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Boundary Value Problems on the Half Line in
the Theory of Colloids
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We present existence results for some boundary value problems defined on infinite intervals. In particular our
discussion includes a problem which arises in the theory of colloids.
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1 INTRODUCTION

In the theory of colloids [4, 7] it is possible to relate particle stability with the charge on the
colloidal particle. We model the particle and its attendant electrical double layer using
Poisson’s equation for a flat plate. If ¥ is the potential, p the charge density, D the dielectric
constant and y the displacement, then we have

We assume the ions are point charged and their concentrations in the double layer satisfies the
Boltzmann distribution
* —z;e‘I’
¢ = cj exp| —

where ¢; is the concentration of ions of type i, ¢; = limy_,¢ ¢;, k the Boltzmann constant,
T the absolute temperature, e the electrical charge, and z the valency of the ion. In the neutral
case, we have

p=cyzyet+c_z_e or p=ze(cy —c-)
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where z =z, —z_. Then we have using

—zeV zeW
cy =cC exp o and c_=cexp—KF,

that

&y _ 8ncze sinh zeV
a2 D kT

where the potential initially takes some positive value W(0) = ¥y and tends to zero as the

distance from the plate increases i.e. ¥(00) = 0. Using the transformation

ze¥(y)

4ncz2e?
$0)=—7— ad x=\—75

the problem becomes

2
%:25inhd), 0<x<o0
$(0) = c1 (1)
limx—wo d)(x) = 0;

where ¢; = ze®o/kT > 0. From a physical point of view we wish the solution ¢ in (1.1) to
also satisfy lim,_, o, ¢'(x) = 0.

In this paper using the notion of upper and lower solutions (see [1, 2, 6]) we establish
general existence results which guarantee the existence of BC[0, co) solutions to

1 1A
m(l’(t)y @) =q@)f @t »), 0<t<oo

—aoy(0) + bo limy—o+ p(£)y'(t) = co, a0 >0, bp >0 (1.2)
11mt—>ooy(t) =0,

here BC[0, co) denotes the space of continuous, bounded functions from [0, co) to R. Our
theory not only complements some of the known results, e.g., [5, 8], but also automatically
produces the existence of a solution to (1.1). To establish these results we recall, for the
convenience of the reader, the existence principle [3] we will use in Section 2. Consider the
boundary value problem

;l)-(py’)/ =qf(t,y), 0<t<oo

~ag(0) + bolimys0+ p(OY () = co, a0 >0, by = 0 (13)
y(t) bounded on [0, co).
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By an upper solution B to (1.3) we mean a function S € BC[0, o) N C%(0, 00),
pB € C[0, 0o) with

Loy <af@.p. 0<t<oo

P . , (1.4)
—apB(0) + bo lim,_, o+ p(OB'(¢) < co,

p() bounded on [0, co)

and by a lower solution a to (1.3) we mean a function a € BC[0, 0o) N C*(0, o),
po! € C[0, oo) with

l(17<>t’)' >gf(t,a), 0<t<o0
—aopo(0) + b lim,_, o+ p(H)'(£) > ¢y, (1.5)
a(tf) bounded on [0, 00).

THEOREM 1.1 [3] Let f: [0, 00) x R — R be continuous. Suppose the following conditions
are satisfied:

q € C(0, 00) with q > 0 on (0, 00) (1.6)
p € C[0, 00) N C'(0, 00) with p > 0 on (0, 00) 1.7)
® o ds u
J —— < 00 and J p($)q(s)ds < oo for any u> 0 (1.8)
0 P(s) 0

there exists o, 8 respectively lower and upper (1.9)
solutions of (1.3) with a(t) < B(¢) for t € [0, 00) )

and

{ there exists a constant M > 0 with |f(t,u)] <M (1.10)

Jfor t € [0, 00) and u € [a(t), B(®)).
Then (1.3) has a solution y € BC[0, 00) N C%(0, 00), py € C[0, 00) with a(t) < y(t) < B(¢)
for t € [0, 00). Also there exist constants Ay and Ay with |p(8)y (2)] < Ao + 4 [ p(s)g(s) ds
for t € (0, 00).
2 THE BOUNDARY CONDITION AT INFINITY

Motivated by the colloid example [4, 7] we discuss the boundary value problem

})(py’)’ =g (hy), 0<t<oo

—agy(0) + bo limy o+ p(£)y/ (1) = co, ap >0, bg>0, co <0 2.1)
lim,, o0 y(#) = 0.
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THEOREM 2.1 Let f:[0, 00) x R — R be continuous and suppose the following conditions
hold:

q € C(0, 00) with g > 0 on (0, 00) 2.2)
p € C[0, 00) N CY(0, 00) with p >0 on (0,0) and I“g =00 (2.3)
o p(s)
" s d ’ ds 0 2.4
Jop—(g<oo an Jop(s)q(s) < oo for any u > 2.4
f(t,0) <0 for t € (0,00) (2.5)
Ir > ;—c" with £(t,70) > 0 for t € (0, 50) (2.6)
0
M > 0 with |f(t,u)) <M for t € [0,00) and u € [0, rg] 2.7
3 a constant m > 0 with qOp* () f (¢, u) — f(t, 0)] > mPu 2.8)
Jor t € (0, 00) and u € [0, ro] )
00 "X ds
Jo §Z65) exp(-—m L Xg-)—)q(x)lf (x,0)]dx < o0 2.9
lim p(@)q(t) £(2,0) = 0 (2.10)
and
. t 1 s 1 t ds .
Illmt_,oo<B() ”@J”@dxds+6‘0j”%>—oo (2'11)
Jfor any constants By > 0,Cy € R and u > 0.

Then (2.1) has a solution y € C[0, 00) N C*(0, 00) with py’ € C[0, 00) and 0 < y(t) < ry for
t € [0, 00).

Proof Now Theorem 1.1 (with & = 0 and 8 = r¢) guarantees that

%thwwtkmw

—apy(0) + bg lim,_, o+ p(t))/(t) =y
y(t) bounded on [0, 00)

2.12)
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has a solution y € C[0, c0) N C2(0, ), py € C[0, 00) and 0 < y(¢t) < r, for ¢ € [0, o). Let
2(x) = g(x)f (x, 0) and notice that

wo=e0(-n [ 5 2o
*aa s o P00 [ )0
“gnon(n] ) | e ([ 5 Jew o
g (] ) [ e (5 o
=exp(-m LZ@) i ar s PO ([ 5 e d"]

e (o) ([ reooe(on 565 o)

is a nonnegative solution of

(P Y - 2w glf), 0<t<oo
PA(t)

—aow(0) + bo lim, o+ p(OW(t) = co
fim,., o0 W(£) = 0.

(2.13)

Notice (2.10) and I’Hopital’s rule guarantees that w(oco) =
Now let

(?) = () — w(®).

We first show 7 cannot have a local positive maximum on [0, o). Suppose » has a local
positive maximum at £y € [0, c0).

Case (i) ty € [0, 00).

For ¢ > 0 notice from assumption (2.8) that

1o m? m?
I;(P" )0 =q@lf @, y®) — £ 0)] - %W(t) > Z)Z—(ti[y(t) —w(@)]. (2.14)
We also have /() = 0 and #"(#) < 0. However (2.14) yields

r(to) = —=(pr'Y (to) > (to) —w(to)] > 0,

() - 2(t)

a contradiction.
Case (ii) ty=0.

Of course if by = 0 we have a contradiction immediately. So suppose by # 0. Then

lim p(t)r' (1) = Z—O [#(0) —w(0)]. 2.15)
t— 0
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Now since y(0) — w(0) > 0 there exists 6 > 0 with y(£) — w(t) > 0 for ¢ € (0, §). Then (2.14)
implies (pr’)’ > 0 on (0, ) and this together with (2.15) (i.e. lim,,o+ p(¢)y/(f) > 0) implies
pr > 0 on (0, d), a contradiction.

Thus #(f) cannot have a local positive maximum on [0, §). We now claim that 7(f) < 0 on
[0, 00). If () £ 0 on [0, co) then there exists a ¢; > 0 with #(¢;) > 0. Now since 7(f) cannot
have a positive local maximum on [0, co) it follows that #(z;) > r(#;) for all &, > #; > ¢;;
otherwise r(¢) would have a local positive maximum on [0, #,]. Thus #(¢) is strictly increasing
for ¢ > ¢;. Since both y(¢) and w(¢) are bounded on [0, c0) and lim,_, o W(¢f) = O then

Jim y(#) = lim [y(7) — w(®)] = x € (0, ro]. (2.16)

Now there exists ¢, > ¢; with y(f) > x/2 for t > c,. The differential equation and (2.8) imply
that for # > 0 that we have

@y ) = p®a@)f ¢ y®) = p(Oa®If (1, y(®) — £ (¢, 0)] + p(H)a(O)f (2, 0)

m2
> my(t) + p(Hq(6)f (¢, 0).

Consequently for # > ¢, we have

2 2
G¥Y(0) 2 Zo+ PO (,0) =~ ['”—25 +P(OqY 0)].

Assumption (2.10) implies that there is a constant c3 > ¢, with

, m2xk
(pJ/)(t) ZW for t > c3.

Two integrations together with the fact that y > 0 on [0, co) yields
T ds mle " 1 [ 1

R e e

c3 p(s) 4 c3 p(s) c3 p(x)

(not also from Theorem 1.1 that there exist constants Ay and A4; with
@Y (@) < 4o + 4, f(; p(8)g(s)ds for ¢t € (0, 00)). Now assumption (2.11) implies that y is
unbounded on [0, 00), a contradiction. Thus #(¢) < 0 on [0, co) and the result follows. B

Notice in Theorem 3.1 that the solution y of (2.1) satisfies #(f) < 0 for ¢ € [0, 00), and so
y(t) < w(t) for ¢t € [0, 00).

COROLLARY 2.2 Let f:[0,00) x R — R be continuous and suppose (2.2)—(2.11) hold.
Then (2.1) has a solution y € C[0, c0) N C%(0, o) with py’ € C[0, 00) and 0 < y(f) < w(t)
for t € [0, 00), with w given in Theorem 2.1.

The colloid [4, 7] example motivates our next result.

THEOREM 2.3 Let f:[0, 00) Xx R — R be continuous and suppose (2.2)—~(2.11) hold. In
addition assume the following conditions hold:

f(t,u)=0 fort€[0,00) and u €[0,w(t)]; here w is as in Theorem 2.1  (2.17)
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and
lim p(¢) € (0, oo]. (2.18)
=00

Then (2.1) has a solution y € C[0, 00) N C2(0, o0) with py’ € C[0, 00), 0 < y(t) < w(¢) for
t € [0, 00) and lim;, Y/ (¢) = 0.

Proof From Corollary 2.2 we know that there exists a solution y € C[0, c0) N C?(0, 00),
py € C[0, 00) and 0 < y(f) < w(¢) for ¢ € [0, 00), to (2.1). Also (2.17) and the differential
equation yields

@) (&) = p(Og@)f (t, (1)) 2 0 for t > 0, (2.19)

so py is nondecreasing on (0, 00), and limy, o, p(¥)y/(f) € [—00, 00].
Suppose there exists #; € [0, 00) with p(¢;)y/(¢;) > 0. Then

Py (®) = ao =pt)y' (1) fort=>1,

and so
t ds
y(®) = y(t) + ao L el fort>1. (2.20)
That is
W) > ap r ﬁ fort> 1 (2.21)
0 P(s)

(notice (2.3) implies that the right hand side of (2.21) goes to co as ¢t — 00). This contradicts
0 < y(t) < ry for t € [0, 00). Thus p(¥)y'(t) < 0 for ¢ € (0, 0), and so

tl_l)n;o p(®)y () = k € [-00,0] and t1_1>r£1° V() € [—00,0]. (2.22)

In fact k € (—00, 0] from (2.19). Finally if k < 0 then there exists £, > 0 with p(£)y/(f) < k/2
for t > t,. Integrate from #, to ¢ (t > t,) to get

" ds " ds
¥(t) < y(t2) +gjt 6 <ro+ gjt 6 (2.23)

Now (2.23) together with (2.3) contradicts y > 0 on [0, 00). Consequently lim,, p(?)
Y (t) = 0, and this together with (2.18) gives lim,, o, y/(f) = lim,, o, p(¢)y’ (¢)/p(¢) = 0.
Example 2.1 (Colloid problem [4, 7]).
The boundary value problem
y' =2sinhy, 0<t<oo

y0)=c>0 (2.24)
limy 00 ¥(£) =0
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has a solution y € C[0, o0) N C2(0, co) with
0 <y(t) <ce’ fortel0,00). (2.25)
To see this we will apply Corollary 2.2 with
p=1,qg=1, ag=1, co=—c, bp=0 and ry =c.

Clearly (2.1)-(2.7), (2.8) since f(t, u) —f(t,0) = sinhu > u for u > 0, (2.9)~(2.11) hold.
Corollary 2.2 guarantees that (2.24) has a solution y e C[0, 00) N C?(0, 00) with
0 < () < w(z) for t € [0, 0o). It is immediate from (2.13) (since g = 0) that

w(f) = ce™

for ¢ € [0, 00).
Finally we remark that the solution y satisfies lim,, }/(f) = 0. To see this we need only
check that (2.17)—(2.18) hold, but these are immediate.
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