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Abstract

We write S(m, a) for the congruence class {n ∈ Z : n ≡ a (mod m)}. A covering
system of congruences is a collection

{S(m1, a1), S(m2, a2), . . . , S(mn, an)}

with the property that ∪n
i=1S(mi, ai) = Z. Such a system is composite and incongruent

if the moduli {mi : i = 1, . . . , n} are composite and distinct. We describe the composite
incongruent covering systems of minimum cardinality, thus answering a question asked
by Gerry Myerson.

1. Introduction

We write S(m, a) for the congruence class {n ∈ Z : n ≡ a (mod m)}. A covering system
of congruences is a collection

{S(m1, a1), S(m2, a2), . . . , S(mn, an)}, (1)

with the property that
∪n

i=1S(mi, ai) = Z.

Thus, for example, the set {S(2, 0), S(2, 1)} is a covering system. The set of integers
{m1, m2, . . . mt} is the set of moduli of the system. Strictly this is a multiset, since the
moduli may be repeated but it will be convenient to occasionally abuse notation in this
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way. Covering systems were introduced by Erdös in 1952 [3] and were the subject of some
of his favorite problems. They have generated a large literature and there are a number
of celebrated open questions concerning them. See the surveys [5] and [6]. We say the
covering system (1) is irredundant if it has no proper subcollection which is a covering
system. A covering system is incongruent if all its moduli are distinct, and composite if
each modulus is composite. An example of an incongruent covering system is

{S(2, 0), S(3, 0), S(4, 1), S(6, 1), S(12, 11)}.

The main concern of this paper is with systems that are both composite and incongruent,
which henceforth we will call CICSs. Examples of these will be given later.

In 1996 Cochrane and Myerson [2] introduced a new type of system called a homoge-
neous covering system. To describe this we write H(m, a, b) for the set

{(x, y) ∈ Z2 : ax + by ≡ 0 (mod m)}.

A homogeneous covering system is a collection {H(mi, ai, bi) : i = 1 . . . n} with m1 <
m2 < . . . < mn which has the property that

∪n
i=1H(mi, ai, bi) = Z2.

They showed how such a system could be constructed from a CICS. Later Boping Jin
and Myerson [1] showed that every homogeneous cover of Z2 can be obtained from a
CICS using the construction of [2].

The archetypal example of a homogeneous covering system is constructed using a
CICS devised by John Selfridge which contains 20 moduli. This is shown in Table 1.
At a meeting of the Australian Mathematical Society Gerry Myerson asked whether any
CICS exists with fewer than 20 moduli. This question was repeated in [6] and [8]. In
this paper we will answer Gerry’s question in the negative, and also show that besides
Selfridge’s example there are five other sets of 20 moduli which can be used to construct
a CICS.

The structure of the paper is as follows. We say that a set of integers that can be
the set of moduli of a covering system is good. In Section 2 we describe how any good
set can be reduced to a canonical good set. We then use known results about covering
systems to show that if a CICS has the minimum cardinality then its moduli set can be
reduced to one of a finite (but large) collection of candidate sets.

In Section 3 we present an algorithm for testing whether or not a set of integers is
good. In the final section we present the results of applying the algorithm to the collection
of candidate sets.
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2. Finding candidate sets

Lemma 1 If {m1, m2, . . . , mn} is a good set and µ > 1 divides mi for some 1 ≤ i ≤ n,
then {m1, m2, . . . , mn, µ}\{mi} is also good.

Proof. Since {m1, m2, . . . , mn} is good there exists a covering system

{S(m1, a1), S(m2, a2), . . . , S(mn, an)}.

But S(µ, ai) ⊇ S(mi, ai) so we get another covering system by replacing S(mi, ai) with
S(µ, ai). 2

We will write LCM for lowest common multiple throughout this paper.

Lemma 2 Let {m1, m2, . . . , mn} be a good set and suppose that the primes dividing the
LCM of m1, m2, . . . , mn are q1 < q2 < . . . < qt. For i = 1, . . . , n let

mi = Πt
j=1q

αij

j .

Then, writing p1 = 2, p2 = 3, p3 = 5, . . . we get that

{Πt
j=1p

αij

j : i = 1, . . . , n}.

is also good.

We omit the proof which is essentially the same as that of the first theorem of [10]
and its corollary.

These lemmas allow us to form a canonical CICS from any CICS by replacing the
prime factors of its moduli with the lowest primes, and replacing moduli by composite
divisors wherever possible. Thus a canonical CICS has the properties:

(a) If, for i ≥ 2, pi divides a modulus of the CICS then pi−1 divides some modulus.

(b) Any composite divisor of a modulus is also a modulus.

Recall that a covering system is irredundant if it ceases to be a covering system when
one of its members is removed. We are seeking a CICS of minimum cardinality, which
must necessarily be irredundant. The following theorem is from [7].

Theorem 3 If the LCM of the moduli of an irredundant covering system has prime
factorization Πt

i=1p
αi
i then

n ≥
t∑

i=1

αi(pi − 1) + 1, (2)

where n is the cardinality of the covering system.
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From this we obtain the following.

Corollary 4 The LCM of the moduli of a canonical CICS of minimum cardinality has
the form

L = 2α13α25α37α4 (3)

where
α1 + 2α2 + 4α3 + 6α4 ≤ 19. (4)

Proof. Suppose that (3) does not hold, so that the LCM of the moduli is divisible by a
prime greater than or equal to 11. By property (a) of a canonical CICS the LCM is also
divisible by 2, 3, 5, and 7, so by the Theorem its cardinality is at least

∑5
i=1(pi−1)+1 = 24.

However Selfridge’s CICS contains only 20 congruences, so we have a contradiction and
(3) follows. Substituting into (2) yields (4). 2

Corollary 4 and property (a) of a canonical CICS allow us to construct a finite popu-
lation of candidates for the LCM of a canonical CICS of minimum cardinality. We simply
consider all sets of non-negative integers {α1, α2, α3, α4} which satisfy (4) and reject those
for which one member of the set equals zero while another with higher subscript is posi-
tive. This leaves 204 candidates for the LCM. This set of candidates is reduced further
with the following theorem (which will be used again later).

Theorem 5 If {m1, m2, . . . , mn} is a good set then

n∑
i=1

1/mi ≥ 1.

This result is well-known (see, eg, [5] or [6]) and easily proved using density arguments.
From it we get the following.

Corollary 6 If L is the LCM of the moduli of a CICS of minimum cardinality then the
sum of the reciprocals of the 20 smallest composite divisors of L is at least 1.

Using this we reject 86 of our 204 candidates, leaving 118. Having found a candidate
for the LCM of the moduli of a minimum cardinality canonical CICS we need to determine
the sets of moduli which have this LCM and satisfy requirement (b) of a CICS. This gives
us 77,196 sets of integers.
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3. An Algorithm for Recognising the Set of Moduli of a Covering System

In this section we consider the following decision problem.

Covering System

Instance: A multiset of integers {m1, m2, . . . , mn}.

Question: Do there exist integers a1, a2, . . . , an such that

{S(m1, a1), S(m2, a2), . . . , S(mn, an)}

is a covering system?

We will call a Yes-instance of this question good and a No-instance bad. Covering
System appears to be a difficult problem. The following, apparently easier, problem is
known to be NP-complete [4],[11].

Simultaneous Incongruences

Instance: Collection {(m1, a1), (m2, a2), . . . , (mn, an)} of ordered pairs of positive inte-
gers.

Question: Is there an integer x such that, for 1 ≤ i ≤ n, there is no i for which x ≡ ai

(mod mi).

Note that the question is equivalent to asking whether

{S(m1, a1), S(m2, a2), . . . , S(mn, an)}

is not a covering system: one can demonstrate this by finding a single integer not con-
tained in any of the congruence classes.

We present an algorithm for answering the first of these questions. Unfortunately this
algorithm cannot give a positive answer to Covering System : its output is either “No”
or “Don’t know”. An earlier version of the algorithm was given in [9]. Before presenting
it we give some technical results.

Let M = {m1, m2, . . . , mn}. We say that mi is helpful in M if M\{mi} is bad but M
is good. Similarly we say that mi is unhelpful in M if either M\{mi} is good (in which
caseM is also good) or M is bad (in which case M\{mi} is also bad). That is, mi is
unhelpful if removing mi from M does not change M from good to bad.

Let p be a prime and pα be the greatest power of p dividing any member of M . We
partition M as

M = M0 ∪M1 ∪ ... ∪Mα,

where m ∈Mj if and only if pj is the greatest power of p dividing m.
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Lemma 7 Let M = {m1, . . . , mn}. Using the notation of the previous paragraph, if there
exists j, 0 < j ≤ α, such that

pα−j|Mj|+ pα−j−1|Mj+1|+ ... + |Mα| < pα−j+1 (5)

then each member of ∪α
i=jMi is unhelpful.

Proof. If no covering system exists with set of moduli M then all integers in M are
unhelpful and we are done. So we assume that M is good and let A be a covering system
with set of moduli M . We partition A into A0 ∪A1 ∪ ... ∪Aα where S(m, a) belongs to
Ai if and only if m belongs to Mi.

We now prove the contrapositive of the Lemma. That is, we’ll choose an arbitrary
j from {1, ..., α} and assume that some element of some Mi, i ≥ j, is helpful and show
that (5) does not hold.

We see from this assumption that A0∪A1∪ ...∪Aj−1is not a covering system. So there
exists an integer, say x, that does not belong to any congruence class in this collection.
Set pαL to be the LCM of the members of M and obtain integers xk, k = 1, 2, ..., pα−j+1

satisfying

xk ≡ x (mod L) (6)

xk ≡ x + kpj−1 (mod pα).

Each of these integers must belong to a congruence class in A. We’ll show first that
none can belong to a class in A0 ∪ A1 ∪ ... ∪ Aj−1, then that this implies that (5) does
not hold.

Suppose xk ∈ S(mpi, a) for some i ∈ {1, 2, . . . , α} where S(mpi, a) ∈ Ai (so that p
does not divide m). Then

xk ≡ a (mod mpi) (7)

which implies xk ≡ a (mod m). From this and (6) we have

x ≡ a (mod m).

¿From (7) we also have xk ≡ a (mod pi), which by (6) implies

x + kpj−1 ≡ a (mod pi).

If i < j then the last two displays imply that x ≡ a (mod mpi), that is, x ∈ S(mpi, a)
contradicting the way x was chosen. Thus i ≥ j, and

{xk : k = 1, 2, ..., pα−j+1} ⊆ ∪α
i=jAi. (8)
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We now show that if S(mpi, a) ∈ Ai then

|{xk : k = 1, 2, ..., pα−j+1} ∩ S(mpi, a)| ≤ pα−i|Mi|.

This follows on noting that

S(mpi, a) = S(m, a) ∩ S(pi, a)

= S(m, a) ∩ {∪pα−i

k=1 S(pα, a + kpi)}.

Since the xk’s belong to different congruence classes modulo pα, each S(pα, a + kpi)
contains only one. Thus S(mpi, a) contains at most pα−i of them. This applies to each
congruence class in Ai so the number of the xk covered by congruence classes in Ai is at
most

pα−i|Ai| = pα−i|Mi|. (9)

So the number in all congruence classes in ∪α
i=jAi is at most

pα−j|Mj|+ ... + |Mα|.

This with (8) implies
pα−j|Mj|+ ... + |Mα| ≥ pα−j+1

which is the negation of (5) thus proving the contrapositive of the Lemma, and hence
the Lemma. 2

In the algorithm presented in Section 3 we’ll use this lemma to remove unhelpful
members of the set of integers which we are testing for goodness. The next lemma allows
us to apply a recurrence in our algorithm: we show that M is good if and only if each
set in a collection of smaller sets is good.

Theorem 8 Let p be a prime and let M be a good set of moduli. Write M = M0 ∪M1

where the members of M1 are divisible by p and those of M0 are not. Then there exists
a partition of M1,

M1 = D1 ∪D2 ∪ ... ∪Dp

such that M0 ∪ {d/p : d ∈ Di} is good for each choice of i ∈ {1, 2, . . . , p}.

Proof. Since M is good there exists a covering system A with set of moduli M. Choose
i ∈ [1, p] and set

Ai = {S(m, a) ∈ A : S(m, a) ∩ S(p, i) 6= ∅}
Di = {m : S(m, a) ∈ Ai, m ∈M1}.

It is shown in [7] that a covering system can be constructed using the set of moduli
M∗ = {m/ gcd(m, p) : S(m, a) ∈ Ai}. Thus M∗ is good. Note that whenever (m, p) = 1
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we have S(m, a) ∩ S(p, i) 6= ∅ (by the Chinese Remainder Theorem) so M0 ⊆ M∗. The
other members of M∗ have the form d/p where d ∈ Di, thus M0∪{d/p : d ∈ Di} is good.

It remains to show that the sets Di are disjoint. This is obvious when we note that
S(mp, a) ∩ S(p, i) 6= ∅ implies S(mp, a) ⊆ S(p, i) for any m, p, a and i, so each member
of M1 appears as a modulus of a congruence in exactly one of the collections Ai. 2

In the application we use the contrapositive of this theorem, which we give as a
corollary.

Corollary 9 We use the notation of the theorem. If for some prime p there doesnot
exist a partition for which M0∪{d/p : d ∈ Di} is good for each choice of i ∈ {1, 2, . . . , p}
then M is not good.

This result allows us to test M for goodness by testing the sets M0 ∪ {d/p : d ∈ Di}
for goodness which can in turn be checked recursively. Since all partitions of M1 must
be considered this leads to a combinatorial explosion, however one hopes that many
of the candidate sets may be eliminated quickly using Lemmas 1 and 2. The process
will terminate since with each iteration the lowest common multiple of the moduli is
decreasing. Indeed, once all the moduli are powers of the same prime we can end the
process using the next lemma.

Lemma 10 If p is a prime and M = {m1, . . . , mt} is a set of (not necessarily distinct)
powers of p then M is good if and only if

t∑
i=1

1/mi ≥ 1. (10)

Proof. Let M be ordered such that m1 ≥ m2 ≥ ... ≥ mt. Note that if α ≥ β then the
congruence classes S(pα, a) and S(pβ, b) are either disjoint or S(pα, a) ⊇ S(pβ, b).

If (10) holds a covering system {S(m1, a1), S(m2, a2), ...S(mt, at)} can be constructed
as follows. Set a1 = 0, then for j = 2 to t set aj to be the least positive integer not
included in any of S(m1, a1), S(m2, a2), ...S(mj−1, aj−1). If there is no such integer we
already have a covering system and M is good. Otherwise S(mj, aj) will be disjoint from
the other congruence classes. The proportion of integers in {1, . . . , M} covered by the
system is

∑j
i=1 1/mi. Since (10) holds this will reach 1 for some j ≤ t, and so M is good.

If (10) does not hold then M is bad by Lemma 1. 2

Combining these results we construct an algorithm for testing a set of integers for
goodness.
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Algorithm Moduli

input M:={m(1),m(2),...m(t)};

{Apply Theorem 5}

If 1/m(1)+1/m(2)+...+1/m(t) < 1 then output “No”, stop;
compute L:= lcm{m(1),...m(t)};
compute prime factorisation of L:=p(1)ˆa(1)*p(2)ˆa(2)*...*p(s)ˆa(s);

{Apply Lemma 10}

if s==1 then output “Don’t know”, stop;

{Apply Lemma 7}

for i=1 to s
sum:=0;
for j = a(i) to 1 step −1
compute sum:=sum + p(i)ˆ(a(i)−j)|{m ∈ M : p(i) ˆ j | m, p(i)ˆ(j+1) 6 |m}|
if sum < p(i)ˆ(a - j + 1) then call Moduli(M \{m ∈ M : p(i)ˆj | m}), stop;

end;
end;

{Apply Corollary 9}

for i:= 1 to s;
M0:= {m ∈ M : p(i) 6 | m}
M1:= {m ∈ M : p(i) | m}
Good Partition Found:=false;
for each p(i)-partition M1:= D(1) ∪ D(2) ∪ ...∪ D(p(i)) of M1
if Moduli(M0 ∪ {d/p(i) : d ∈ D(k)}) == “Don’t know” for all k ∈ {1,...p(i)}
then Good Partition Found:=true;

end;
if Good Partition Found==false then output “No”, stop;

end;
output “Don’t know”;

end;

The correctness of the algorithm follows easily from the lemmas.

4. Results

The algorithm from the last section was applied to each of the 77,196 candidate sets
obtained in Section 2. It returned “No” for all but 6. These were investigated by hand
and it was found in each case that it was possible to find residues ai which produced
covering systems. The sets of moduli and residues are shown in the following table.
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I Selfridge’s CICS has lowest common multiple 720
mi 4 8 16 6 12 24 48 9 18 36 72 144 10 20 15 30 60 45 90 180
ai 0 2 6 1 5 14 46 0 15 21 30 78 3 15 11 17 59 39 21 147

II has lowest common multiple 1440
mi 4 8 16 32 6 12 24 48 96 9 18 36 72 144 288 10 20 15 30 60
ai 0 2 6 14 1 5 21 14 94 0 15 3 57 30 222 3 15 11 17 59

III has lowest common multiple 1440
mi 4 8 16 32 6 12 24 48 96 9 18 36 10 20 15 30 60 45 90 180
ai 0 2 6 30 1 5 14 46 78 0 15 21 3 15 11 17 59 39 21 147

IV has lowest common multiple 2880
mi 4 8 16 32 64 6 12 24 48 96 192 9 18 36 72 10 20 15 30 60
ai 0 2 6 14 62 1 5 21 30 94 158 0 15 3 57 3 15 11 17 59

V has lowest common multiple 2160
mi 4 8 16 6 12 24 48 9 18 36 72 144 27 54 108 10 20 15 30 60
ai 0 2 6 1 5 14 46 0 15 3 30 78 21 3 93 3 15 11 17 59

VI has lowest common multiple 4320
mi 4 8 16 32 6 12 24 48 96 9 18 36 27 54 108 10 20 15 30 60
ai 0 2 6 30 1 5 14 46 78 0 15 3 21 3 93 3 15 11 17 59

Table 1: Six composite irredundant covering systems of cardinality 20, {S(mi, ai) : i =
1, . . . , 20}. These have the only possible sets of moduli, but for each set of moduli
there are many other possible sets of residues. The first system was discovered by John
Selfridge, the others are original to this paper.

Our argument shows these are the only canonical CICS with 20 moduli. Suppose such
a CICS exists which is not canonical, that is, one which does not satisfy both conditions
(a) and (b). Then we’d be able to obtain a non-canonical CICS by taking one of the
sets of moduli from the table and either (a) replacing the largest prime divisor of its
LCM with the next largest prime from the set {2, 3, 5, 7} or (b) replacing one of the
moduli with a proper multiple of itself. For (b) we need only consider multiples formed
by multiplying moduli by 2, 3, 5 or 7.

These possibilities were tested on the 6 sets and no other covering systems were found.

Finally we need to consider the possibility that there exists a CICS with less than
20 moduli. Such a CICS could be transformed into covering system with 20 moduli by
adding one or more extra congruences. This new covering system would produce “Don’t
know” as output from the algorithm and so would have been found. Note that such a
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covering system would not be irredundant, but the only place we used irredundancy was
in Theorem 3 and Corollary 4. Inequality (4) would still apply in this case since we could
remove the redundant congruences from the covering system to form a CICS and apply
Theorem 3 to this.

We conclude that no composite incongruent covering systems exist with fewer than
20 moduli, and that the only such covering systems with 20 moduli use one of the sets
in Table 1.
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[6] Porubský, Š. and Schönheim, J., Covering Systems of Paul Erdős Past, Present and Future,
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