢ = 0 and the two complex functions are

(,’P il 11,'
H=5% - , 4.11
#0 =5 Z ) indn) (1)

, P
(//(C) (XPC | ” V +Z] ﬁlfc ( —l), (412)

cP
D0 = ¢ +5 (4.13)
Case 2 When the curvilinear centre is not allowed to rotate:
Under the condition of the preceding example (4.3) the rigid cur-
vilinear kernel is restrained in its original position by a couple which is

not sufficient to rotate the kernel, then ¢ = 0.

Hence the two complex functions are

» . g P .
b =T TS T (4.14)
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and

: P
~//<c)=#c-'—w(,(§))¢<z) > ﬁ’i,g o, @)

where Q,(.i) and ¢,({) are given by Eq. (4.8).
The resultant moment is given by

hin?
y— P+ ) Z /+Z f’;f”" sin20. (4.16)
X = e (U= ) (x = hydje)

Case 3 When a couple with a given moment acts on the curvilinear
hole.

We assume that the stresses vanish at infinity. Under the same
conditions of example (4.3), the complex functions take the following
form

+|
+ mjn )
) =2ic 82 i 4.17

uj/\l —nk X-%—hd,k) ( )

- P

Z nh), (4.18)

,
V(0) = 2icpe (Z m+ r')
=1

where

_ My
drep(l + Z]il ni+ L)

(4.19)

and L is given by Eq. (4.10).

4.4. The Force Acts on the Centre of the Curvilinear Hole

In this case, it will be assumed that the stresses vanish at infinity. It is
easily seen that the kernel does not rotate. In general, the kernel
remains in its original position.
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Hence, one assumes I' =T = f{¢) =0 and k = y. The Gaursat’s
functions are

#(0) = ¢ Pooehy | yhidin(X +iY)
U 2mp(U ) A L= | e(n? = Tydig)
Wd*,
i L (4.20)

[ -0d)

h;{ w(g’“')
1 —nt ( ) whm'(b*(&:)a (4.21)

where

X+iY

$.(0) =¢"(0) - T

(4.22)

Therefore, we have the solution of the second fundamental problem in
the case, when a force (X, Y) acts on the centre of the curvilinear
kernel.

5. CONCLUSION

From the above results and discussions the following may be con-
cluded:

1. In the theory of two dimensional linear elasticity one of the most
useful techniques for the solution of boundary value problems for a
wkwardly shaped region is to transformation the region into one
simpler shape.

2. The mapping function (1.7) maps the curvilinear hole C in the
z-plane onto the domain outside a unit circle {-plane under the
condition w'({) does not vanish or become infinite outside y.
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3. The physical interest of the mapping (1.7) comes from its strong
special cases which discussed here, moreover many new cases can
be obtained according to the technology of the work, where the
fundamental problems of the infinite plate with a curvilinear hole
having finite poles are not discussed before.

4. The complex variable method (Cauchy method) is considered as
one of the best method for solving the integro-differential equations
(2.3) taken on closed contour y, and obtained the two complex
potential functions ¢(z) and y(z) directly.

5. This paper can be considered as a generalization of the work of the
infinite plate with a curvilinear hole under certain conditions [1-6].

6. FUTURE WORK

The influence of a small hole having finite poles of rigid inclusion on
the transverse flexure of thin plates will be discussed.
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