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Reconstruction of Quadratic Curves in 3-D
from Two or More Perspective Views
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The issues involved in the reconstruction of a quadratic curve in 3-D space from arbitrary perspective
projections are described in this paper. Correspondence between the projections of the curve on the image
planes is assumed to be established. Equations for reconstruction of the 3-D curve, which give the
parameters of the 3-D quadratic curve are determined. Uniqueness of the solution in the process of
reconstruction is addressed and solved using additional constraints. As practical examples, reconstruction
of circles, parabolas and pair of straight lines in 3-D space are demonstrated.
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1 INTRODUCTION

Most natural as well as man-made objects have curved lines and surfaces. Reconstruction of
curved lines of 3-D objects is an important task in many applications of Computer Vision
such as estimation of 3-D object structure, object recognition and reconstruction. For objects
with planar shapes, straight lines and points are used as features for reconstruction. This is
not useful for objects with curved surfaces.

For objects with curved surfaces, the intersection of two surfaces (3-D edge) is a curve.
Quadratic curves [5] which can represent a wide variety of curves in 3-D are used in this
work. Projection of these curves onto image planes under perspective transformation produce
conics. Two or more corresponding conics, from as many views, are used to reconstruct a
curve in 3-D. The case of reconstruction of conics in 3-D space has been discussed by several
authors in their work, [6-8, 10—-12). Though Xie and Thonnat in Ref. [11] give the analytical
formulation for the reconstruction of quadratic curves, they have not given any methodology
to determine the unique solution from the roots of a quadratic equation. In the case of planar
curves, they have assumed the existence of a point to point correspondence between the sets
of contour points on the pair of projected curve segments. Xie in Ref. [12] uses the planarity
constraint and formulations given in Ref. [11] to obtain the unique solution in case of conics
using point to point correspondence and has described a method to improve the quality of
3-D data related to quadratic curves. Quan in Ref. [18] has solved correspondence in the case
of conics from two views. He has solved the ambiguity (non-uniqueness) in the solutions
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with the use of a non-transparency constraint of a conic section. Kanatani et al. in Ref. [6]
have developed computation procedures to interpret the 3-D geometry of conics in the scene
from their projections by giving real examples.

The work presented in this paper deals with the methodology of reconstruction of a
quadratic curve in 3-D space from two or more arbitrary perspective views. Equations of
reconstruction are presented, along with the examples from simulation studies. The issue of
uniqueness of the solution is addressed and solved with the use of additional constraints.

2 FORMULATION OF THE PROBLEM

The imaging set-up using two cameras is shown in Figure 1. Let /; and I, be the first and
second image planes of the pair of cameras C; and C, respectively. Let the position and the
orientation of one camera be known with respect to another and both have a common field of
view. Let O)xyz be the rectangular cartesian frame of reference with its origin O; at the
center of projection of one of the cameras C;. A point W in 3-D space, with co-ordinates
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FIGURE 1 Reconstruction of a 3-D curve I" from its pair of projections I'y and I'; on the image planes /; and /,
respectively.
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(xw, Yw, zw) with respect to the frame of reference at C|, is viewed by both the cameras C; and
C,. Let O,x'y'Z be the second rectangular cartesian co-ordinate system, not necessarily
parallel to OXYZ system, with its origin O, at the center of projection of the second camera
C,. Let the co-ordinates of the second camera C, with respect to O; be (x4, y4, z4). Let
Py(Xy, Y1, f1) and Py(X3, Y2, f>) be the corresponding pair of projections of point /¥ on the
pair of image planes /; and I, respectively. Let f; and f; be the focal lengths of the first and
the second cameras respectively. The collinearity equations represent the mathematical
process of image formation, linking the co-ordinates of a point on an object in 3-D space to
the corresponding co-ordinates of its projection in the 2-D image plane. The collinearity
equations are derived using the criteria that all the three points, namely, the center of per-
spective projection, the image point and the object point lie on the same straight line. Let the
perspective projections of a quadratic curve I" in 3-D space be a pair of quadratic curves I';
and I'y, on the first and second image planes respectively as shown in Figure 1. The problem
is to reconstruct the 3-D quadratic curve I' from the pair of its images I'y and I';. The
relation between the coordinates of the point W(x,, yw,z») and that of the image point
Pi(X1, 11, /1) is given by the perspective equation [3, 4]:

Xw Yw
Xi=H—, VN =A— 1
1=/ Z 1=/ - )]

The 3-D co-ordinates of point W(x,, yw, z,w) With respect to second camera C,, is given by

X, cosoy cosf; cosy (ew — xq)
Y, | =A4| cosay cosf, cosy, || (yw—ya) |, ?2)
z, cosa3 cosfl; Cosys (zw — zq)

where

cos o) = cos Yy cos ¢ — cosBsinpsiny,

cos 0y = cos i sin ¢ + cos f cos ¢ siny,

cosoz = siny sin 6,

cos fi; = —siny cos ¢ — cos O sin ¢ cos Y,

cos fi, = —siny sin ¢ + cos B cos ¢ cos y,

cos fi; = cos s sin 6,

cosy, = sin¢sinb,

cosy, = — sin 6 cos ¢,

cosy; = cos b,
and 6, ¢ and Y are the Eulerian angles.

In the above equations «;, f;, ¥;, (i = 1,2, 3) are the respective direction cosines of the

axes of O,x'y'z’ with respect to O;xyz system. A is a scale factor between the two reference
frames and without loss of generality this is considered to be 1, in this work. Using Eq. (2),

the relation between the object space point W (x,,, ¥, z,y) and the image point P,(X, Y3, f3) is
given by the perspective equations [3, 4]:

(Xw — Xq) cos oy + (yy — yg) €08 By + (2, — z4) COS 7,
(xw — xg)cos a3 + (3w — Ya) €os By + (2w — 24) COS 3

X =5 3)
(xw — x4) €08 0z + (Y — Ya) €08 By + (2w — za) COS 1,

Y, =
2=/ (X — xq) cos &3 + (Y — Ya) €08 B3 + (2, — 24) COS 3

“)
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Equations (1), (3) and (4) are the collinearity equations for a pair of arbitrary perspective
views [3, 4]. The method presented in this paper is similar to the work of Ref. [11, 12].

Xie and Thonnat [11] have addressed the problem of 3-D reconstruction of heterogeneous
edge primitives by using two perspective views. They have illustrated the existence of
analytical solutions with respect to the edge primitives like contour points, line segments,
quadratic curves and closed curves. They derive their proposed solutions by reasoning in
discrete space time. Hence they can be directly applied to the situation where a set of discrete
digital images are available. However their analytical formulation for the reconstruction of
quadratic curves does not give any methodology to determine the unique solution from the
roots of the resulting quadratic equation.

Precision is the central issue in 3-D reconstruction. In order to find solution to this pro-
blem, most of the efforts have been dedicated to the approaches of fusion. Xie [12] has shown
that the quality of 3-D reconstruction can be improved by carefully choosing a reconstruction
strategy. Xie also has demonstrated experimentally the usefulness of his solution for the 3-D
reconstruction of quadratic curves. He uses the planarity constraint and formulations given in
Ref. [11] to obtain the unique solution in case of conics using point to point correspondence
and has given a method to improve the quality of 3-D data related to quadratic curves.

Quan in Ref. [8] has solved correspondence in the case of conics from two views. He has
shown that there are two independent polynomial conditions on the corresponding pairs of
conics across two views, given the relative orientation of the two views. He has derived these
two correspondence conditions algebraically and shown one of them to be fundamental in
establishing the correspondence of conics. He has solved the ambiguity (non-uniqueness)
in the solutions with the use of a non-transparency constraint of a conic section.

All the methodologies developed by various research workers to reconstruct a conic is
based on point to point correspondence. The corresponding analytical formulations for the
reconstruction of quadratic curves or conics do not give any methodology to determine the
unique solution from the roots of the resulting quadratic equation. But in the work described
here, point to point correspondence between contours of projected curved segments has not
been assumed and a methodology to determine the unique solution is given. Although use of
planarity constraint has been made as given by Xie et al. [11], the method proposed in this
paper is applicable for the reconstruction of wired and transparent conical sections. It is also
shown that a third view is necessary in a particular case to obtain the unique solution.
Quadratic curves in this paper mean the curves whose projections onto the image planes, that
can be described by an equation of quadratic form.

3 RECONSTRUCTION METHODOLOGY

In this problem, least square regression is used to obtain the parameters of the 2-D quadratic
curves I'; and I';. Let the equations of the conics I';, j = 1, 2 in the respective pair of image
planes I; and I, be given by

AyXy + ByY) + CyXyYy + EyX, + FyY, + G, =0, j=1,2.

Consider a quadratic surface S, which passes through the centre of projection of the second
camera O, and the projected quadratic curve I';. Surface S, is represented as a non-linear
function of a set of parameters of the curve I'; and geometry of the imaging setup. Choose
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any point P;(Xj, Y1) on the curve I'; in the first image plane. The equation of the line O, P,
joining the centre of projection of the first camera O; and point P, is given by

Xz, ©)

where without loss of generality, f; is chosen to be unity. Intersection of line O;P; with
surface S, is obtained as follows:
Let the equation of the curve I'; in the first image plane /; be

Ay XVZ] + B, Yv21 +Cp XY +En X1 +F Y + le =0, (6)
and the equation of the corresponding curve I'; on the second image plane I, be,
Av2 szz + B, szz +C XnY + Ev2 Xv2 +Fy Yv2 + Gv2 =0, (7)

Since (X3, ¥3) is a point on the curve I', using the collinearity equations (1)—(4), the above
Eq. (7) reduces to

x/ 2 y/ 2 xl y/ x/ y/
sz[—/"—’} +BV2{—:£] +Cv2[7w} [-,i} +Ev2{%} +Fv2[',ﬂ} + G =0
Zy Zy Z,) 2y Zy Zy

or
A x’j + By yﬁ + Cy x;y;, + Ey x:Vz'W + Fy y:‘,Z,w + Gy Z:% =0 ®)

where (x,,,,2,) is the object point # in 3-D space with respect to the second camera
system O,(x4, v4, z4). With respect to O;(0, 0, 0) the above equation can be written as

Aal(xw — xq) COs a1 + (i — ya) €08 By + (2 — 24) cos

+ Byal(xw — xa) €08 0z + (P — ) €08 By + (24 — z4) 08 5]
+ Cia[(xyw — xg) cos oy + (Vv — ya) cos By + (2w — za) cos ;]

X [(ry — xq) cos atz + (yw — ya) €08 B + (2w — 24) COS 7,]

+ Eva[(xw — x4) cos 01 + (yw — ya) €08 By + (2w — za) cos ;]

X [(xw — xq) cos oz + (¥ — ya) €08 B3 + (2 — 24) €08 73]

+ Fial(ew — xa) c0s 0z + (yw — ya) €08 B + (2w — 24) c08 7,]

X [(xw — xa) cos 03 + (Vi — ya) €08 B3 + (2w — za) COs 73]

+ Gl (6w — x4) 08 03 + (¥ — ya) €08 B3 + (2w — za) cOs 3] = 0 )
Let

X4 COS ok + Y4 c08 By + 2408y = Aq,
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for k =1, 2 and 3, then the above Eq. (5) becomes,

AxL + oyl + A2, + Agxup + Aspuzy + AszuXo 4+ A7x,y + Agyy + Aoz + Aj1g = 0
(10)

which represents the equation of the surface S,, where

Ay = A,y cos® oy + B,y cos? oy + Cyp cos ayoy + E,p cos ooz + Fyp €08 ot COS o3
+ G, cos? o3
Ay = A3 cos® By + B,y cos? i, + Cya cos B, i, + E,y cos B B3 + Fiz cos B, cos P
+ Gy cos? fis
A3 = A, cos® Y1+ B cos? ¥2 + G2 cos Y17, + Eyz c0s Y173 + Fi2 cos P, cos y3 + Gya cos? Y3
Ay = 24,5 cosay cos ff; + 2B, cos a, cos fB, + Cy(cos a; cos B, + cos a; cos f3,)
+ Eyz(cos o cos B3 + cos az cos f;) + Fya(cos oy cos B3 + a3 fy) + 2G,; cos a3 cos s
As = 24,3 cosy, cos f§; + 2B, cos y, cos ff, + Cya(cos y, cos f§; + cosy; cos f3,)
+ Ey2(cos f8; cos y3 + cos 3 cos ;) + Fp(cos 8, cos y3 + cos 5 cos p,)
+ 2G,, cos 3 cos 3
Ae = 24,3 cosy, cosay + 2B, cos y, cos a + Cya(Cos p; cos oy + CoS P, COS o)
+ E\(cos y; cos a3 + cos y3 cos o) + F2(cos y, cos a3 + cos Y3 cos o)
+ 2G,; cos y3 cos a3
A7 = —{24,p4,, cosay + 2B,pA4,, cosay + Cyp(cos a4y, + cos arAd,,)
+ E\»(cos a1 4y, + c08 034q,) + Fi2(cos 024y, + €08 034y, + 2G4, cOs 3}
Ag = —(2A4,244, c0s | + 2B,3A4,, cos fi; + C\(cos B4y, + cos fr4s,)
+ E\2(cos 1 4a, + 08 f34,,) + F\2(cos frAy, + €08 f344, + 2G2(Ay, cos fi3)
A9 = —(24,244, €08 y| + 2B 244, 08y, + Cp(cos p1 4y, 4 €08 Y,44,)
+ Ey2(cos y,Aa, + c08Y344,) + Fi2(cos y,44, + c08 Y344, + 2G\2(Ay, cOsy3)
Aro = And], + Bod, + Cody Ay, + Edy, sy + Findo, Ay, + G A2,

Now the equation of the line O, P, is given by

X y z
Xi n oA
Hence,
x=rX|
y=rY;

z=rf
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Thus this reduces to a problem of finding the point of intersection of the surface S, and a line
O, Py, since we are considering f; = 1, the Eq. (10) becomes

(A1 X2 4 A2 Y2 + A3 + AuXy Yy + AsYy + AeXi)r? + (47X + AgYy + Ao)r + A1o = 0

(12)
Denoting
a =X} + A Y] + 43 + AXi Y1 + AsYy + 46X
b=A:X) + A + Ao
¢ = Ao,
the above equation can be rewritten as,
ar* +br+c=0 (13)

It can be seen that @, b and ¢ are functions of (i) parameters of the second conic
(42, By2, C\2, E\2, F2, Gy2), (i1) orientation parameters of the second camera system (cos o,
cos 8, cos y;, €os d, cos B,, COs y,, COs a3, cos fi3, cos ;) and (iii) position (xz, y4, z4) of the
second camera. The co-ordinates of the points of intersection of line O, P; and surface S, in
3-D space, are given in terms of the solution  of Egs. (11) and (13) as:

— I(p2 —
z= b+ gﬁ 4ac), x=zX,, y=z1

(14)

Choose a set of N contour points P;(X;, ¥;), i=1,2,...,N, on the curve I'} in the first
image plane. Using (14), two sets of coordinate values (x;1,yi1,zin) and (Xi2, Vi, Zi2)s

i=1,2,...,N, are obtained, where N is the number of discrete data points P;; on curve I'y.
Hence this gives two sets of depth values of the points as candidates for the solution. Let z;;
andzp,i =1, 2,..., N, be the pair of sequence of depth values of a set of potential candidate

points obtained for the reconstruction of the 3-D curve I', which are given as

—b + /(b* — 4ac)
2a

—b — \/(b? — 4ac)

Zp = 2 , Xp=2zp X, yo=2zp Y

zj = , Xi=zy Xi, yi=zn1Y;

Assuming r to be positive (which is a constraint from the geometry of the imaging setup),
only positive values of z;; and z;, are acceptable. Two cases arise from the solution given in
Eq. (14), and correspondingly the methods to obtain the unique solution for reconstruction of
the 3-D curve are described in the next section.

4 SIMULATION RESULTS FOR DIFFERENT CURVES
Case I Some of the solutions are negative, (i.e., for some i, say, z;; < 0 and z; > 0).

Figures 2(a), 7(a) and 10(a) show the typical plots of pair of sequences of depth values of
candidate points for reconstruction of circles, parabolas and pair of straight lines in 3-D
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FIGURE 2 (a) Plot of pair of sequence of z values obtained for the reconstruction of a circle in 3-D space using
perfect stereo. Equation of the circle is: x =40+ 99.6195cost —3.1751sint, y =704 5.9696cost+
49.80975sint and z = 100 + 6.3502 cost + 2.9848sint, 0 <t < 27, x4 = 10.0, y4 = 0.0, z; = 0.0. (b) Recon-
struction of a circle for the data used in Figure 2(a) using a third projection. The projection of the pair of sequences
obtained as solutions in Figure 2(a) are superimposed on the projection of the circle. This helps to identify the unique
solution among the two possible solutions.

respectively. Select only those pair of solutions which have one negative value. Choose the
corresponding positive value from only these selected set of pairs as the unique solution for
curve I'. Use these points to obtain the equation of the supporting plane of the curve I'. Use
the equation of the plane to identify the points actually lying on the curve (planarity con-
straint). Regress on the set of points identified as unique solutions to obtain the parameters of
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FIGURE 3 (a) Plot of pair of sequence of z values obtained for the reconstruction of a circle in 3-D space using
general case. Equation of the circle is: x = —5cost —4.80141sin¢, y = —1.39516cost + 8.66025sint and
z =30+ 8.54714cost — 1.395165sint, 0 <t < 2m, x4 = 70.0, ys = 10.0, z; = 60.0 and o) = 120°, f, =30°,
y3 = 120°. (b) Reconstruction of a circle for the data used in Figure 3(a) using a third projection. The projection of
the pair of sequences obtained as solutions in Figure 3(a) are superimposed on the third projection of the circle. This
helps to identify the unique solution among the two possible solutions.
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FIGURE 4 (a) Plot of pair of sequence of z values obtained for the reconstruction of a circle in 3-D space using
general case. Equation of the circle is: x = 0.87156 cost — 0.87072sin ¢, y = —0.03809 cos ¢ + 9.96195 sin¢ and
z=30+9.96187cost + 0.03809sint, 0 <t < 2w, x4 = 60, yg =0, zg = 30, oy = 85°, B, =5°, y; =85°. (b)
Reconstruction of a circle for the data used in Figure 4(a) using a third projection. The projection of the pair of
sequences obtained as solutions in Figure 4(a) are superimposed on the third projection of the circle. This helps to
identify the unique solution among the two possible solutions.

the quadratic equation representing the curve I'. Figures 2(b), 7(b) and 10(b) illustrate a
suitable projection of the pair of sequences for the data given in Figures 2(a), 7(a) and 10(a),
where the unique solution is shown as a continuous curve.

Case II All the solutions are positive.

To eliminate the ambiguity and provide a unique solution we need an additional constraint.
For using the planarity constraint of Xie et al., [11], point to point correspondence is

07|

08

058

03

" " 2 N " s N L 2

) 5 10 15 2 % E) 3 “ I 004 008 008 Ot 012 014 018 018 02 02 O0M

b —— X —

(a) (b)

FIGURE 5 (a) Plot of pair of sequence of z values obtained for the reconstruction of a circle in 3-D space using
general case. Equation of the circle is: x = 40 + 1.73648 cost — 1.72977 sint, y = 70 + 0.15251 cos ¢ + 9.84808 sin ¢
andz = 100 + 9.84690 cost — 0.15251sin¢,0 < ¢ < 27, x4 = 100, y; = 70, z4 = 100, o; = 80°, B, = 10°, 73 = 80°.
(b) Reconstruction of a circle for the data used in Figure 5(a) using a third projection. The projection of the pair of
sequences obtained as solutions in Figure 5(a) are superimposed on the third projection of the circle. This helps to
identify the unique solution among the two possible solutions.
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FIGURE 6 (a) Plot of pair of sequence of z values obtained for the reconstruction of a circle in 3-D space using
general case. Equation of the circle is: x = 40 — 5cost — 4.80141sin¢, y = 70 — 1.39516 cos ¢ + 8.66025 sin ¢ and
z =730+ 8.54714cost — 1.39516sint, 0 < ¢t < 27, x4 = 100, y4 = 70, z4 = 120, oy = 120°, f8, = 30°, y; = 120°.
(b) Reconstruction of a circle for the data used in Figure 6(a) using a third projection. The projection of the pair of
sequences obtained as solutions in Figure 6(a) are superimposed on the third projection of the circle. This helps to
identify the unique solution among the two possible solutions.

necessary. Transparency constraint could be used to eliminate the ambiguity for solid
(opaque) objects, [8]. For a more general case, if the curve/conic is wired or transparent,
unique solution is possible only with the help of a third view, which identifies the unique
solution. Figures 3(a), 4(a), 5(a) and 6(a) show plots of such a pair of sequences for the
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FIGURE 7 (a) Plot of pair of sequence of z values obtained for the reconstruction of a parabola in 3-D space using
perfect stereo case. Equation of the parabola is: x = 40 + 9.96195¢ — 0.31751£2, y = 70 + 0.59696¢ + 4.980975¢*
and z = 100 + 0.63502¢ + 0.29848¢%, —4 < t < 4, x4 = 10, y4 = 0, zg = 0. (b) Reconstruction of a parabola for the
data used in Figure 7(a) using a third projection. The projection of the pair of sequences obtained as solutions in
Figure 7(a) are superimposed on the third projection of the parabola. This helps to identify the unique solution among
the two possible solutions.
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FIGURE 8 (a) Plot of pair of sequence of z values obtained for the reconstruction of a parabola in 3-D space using
general case. Equation of the parabola is: x = 40 + 0.173648¢ — 0.172977¢2, y = 70 + 0.015251¢ + 0.984808¢* and
z =100 + 0.984690¢ + 0.015251£2, —4 <t <4, xz = 100, y; =70, zg = 100, o; = 80°, B, = 10°, y; = 80°.
(b) Reconstruction of a parabola for the data used in Figure 8(a) using a third projection. The projection of the pair
of sequences obtained as solutions in Figure 8(a) are superimposed on the third projection of the parabola. This helps
to identify the unique solution among the two possible solutions.

reconstruction of different circles, for which the respective third view is shown in Figures
3(b), 4(b), 5(b) and 6(b). The projection of the circle obtained from this additional (third)
view identifies the unique solution. Similarly the case of parabolas is shown in the Figures
8(a) and 8(b) and the case of pair of straight lines is shown in the Figures 9 and 11.
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FIGURE 9 (a) Plot of pair of sequence of z values obtained for the reconstruction of a pair of straight lines in 3-D
space using perfect stereo case. Equations of the pair of straight lines are: x = 40 + 50¢, y = 50 + 40¢ and z = 100,
x =40+40t;, y =50+ 50 and z =100, 0 < ¢, f; < 1.0, x4 = 20.0, y4 = 0.0, z; = 0.0. (b) Reconstruction of a
pair of straight lines for the data used in Figure 9(a) using a third projection. The projection of the pair of sequences
obtained as solutions in Figure 9(a) are superimposed on the third projection of the pair of straight lines. This helps to
identify the unique solution among the possible solutions.
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FIGURE 10 (a) Plot of pair of sequence of z values obtained for the reconstruction of a pair of straight lines in 3-D
space using general case. Equations of the pair of straight lines are: x = 40 + 50¢, y = 50 and z = 100, x = 40 + 40¢,
y=50+50tand z=100, 0 < ¢, t; < 1.0, x; = 100.0, y; = 50.0, z4 = 100.0, o; = 80°, B, = 10°, y; = 80°. (b)
Reconstruction of a pair of straight lines for the data used in Figure 10(a) using a third projection. The projection of
the pair of sequences obtained as solutions in Figure 10(a) are superimposed on the third projection of the pair of
straight lines. This helps to identify the unique solution among the two possible solutions.

Using the constraint of continuity or smoothness of the curve, the two possible solu-
tions are classified. If the surface enclosed by the curve is opaque, only one of the
solutions will be visible. In the case of transparent structures or wired conics, a third view
is mandatory.
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FIGURE 11 (a) Plot of pair of sequence of z values obtained for the reconstruction of a pair of straight lines in 3-D
space using general case. Equations of the pair of straight lines are: x = 40 + 50¢, y = 70 + 40t and z = 100 + 30¢,
x=40+40t;, y=70+50 and z =100+ 30, 0 <¢, #, < 1.0, x; = 70.0, ys = 70.0, z4 = 60.0, oy = 45°,
B, = 45°, y3 = 45°. (b) Reconstruction of a pair of straight lines for the data used in Figure 11(a) using a
third projection. The projection of the pair of sequences obtained as solutions in Figure 11(a) aré superimposed on
the third projection of the pair of straight lines. This helps to identify the unique solution among the two possible
solutions.
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5 CONCLUSIONS

Discussions presented in this paper provide a methodology of finding an unique solution for
the reconstruction of quadratic curves without the requirement of point to point correspon-
dence, as well as constraint of transparency on the curve. The case of reconstruction of
circles, parabolas and pair of straight lines in 3-D space are demonstrated in Figures 2 to 11.
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