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This paper considers stochastic stability and stochastic stabilizability of linear discrete-time systems with
Markovian jumps and mode-dependent time-delays. Linear matrix inequality (LMI) techniques are used to
obtain sufficient conditions for the stochastic stability and stochastic stabilizability of this class of
systems. A control design algorithm is also provided. A numerical example is given to demonstrate the
effectiveness of the obtained theoretical results.
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1 INTRODUCTION

Time-delay is an important factor that may affect the performance of dynamical systems. It can
even, in some situation, causes instability of a system that we would like to control if the
presence of such time-delay during the design phase is not taken into account. For deterministic
linear systems with time-delay, we have seen an increasing interest during the last two decades.
There are numerous results in the literature on time-delay systems, see for example, [11] and the
references therein. However, most results are on deterministic continuous-time linear systems
with time-delay. Stability, stabilizability and control problems for this class of systems have
been studied and numerous results are available in the literature such as [5, 6, 8-10, 12, 14, 15].
However, for deterministic class of discrete-time linear systems with time-delay only few re-
sults have been reported in the literature. We believe that the main reason for this is that these
systems can be transformed to equivalent systems without time-delay and then current results
on stability, stabilizability and control design can be applied. For more information on this class
of systems, we refer reader to Boukas and Liu [3] and the references therein.

The system we are studying in this paper is referred to as the discrete-time Markovian
jump linear systems with time-delay. It has two components in the state vector. The first part

* Corresponding author. Tel.: 514-340-4711 Ext. 4007; Fax: 514-340-5867; E-mail: boukas@meca.polymtl.ca
T E-mail: peng.shi@dsto.defence.gov.au

% B-mail: mehmet@cssip.edu.au

$ E-mail: yalcin kaya@unisa.edu.au

ISSN 1024-123X print; ISSN 1563-5147 online © 2002 Taylor & Francis Ltd



124 E. K. BOUKAS et al.

is called as the state of the system which is continuous-valued, and the second part is
regarded as the mode of the system which takes discrete values.

The problems of stochastic stability and stochastic stabilizability have been tackled by
many authors and recently we have seen the publication of different results ranging from
delay-independent to delay-dependent mainly for the continuous-time case such as
[3, 10, 15]. Several situations were considered including constant time-delay, time-varying-
delay and mode-dependent time-delay for the continuous-time systems and constant time-
delay for discrete-time systems such as [13]. However, to the best of authors’ knowledge, the
mode-dependent time-delay case for the class of discrete-time linear systems with Markovian
jump parameters has not been addressed and this will be the subject of this paper.

The goal of this paper is to develop mode-dependent sufficient conditions for stochastic
stability and stochastic stabilizability for linear discrete-time systems with Markovian jump
parameters and mode-dependent time-delay in the state. The linear matrix inequality (LMI)
techniques described in [4] are used to solve the above problems.

The paper is organized as follows. In Section 2, the problem is stated and the objective of
the paper is formulated. The problem of stochastic stability for the given system is examined
and delay-dependent sufficient condition is developed in Section 3. We continue in Section 4,
to investigate the problem of stabilizability and establish delay-dependent conditions. In
addition, a design algorithm that stabilizes the resulting closed-loop system is provided. A
numerical example is given in Section 5 to illustrate the proposed theoretical results.

2 PROBLEM STATEMENT

Let {rx, K > 0} be a homogeneous Markov chain that takes values in a finite state space
S ={1,2,..., N} with transition probabilities p; from mode i to mode j defined by:

pij =Pr(req1 = jlre = 1) ¢))

where p; > 0 and Z{\;ll’ij =1foralli,jeS.
The dynamics of the system is assumed to be described by the following set of equations:

3 Xert = A@e)xe + Aa(re)xe—a,, + Bre)uc @)
Nx=¢, I=—dy...,~1.0.

the discrete-time index £ is assumed to take values [—d,, , . . ., 0] and 7y is assumed to be given.
Here x; and u; are the n- and m-dimensional state and control input vectors respectively at
instant k. The matrices A(r;), A4(rx) and B(ry) are constant matrices of appropriate sizes for any
fixed values of 7 in S, and d,, is a positive integer representing the time-delay of the system.
Note that since 7y, is a Markov chain, so is dj, with the same transition probabilities. ¢, is some
initial condition for the state vector x;. We assume in this paper that d,, is mode-dependent.

Our objective in this paper is to obtain sufficient conditions that guarantee the stochastic
stability and the stochastic stabilizability of the class of system under consideration.

For the system Z in (2), we use the following control law:

ue = K(re)xe 3
where the control gain K(rx) is to be designed for each system mode r; € S.
Notation The notation used in this paper is quite standard. Z, R" and R™” denote,

respectively, the set of integer numbers, the » dimensional Euclidean space and the set of all
n X m real matrices. The superscript “T” denotes the transpose and the notation X > Y
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(respectively, X > Y) where X and Y are symmetric matrices, means that X — Y is
positive semi-definite (respectively, positive-definite). P = (P(1), ..., P(N)) > 0 means all
P(1),...,P(N) are symmetric and positive-definite. 7 is the identity matrix with
compatible dimension. E{-} denotes the expectation operator with respective to certain pro-
bability measure P. £,[0, oo] is the space of square summable vector sequence over [0, 0o].
Il - |I will refer to the Euclidean vector norm whereas || - ||jp, o) denotes the £5[0, co]-norm
over [0, co] defined as ||f||[20,oo] = Y "0° IIfill>. For simplicity of presentation, we define d, d, )4
as:

= min(dl, N ,dN)
= max(dl, ...,dN)

= min(pyi, ..., PnN)

(ST SWIN W

For a given set of positive definite matrices P(j) forj =1, ..., N, we define the following
convex combinations P(i) as

N
PG) =Y pryP() )
j=1
wherei=1,...,N.
Remark 1 Notice that, due to the existence of time-delay, d,,, in the system X, the joint
state vector (x,7;) is not a Markov chain, however we can define X; = (xk_d,k,

Xk—dy+15 - - - , Xz) to overcome this and get a Markov chain, thus it can be seen that (X, r¢) is
a Markov chain.

Remark 2 1Indeed, system X in (2) can be reformulated as a one without time-delay by
constructing a higher dimensional vector X (k) defined as:

x(k)
x(k—1)
X(k) = | Xk =2) )
x(k - d)
Then, system ¥ can be rewritten as
Xk + 1) = F(rp)X (k) + G(ri)u(k) 6)
x(k) = H X (k) Q)
where
—A(rk) 0 As(ry) O 0]
I 0 --- 0 e 0
0 I 0 0
Feo=| @ 0 " L ®)
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B(ry)
0

Gr)=| . |, H=[1 0 ... 0] (©)
0

Note that system (6) and (7) is time-delay free, for which, the issues of stochastic stability,
stabilization and control can be sorted out by using standard existing results on linear
discrete-time Markovian jump systems, for example, Ji et al. [7]. In this paper, instead of
using the extending system dimension approach, we propose a different methodology to
handle system (2), by which the maximum unknown time-delay can be conventionally
determined such that the underlying system remains stochastically stable. Notice that this
point is very important since it is difficult to know time-delay exactly in practice, thus using
upper and lower bounds in design would be an alternative effective way.

In next section, we consider the stability of the system X given in (2).

3 STABILITY

In this section, we present delay-dependent conditions that can be used to check whether the
system X in (2) is stochastically stable or not. First, we introduce the following stochastic
stability concept.

DEFINITION 1  For the system X in (2) with u, = 0 for all k > 0, the equilibrium point 0 is
stochastically stable, if for every initial state, (x, ro), the following holds:

E{Z lIxe ()11 o, ro} < oo. (10)

k=0

In the rest of this paper, we will use x; to denote the solution, x;(xo, 7o) when the initial
condition, (xo, 7o) are given. We will also use X; = {Xk_d,k,xk—dk+1, cees X}
The following result concerns with stochastic stability of the system X in (2).

THEOREM 1  Ifthere exist symmetric and positive-definite matrices P = (P(1), ..., P(N)) > 0
and Q > 0 such that the following holds for every i € S:

(11

M) = [ Myi(rr) AT (r)P(r)Aa(re) ] -0

AT (r)P(rA(r) A (r)Pr)Aa(re) — O

with My (ri) = AT (r)P(ri)A(re) — P(ri) + (1 + (d — d)(1 — D)0, then the system X in (2)
is stochastically stable.

Proof To prove our theorem, let us consider the following Lyapunov candidate functional:

V(Xk’ k) = Vl(Xk’ k) + VZ(Xk’ k) + V3(Xk9 k)
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with

VilXa, k) = x{ P(ri)x
k-1

k)= Y x 0Ox
I=k—d,,
A _
Xk =" > %0t
J=—a m=k+I+1

where O = (1 — DQ.
AV (X, k) is given by:
AV (Xx, k) = AVi(X, k) + AV2(Xk, k) + AV3(Xk, k)
Let us now compute AV;(Xx, k):

AVi(Xx, k) = BIVi (X1, k + DXk, 7] — Vi(Xe, k)
= Elxg  P(ir ) X1 X, 7] — X[ P(ri)xi
= x{ " ()Pr)ACe) — Pk + X AT ()P Aa(rxe—a,
+ Xi—d, Ag Pri) A + Xe—a, Af (r)P(ro)Aa(r)Xea, (12)

For V5(Xy, k), by standard manipulation, we have:

AV (Xk, k) = E[Va (X1, k + DXk, ri] — Va(Xk, k)

k k—1
=E Z x;erlle, rg | — Z x;erl.
I=k+1_d"k+l I=k"drk

By using the fact that the Markov chain at time (£ + 1) can either remain at mode 7 or jumps
to mode j, we get the following:

k k-1

T T
AVyXisK) =Prir, D, X Q¥ —Prn ), X On
I=k+1—d,, I=k—d,,
N k N k—1
T T
+Y P D NOU-Y Py D X O
J#Ere  l=k+1-d; JErne  l=k—dy,

After simple algebraic manipulation we can rewrite AV,(Xy, k) as follows:

AVZ(Xk’ k) = Prire [x;cr ka - x;cr—d,k - Qxl-cr—d,k]

N k—d,k
T T T
+ ) P | X Ok — X—d,, Pk—~d,, — Y x0u
T I=k+1—d;
k—dy,

N
T T T
=X Oxk =Xy Ok, + ) Pry D, X O

J#Tk =k+1—d;
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Bearing in mind that Zj.\;rk Prnj = 1 — py,r, and the bounds on the time-delay and on p,,,,, we
have the following expression for AV,(Xg, k):

k—d+1

AV, (X, k) < xZka —x,:r_drk OX—d, + 1-p Z x;erl. (13)
I=k+1—d

In terms of V3(Xg, k), one has:
AV3(Xx, k) = E[V3(Xpr1, k + )| Xx, k] — V3(Xi, k)

—d k —d —
=E|:Z Z x;mele,rk:I—Z E x;me

I=—d m=k+2+1 I=—d m=k+I+1

—d —d
T T _ g T A T
= Y g Ok — 54141 Oxern] = (d — D) Ok — Y x4y 11/ Q%k 141

I=—d I=—d
_ _ k—d+1 _
=@d-dy 00— Y x0u. (14)
I=k—d+1

Finally, by using equalities (12) and (13), inequality (14), and the fact that o=>1- PO,
together with the condition (11), we obtain

X
AV(Xi, k) < [x,I Xid, ]M(rk)[xk_l; ] <0. (15)
Tk
The rest of the proof follows the same lines as the ones given in Boukas and Yang [1] or
Boukas and Shi [2]. |

Remark 3 1t is of practical interest to find the maximum time-delay such that the system is
stable. The maximum time-delay can be obtained by solving the following linear optimi-
zation problem:

Qi

max
d>0,

P=(P(l),..., P(N)) >0,
0

0>
M) <0

where the last constraint M(r;) < 0 was given in (11).

When time-delay is constant and mode independent, i.e. d,, =d for all r, € S and

therefore d = d = d, the results given by Theorem 1 is replaced by the following result.

COROLLARY 1 If there exist symmetric and positive-definite matrices P = (P(1),...,
P(N)) > 0 and Q > 0 such that the following holds for every ri € S:

(16)

N = [ Nu(r) AT (P Aa(re) ] 0

A r)Pr)Ar)  AY(r)Pr)Aa(re) —

where Ni1(ry) = AT (ri)P(ro)A(ry) — P(ry) + Q, then the system T in (2) is stochastically
stable.
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4 STABILIZABILITY

Our goal in this section is to design a state-feedback controller which stabilizes the resulting
closed-loop of system. The controller is supposed to have the form of (3). Let us first define
the concept of stochastic stabilizability.

DEFINITION 2 System (2) is stochastically stabilizable, if for every initial state there exists a
state-feedback controller (3) with gain K = (K(1), ..., K(N)) such that the resulting closed-
loop system is stochastically stable.

Replacing the control u; by its expression given by Eq. (3) and substituting it into system %
in (2), we get the following dynamics for the closed-loop system X:

17

5. { Xer1 = [A(re) + Br)K (o) + Aa(ri)xi—a,,
X1 = ¢I7 l=_dro,-..,_1,0.

If we let A(ry) = A(rx) + B(ri)K(ry), we have the following result using the previous result
on stochastic stability.

THEOREM 2 For a given set of gains K = (K(1), ..., K(N)), if there exist symmetric and
positive-definite matrices P = (P(1), ..., P(N)) > 0 and Q > 0 such that the following holds
for every r, € S:

(18)

M) = |: Mu(r) AT(r)P(r)Aa(re) ] -0

AJrOPrOA(ry)  A] r)P(ro)da(re) — O

where My (ri) = AT (r)P(ri)A(re) — P(re) + (1 + d-d)1 - D))Q, then the system 2 in
(17) is stochastically stable under the state feedback control law (3).

Proof It can be worked out along the same line as in Theorem 1. |

Similarly, when the time-delay is constant and does not depend on the mode, i.e. d,, = d
for all r, € S and therefore d = d = d. Theorem 2 is reduced to the following corollary.

COROLLARY 2 For a given set of gains K = (K(1), ..., K(N)), if there exist symmetric and
positive-definite matrices P = (P(1), ..., P(N)) > 0 and Q > 0 such that the following holds
for every ry € S:

(19)

Nro) = [ Nii(rx) AT(r)P(r)Aa(re) ] <0,

AJrOPEOA(re) A (r)P(r)Aa(re) — O

where N11(rx) = AT (r)P(r)A(ri) — P(r) + O, then the system T in (2) is stochastically
stable under the control (3).
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Now, we are in the position to design the controller, u; = Kx; in Theorem (2), that
stabilizes systems (2). First, notice that, if we define:

W(rk) = (x/prjl’ s VprkNI)
Z = diag(Z(1), ..., Z(N))

p=1+1-p)d-d

with Z(ry) = P~(r;), the right hand side of (18) can be rewritten as:

_ P(1)
[—P(rk)+pQ 0 ] + AT ()W (ry)
0 -0 AJ(rO)W (re)
P(N)
< [WTe0AG) W (r)dary)] (20)

by using Schur complement, the following inequality can be obtained from (20):

—P(ry) + pQ 0 AT ()W (ry)
0 -0 A}(rk) W) | <O. 21
WA W (re)Aare) -Z

Let U=Q7! and Y(r;) = K(rx)Z(rs). Pre- and post-multiplying inequality (21) by
diag(Z(ry), U, I) we get:

—Z(ry) + Z(ri)pQZ(rv) 0 Zr) AT (r)W (re)
0 -U UAJ(roW(re) | <O. (22)
WTrArDZre) W (r)Aa(r)U -z

Using now the fact that Y(rx) = K(rx)Z(rt), together with Schur complement again, one has:

(A(r)Z(re)
—Z(r ) 0 . Z(r)
+ B(r)Y(rv)) W(r)
0 -U UAJ (r)W () 0
WT(l‘k)(A(rk)Z(rk) WT(r )A (r )U = . <0 (23)
+ B(r) Y (re)) kIEdTk
Z(ri) 0 0 _lU
- p

To summarize the above analysis, a control design algorithm that stabilizes the system X in
(2) is given by the following theorem.
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THEOREM 3 If there exist symmetric and positive-definite matrices Z = (Z(1),...,
Z(N))>0,Y=(Q),...,Y(N)) >0 and U > 0 such that the following holds for each
€S

AF)Z(re) |
o . § Z(ry)
+ Br)Y (1)) W (rk)
0 -U UAg (r) W (ri) 0
T <0, (24)
W' (ri)(Ar)Z(re) WT(r)Aa(r)U -2 °
+ B(ry)Y (1)
1
. —-U
] Z(rx) " g

then, the system X in (2) is stochastically stable under the controller (3) and the control gain
is given by K(ri) = Y(ri)Z7 ' (rp).

Similar to Corollary 2, if the time-delay d,, is constant and independent of system mode,
Theorem 3 becomes:

COROLLARY 3 If there exist symmetric and positive-definite matrices Z = (Z(1),...,

ZN) >0,Y=Q),...,Y(N)) >0 and U > 0 such that the following holds for each
Fr € S:

(A(r)Z(re)
—Z(rx) 0 +BE)Y(r)  Z(r)
x W(rk)
0 -U UA;(rk) W(ry) 0 <0,
-
W (ri)A(r)Z(re) WOV _ 0
+ B(re)Y (7))
i Z(ry) 0 0 -U |

then, the system X in (2) is stochastically stable under the controller (3) and the control gain
is given by K(ry) = Y(ri)Z~ ' (ry).

Remark 4 To find the maximal bound of time delay d with which system (2) is stochas-
tically stable, we need to solve the following optimization problem:

max {3}
d>0,
Z=(ZQ1),...Z(N)) >0,

Y=(Y(D)....Y(N)) >0,
U>o0

such that the constraint (24) is satisfied.
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5 NUMERICAL EXAMPLE

In this section, we consider the stabilizability problem of a 2-D Markovian jump linear
systems with mode dependant time delays to illustrate the results presented earlier.

Let us consider a system described by (2) and suppose that the system data are as follows:
The system has two modes, i.e., S = {1, 2}. The mode switching is governed by a Markov
chain that has the following transition probability matrix:

0.5 0.5
A= (0.3 o.7>'

Let us now, see how we can use the design algorithm of Theorem 3, to determine the
controller gain K = (K(1), K(2)). For this purpose let us consider the following data:

r~1.8 0.11
AV=1"4 026
F03 0
AQ2) =
@ | 0.16 0.4]
0.9 0
A.(1) = 0 —o01
02 0
A2 =103 02
r1
Bh=|,
r0
BQ) = 1]
T=2, z=1.

Using this data, solving LMIs (24) gives the following feasible solution:

26.3572  2.8503
)= >
2.8503  61.6519
70.5968 —1.8900]
>

ZQ) = [
—1.8900 64.0583

Y(1) = [34.4743 —0.6956 ]

Y(2) =[—8.2613 —17.0265]
119.3331 —0.3912

[—0.3912 121.0920]>

which gives the following gains:

K(1)=[13158 —0.0721]
K(2) =[-0.1242 —0.2695 ]



SYSTEMS WITH MARKOVIAN JUMPS 133

Therefore, controller (3) with gains
K(1)=[13158 —0.0721], K(2)=[-0.1242 —0.2695]

stabilizes the system under study in the MSQS sense.

6 CONCLUSION

In this paper, we have studied the problems of stochastic stability and stochastic stabi-
lizability for a class of linear discrete time systems with Markovian jump parameters and
mode-dependent time-delay. Sufficient conditions in the LMI formalism have been
developed to solve the above problems. An algorithm to design the stabilizing controller is
also provided. A numerical example is included to demonstrate the potential of the
proposed techniques.
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