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Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free
transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a
magnesium plate immersed in water. The first mode is highly damped and switches over to the second
mode when the normalized frequency exceeds 12.
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1 INTRODUCTION

Two types of independent guided waves can exist in a free elastic plate.

(1) S H or shear horizontal wave: whose polarization is parallel to the surface of the elastic
plate.

(2) Lamb wave: Here the displacement possesses a longitudinal as well as a transverse
component.

If the elastic plate is immersed in an ideal fluid, the SH wave is not affected since its
displacement, being parallel to the interface, is not coupled with the fluid. However the Lamb
wave has a normal component and, if its phase velocity exceeds that of the sound in the
surrounding fluid, energy is radiated into the fluid. This fact justifies the term “leaky Lamb
waves,” which is used to describe them.

Lamb modes in an infinite elastic isotropic plate were first treated by Lord Rayleigh [1] and
Lamb [2]. The Rayleigh-Lamb frequency equation giving the mode spectrum was solved
only for special cases until Mindlin introduced the method of bounds [3, 4].

Wave propagation in an isotropic plate immersed in an ideal fluid was first investigated by
Osborne and Hart [5]. Rokhlin et al. 6] have studied the complete wave spectrum in a fluid-
loaded plate. They found that, when the ratio of the densities of the fluid and the elastic
material, po/p,, is small, the mode spectrum of the loaded plate is only slightly different from
that of a free plate. However an increase in this ratio leads to an interaction between various
modes until in the limiting case p,/p; — 00, the spectrum transforms into that of a plate
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clamped on its surfaces with slip boundary conditions. Recent work of Freedman [7]
extended the parameter range over which the results of [6] are valid.

In this paper we shall study the propagation of guided waves in a transversely isotropic
(TT) plate loaded by an inviscid fluid. Nagy [8] and Ahmad [9] have recently studied this
problem for cylindrical geometry. However, to the best of our knowledge, the problem of
“leaky waves” in a TI plate is being treated here for the first time. In Section 2, we present
the mathematical formulation of the problem and derive the generalized Rayleigh-Lamb
equation. The dispersion relation governing a fluid-loaded TI plate is also obtained. In
Section 3, we present the solutions of these equations, for a magnesium plate immersed in
water, in the form of dispersion curves. We also find the attenuation spectrum for the
symmetric modes.

2 MATHEMATICAL FORMULATION. FREE PLATE

We use the representation of Buchwald [10] in which potential functions ¢, ¥ and y are
defined in the following manner:

Uy = gg— a—x2, 2.1)
"y = % _ g_fl , 22)
Uy = %, 2.3)
where u denotes the displacement vector and satisfies the equation of motion
2 2
c,-j;dg)%%%: =p; % 2.4)

where p; denotes the density of the elastic material. When u;,i = 1, 2, 3, ... are substituted
in (2.4), it is found that, for a transversely isotropic material, the potential functions must
satisfy the following equations

2 2 2 & 2

cu (% (f + 2 425) + ca4 (2 (f) +(ci3 + C44) ‘ﬁ =p; %—;22, (2.5)
0* oy 0 o 0%

(c13+644)<ax§S a(f)+ 44(al/2/+al/2/)+ c33 axf—m a;f, (2.6

1 azx 0%y 0%y 0%y
z(cll - Clz)( ax2) +c ““(axg) =Pgs 2.7

The c;; are the components of the stiffness tensor, with the x3-axis chosen along the axis of
symmetry of the material. We assume that the axis of symmetry of the material, i.e. the
x3-axis is normal to the surface of the plate. The origin is chosen in the middle so that the
planes x3 = %A form the boundaries. The x;-axis is chosen in the direction of propagation of
waves. The problem is then independent of the x, coordinate. The potential y represents the
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SH wave and Eq. (2.7) shows that it is uncoupled from the P and SV waves which are
coupled in Egs. (2.5) and (2.6). Since we are interested in the propagation of a Lamb wave,
we take y = 0, and the problem, as in the case of an isotropic material, becomes that of a
plane strain.
We assume solution of Egs. (2.5) and (2.6) in the form
o(x1, x3, £) = A cos(pxs) exp i(kx; — wt), (2.8)
Y(x1, x3, £) = Bcos(pxs) exp i(kx; — wt). 2.9)
The above choice corresponds to the symmetric modes of the plate. The antisymmetric

modes are obtained by replacing cosine with sine in the above equations. Substituting these
expressions in Egs. (2.5) and (2.6) we find that 4 and B satisfy the system of equations

[casp® — (py@* — c11kP)]A + (c13 + cas)p*B = 0, (2.10)
(c13 + caa)k*A4 + [c33p? — (p, 0 — c11k*)]B = 0. (2.11)

For a nontrivial solution p? must be determined from the equation

cyscaup® —Ep* +F =0, (2.12)
where
E = [caa(p, @ — caskD)] + e33(py 00 — c1ik?) + (c13 + caa)’R2,
and
F = (p,0* — e k*)(p,0* — cask®).
Define

A= Vv E? — 40336‘44F.

Then the two roots of Eq. (2.12) can be written as

' 2e33cm”

E+A
2c33048

P ;= (2.13)

Define the amplitude ratios, B/4 (see Egs. (2.10), (2.11)),

g = (c13 + c44)k2
ept — (py0? — c1nk?)’

, = (ci3+ c44)k2
e3p; — (p? — cunk?)’

The general expressions for the potential, defined in Egs. (2.8) and (2.9) now become

d(x1, x3, 1) = [4] cos(pix3) + 42 COS(p2X3)] exp i(ke; — wt), (2.14)
Y(xr, x3, 1) = [q141 cos(px3) + g24s cos(pax3)] exp i(kx; — wi). (2.15)
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The boundary conditions for a free plate are that 713, 753, 733 vanish when x3 = %A for all
time and all x;. Now

Ou, Ou
T13 = 2C44613 = Ca4 (5x—3 + a_x])’ (2.16)
0 0
T23 = 2C44823 = Ca4 2,8 , (2.17)
6x3 6x2
0 0 5]
T33 =Cl3ﬂ+023ﬂ+633—u§-. (2.18)
Ox; Ox; Ox3

From Eq. (2.17) we see that the condition 7,3 = 0 is satisfied identically. Also vanishing of
713 and 733 at x3 = *h leads respectively to

Aip1(1 + q1) sin(p1A)] + A2[p2(1 + q2) sin(p2h)] = 0, (2.19)
and
Ai[esspiq + c13k*] cos(prh) + Axlcsspigs + cizk?] cos(pah) = 0. (2.20)

For a nontrivial solution the determinant of the above system of equations must vanish.
This gives us

tan(pah)  pi(1 4 q1)(es3p3qa + cisk?)

= . 2.21
(i)~ pa(l + g2)epian T enld) @20
The corresponding dispersion relation for the antisymmetric modes comes out as
2 2
tan(p1h) _ pi(1 + q1)(c33p392 + c13k”) 2.22)

tan(p2h)  pa(l + q2)(caspiqr + cizk?)’

Egs. (2.21) and (2.22) generalize the Rayleigh-Lamb equations respectively for the
symmetric and the antisymmetric guided modes in a free plate [12, chap 6].

Fluid-Loaded Plate

The boundary conditions for a fluid loaded plate are

(1) Shear components of the stress, 73; and 73, must vanish on the interface.
(2) Normal component of stress must be continuous i.e.

733 = —P, (2.23)

where p is the pressure in the fluid.
(3) Normal component of the displacement must be continuous. The normal component of
the displacement in the fluid is related to the pressure through the equation

op %u;

- = Py (2.24)
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where p, is the density of the fluid. We assume p to be of the form
P =pof (x3)expi (kx1 — ). (2.25)

Since p satisfies the wave equation

1
Vi = ga—tf. (2.26)
we must take
) =e P, (2.27)

where

2
3=y % — k2. (2.28)

The choice (2.27) ensures that the wave is symmetrical in both positive and negative
x3-directions. Assume that the displacement for the symmetric modes inside the plate is
obtained from the potential functions ¢ and ¥ given by Egs. (2.14) and (2.15) and the
pressure p in the fluid by

P =poexpi (kx; — p3lx3| — wi), (2.29)
The boundary condition, 73, = 0, is again identically satisfied. The condition 73; = 0 again

leads to Eq. (2.19). Continuity of the normal components of the stress and the displacement
gives respectively.

Ai[enspqr + ci3k* cos(pih) + Az[c33p3qs + c13k*1 cos(pah) + po exp(—ipsh) = 0, (2.30)
and

. . ij .
P1q1 sin(p1h)4; + paqa sin(pah)4; — wf; exp(ipsh)po = 0. (2.31)
0

The dispersion relation for the fluid-loaded plate is obtained by setting the determinant of the
system of Egs. (2.19), (2.30) and (2.31) to zero. We get

pi(1 +q1)sin(p1h) p2(1 + g2) sin(p2h) 0
(es3piqn + cusk®) cos(prh)  (c3spiqa + cusk®) cos(pah) 1| _ 2.32)
. . —i :
P1q1sin(p1h) P29 sin(pah) 2p3
WPy

Define the dimensionless parameters

pih=s1, ph=s:, pih=s3;, kh=s, ?:a.
13
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We can re-write Eq. (2.32) in the form
RO Pop, =0, 2.33)

where

Dy = s1(1 + q1) (as3qa + s%) sin s cos 52 — s2(1 + q2)(as?q1 + s*) sin s, cos 51, (2.34a)
D, = 5152(q2 — q1) sin sy sin 5. (2.34b)

Eq. (2.32) is the dispersion relation for the fluid-loaded plate. This generalizes the result of
[6] for the isotropic plate. Note that the equation D; = 0 gives the modes for a free plate and
the second term is a correction introduced by the fluid loading. In the limit p, — oo the
modes for a loaded plate will be determined by D, = 0.

3 RESULTS AND DISCUSSION

The wave numbers of any guided mode in a free or fluid-loaded plate can be obtained, at any
frequency, by scanning respectively Eqgs. (2.21) and (2.32) for their zeros. Dispersion rela-
tions are obtained in terms of the phase velocity w/Re(k) as a function of the frequency.
These curves, for the first four modes, are plotted in Figure 1 where the solid curves are for a
free magnesium plate and the dashed are for the same plate loaded by water.The material
constants for magnesium are taken from [13] and are given in Table L.

The density of water is taken as 1000 kg/m® and the velocity of sound in water is taken as
1475 m/sec. [14]. For an isotropic free plate, it is well known that, for high frequencies, the
phase velocity of the lowest mode approaches the Rayleigh velocity. However velocity of the

velocity v/c,

0.5}

Normalized

.

2 4 6 8 10 12
Normalized frequency hf [mm MHz ]
FIGURE 1 Dispersion curves for the first four symmetric modes of a magnesium plate immersed in water. Solid

lines: free plate, dashed lines: immersed plate. The velocity ¢; = 1/cas/p,, seems to play the same role as cr for the
isotropic plate.
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TABLE I Material Properties for Magnesium [13].

Stiffness = 10" N/m*

; 3
cn 12 13 33 Ca4 Density kg/m

597 2.62 2.17 6.17 1.64 1740

higher modes approaches cr at high frequencies. Near the cut off frequency the dispersion
relation, for the lowest mode, is of the form.

(x> —1)
——C

w=2
K2

rk. 3.1

In the present case, both p; and p, appearing in Eq. (2.21) are complex for the lowest
mode.In the limit of high frequency the left hand side of Eq. (2.21) approaches unity and the
phase velocity is obtained from the following equation

pi(1+q1) _ enpiqr + cisk?
P21+ q2)  capdqe + cisk?”

(3.2)

Eq. (3.2) is the generalization of the Rayleigh equation for a TI material. Its solution, for
magnesium, gives cg = 2895.5m/sec., and the curves in Figure 1 are normalized with
respect to this velocity.

When k£ < 1, Eq. (2.21) becomes

P+ q) _ cip?q1 + ci3k?
sl +q2)  capigs +ci3k?’

(3.3)

The above equation can be easily solved numerically for any TI material. For magnesium, we
find

o = 1.889¢pk. (3.4)

In Figure 1 are plotted the first four symmetric modes for a magnesium plate. The solid curve
represents the mode for a free plate whereas the dashed curve represents the mode when the
plate is immersed in water. The phase velocity is normalized with respect to the velocity of
the Rayleigh wave on the surface of a half space of magnesium. The guided wave is only
slightly perturbed due to fluid loading. However the zeroth symmetric mode “switches over”
to the first mode when af = 4.5 mm MHz. This happens due to coincidence of the first free
mode with the loaded zeroth mode of the plate. This type of mode switching has already been
observed in plates [6] and rods [8, 9].

Figures 2 and 3 show the attenuation spectrum of the zeroth mode. The attenuation sharply
increases as the normalized frequency exceeds unity until it merges into the first mode. It has
been remarked by Nagy [9] that a normalized attenuation of 1 dB or higher renders a mode
non propagating for all practical purposes. If we apply this criterion, we see that the zeroth
mode ceases to be a propagating one when af > 1.11.
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FIGURE 2 Leaky attenuation spectrum in the immersed plate for the first symmetric mode so.

Figure 3 shows the attention for the first and the second symmetric modes i.e. the s; and s,
in the fluid-loaded plate. The solid curve represents the s; mode while the dashed curve
represents the s, mode. Both modes are highly damped to start with, however the s; mode is
undamped near af = 12 while the s, mode is undamped near af = 25. Beyond these
frequencies the curves rise towards a maximum and then they slowly flatten.

.
T T T T T T rT

attenuation hiImk [dB]
Lo
- B

Normalized
o
B

8 10 2
Nomalized freqency hf (om Mz

FIGURE 3 Leaky attenuation spectra in the immersed plate for the second mode, sy, (solid line) and the third
mode, s, (dashed line).
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