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Abstract

In this paper we study the exact orders of lacunary sums of binomial coefficients. It is
remarkable that the periodic patterns evolving from powers of 2 differ markedly from
those of other prime powers. For the latter ones the pattern is transparent and is deter-
mined by the first term. For the former ones multisected generating functions are used
to obtain the exact order or lower bounds on it.

1. Introduction

We set the lacunary sum of binomial coefficients

Gn,l(k) =

bk/nc∑
t=0

(
k

l + nt

)
(1)

and the associated generating function

gn,l(x) =
∞∑

k=0

Gn,l(k)xk =
xl(1− x)n−l−1

(1− x)n − xn

for any integer n ≥ 1 and l = 0, 1, . . . n−1. These multisected sums arise in combinatorics,
applied probability, the analysis of algorithms, and number theoretical settings (e.g., in
[1], [2], [4], [11], [12]). Ramus [10] determined Gn,l(k) as an n-term trigonometric sum
in 1834. Clearly, for n = 2 we have G2,0(k) = G2,1(k) = 2k−1, k ≥ 1, g2,0(x) = 1−x

1−2x
, and

g2,1(x) = x
1−2x

. From now on we assume that n > 2.

The analysis of gn,l(x) for a prime n is similar to that of [4] in which alternating binomial
coefficient sums are studied and sharp lower bounds are found on the orders. In that
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analysis changing the value of l requires only slight modifications (cf. Theorem 3 [4]).
Our case is more complicated in this respect. Other closely related binomial coefficient
sums are studied in [8], and closed forms for gn,l(x) and its alternating version are derived
by Howard and Witt [6] for n = 3, 4, 5, 8, and 10. The case n = 12 appears in [12] in the
context of some congruences.

Section 2 is devoted to the analysis of divisibility by p of Gn,l(k) for any prime n = p
and prime power n = pq, p > 2. We deal with the case in which n is a power of two in
Section 3. Some related conjectures are mentioned in Section 4.

2. The case of the gap size n = pq, p > 2

In this section we prove that for a prime power n = pq with p > 2, ρp(Gn,l(k)) is the
same as the order of the first term, i.e., ρp(

(
k
l

)
). Therefore, the mod pq periodicity of the

binomial coefficients guarantees either a periodic increment or periodicity of ρp(Gn,l(cp+
k)) in c depending on whether k < l or not. We start with the case of q = 1.

Theorem 1. For any odd prime p and 0 ≤ l ≤ p− 1, we have ρp(Gp,l(k)) = ρp(
(

k
l

)
).

Proof of Theorem 1. The relevant coefficients of the denominator contributing to the
recursion (1− x)p− xp of gp,l(x) are divisible by p except those of x0 and xp. Also notice
that Gp,l(k) = 0 for k = 0, 1, . . . , l − 1, and ρp(Gp,l(k)) = 0 for k = l, l + 1, . . . , p − 1.
These facts imply the cases resulting in a p-adic order of 0 (cf. [8] and [9]).

For m ≥ 1, 1 ≤ l ≤ p − 1, 0 ≤ i ≤ l − 1, 1 ≤ c ≤ p − 1, 0 ≤ t ≤ cpm−1 − 1, we observe
that ρp(

(
cpm+i
l+pt

)
) = m by carry counting due to Kummer (cf. [7]). We will rely on the

fact that this holds for every t which enters the summation in (1).

Now we use a theorem which was independently derived by Anton, Stickelberger, and
Hensel (see identity (2) in [5]) to determine 1

pq

(
N
M

)
(mod p) with pq being the exact

power of p dividing
(

N
M

)
.

Theorem A. Let N = (Nd, . . . , N1, N0)p = N0 + N1p + · · · + Ndp
d, M = M0 + M1p +

· · · + Mdp
d and R = N −M = R0 + R1p + · · · + Rdp

d with 0 ≤ Ni, Mi, Ri ≤ p − 1 for
each i, be the base p representations of N, M, and R = N −M, respectively. Then

(−1)q 1

pq

(
N

M

)
≡

( N0!

M0!R0!

)( N1!

M1!R1!

)
· · ·

( Nd!

Md!Rd!

)
mod p. (2)

We apply this with q = ρp(
(

cpm+i
l+pt

)
) = m as noted above. To expand the right side of

(1) by (2) for the case of the form k = cpm + i, we group the various value ranges for t
according to its p-ary digits t = (tm−1, . . . , t0)p. With tm−1 : 0 ≤ tm−1 ≤ c − 1, tj : 0 ≤
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tj ≤ p− 1, j = 0, 1, . . . m− 2, we rewrite∑
0≤tm−1≤c−1

0≤tj≤p−1,j=0,1,...,m−2

( c!

tm−1!(c− 1− tm−1)!

)( ∏
0≤j≤m−2

( 0!

tj!(p− 1− tj)!

))( i!

l!(p + i− l)!

)
≡

c!i!

l!(p + i− l)!

( ∑
0≤tm−1≤c−1

1

tm−1!(c− 1− tm−1)!

)
×

( ∑
0≤t0≤p−1

1

t0!(p− 1− t0)!

)
· · ·

( ∑
0≤tm−2≤p−1

1

tm−2!(p− 1− tm−2)!

)
mod p. (3)

Note that Td =
∑d−1

i=0
1

i!(d−1−i)!
= 1

(d−1)!

∑d−1
i=0

(
d−1

i

)
= 2d−1

(d−1)!
6≡ 0 (mod p), for d ≤ p. We

use this with d = c and p. (In the latter case we obtain Tp ≡ −1 (mod n) by Euler’s
and Wilson’s Theorems.) This guarantees that the expression in (3) is not a multiple of
p. In fact, we get that

Gp,l(cp
m + i) ≡ −c2c−1i!ai,lp

q mod pq+1

with ai,l ≡ (l!(p+ i− l)!)p−2 mod p being the mod p multiplicative inverse of l!(p+ i− l)!.

In general, if k ≥ p, i ≡ k (mod p), 0 ≤ i ≤ l− 1, and ρp(k− i) = m then the proof can
be easily modified by using Td 6≡ 0 (mod p) with d ≡ k−i

pm (mod p) so that 0 < d < p,

and with d = p, to yield ρp(Gp,l(k)) = ρp(
(

k
l

)
) = m. Note, however, that if k − i > pm+1

then some terms
(

k
l+pt

)
will be divisible by pm+1.

The case of k ≥ p, i ≡ k (mod p), l ≤ i ≤ p− 1, is taken care of by the observation for
cases resulting in a p-adic order of 0 made at the beginning of the proof. ¤

We can generalize Theorem 1 for prime powers.

Theorem 2. For any prime power n = pq, 0 ≤ l ≤ n−1, we have ρp(Gn,l(k)) = ρp(
(

k
l

)
).

The proof is similar to that of the Theorem 1 and is based on the fact that the coeffi-
cients of (1− x)n − xn are divisible by p except those of x0 and xn.

3. Gap size of 2m

This case is quite involved. In fact, first we prove a theorem for alternating sums. Later
we discuss the divisibility behavior for the non-alternating sum G2m,0(k) by applying
multisection techniques to its generating function. Recall that we are interested only in
cases with m ≥ 2.

We note that Gessel [3] studies generalized Dedekind sums, including
∑2m−1

j=0 (1 + ωj)k

with ω = cos (2π/2m)+ i sin (2π/2m) being a primitive 2mth root of unity. Of course, the
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above sum is 2mG2m,0(k) in disguise (cf. [2], [10], or [11]) but the analysis in [3] does not
seem to help in determining the 2-adic order of G2m,0(k). In [13] we proved

Theorem B. For k ≥ 2, we have

ρ2(G4,0(k)) =

{
bk/2c − 1, if k ≡ 0, 1, 3 mod 4
k − 2, if k ≡ 2 mod 4

(4)

and
ρ2(G4,l(2k + 1)) = k − 1, l = 0, 1, 2, 3, k ≥ 1.

We generalize this theorem. The main results of this section are summarized in the
following theorem.

Theorem 3. For k, c ≥ 1, we have

ρ2(G2m,0(k)) ≥ d k

2m−1
e − 2, (5)

ρ2(G2m,0((2c− 1)2m−1)) = 4c− 4, (6)

ρ2(G2m,0(c2
m)) = 2c− 1, (7)

and
ρ2(G2m,2m−1(c2m)) = 2c− 1. (8)

For l = 0, 1, . . . , 2m − 1, c ≥ 2, we have

ρ2(G2m,l(c2
m−1 − 1)) = c− 2. (9)

Corollary 4. If inequality (5) holds with equality for some value k then

ρ2(G2m,0(k + 22(m−1))) = ρ2(G2m,0(k)) + 2m−1. (10)

Note that (5) is sharpened by (7), and (10) also holds for even multiples of 2m−1

while (6) shows that for odd multiples the growth rate is doubled. The corollary and
identity (6) reveal the differences in the periodic nature of ρ2(G2m,0(k)). We note that
ρ2(G2m,0(k)) ≥ bk/2m−1c − 1 also holds true in agreement with (4) but we prefer to use
(5).

In order to prove Theorem 3, we set

S2m(k) =
∑

t

(
k

2mt

)
(−1)t,

for the lacunary alternating binomial coefficient sum with generating function

∞∑
k=0

S2m(k)xk =
(1− x)2m−1

(1− x)2m + x2m , (11)
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and prove

Theorem 5. For k, c ≥ 1, we have

ρ2(S2m(k)) ≥ k

2m
− 1, (12)

ρ2(S2m(k)) =
k

2m
if 2m+1|k, i.e., ρ2(S2m(c2m+1)) = 2c, (13)

and
ρ2(S2m((2c− 1)2m)) =∞.

Proof of Theorem 5. We note that

S2m((2c− 1)2m) = 0, (14)

for
(
(2c−1)2m

2mt

)
(−1)t +

(
(2c−1)2m

(2c−1)2m−2mt

)
(−1)(2c−1)−t = 0, 0 ≤ t ≤ c − 1, which yields the last

part of the theorem.

We prove the other statements by induction on k. We will need the first 2m+1 values of
S2m(l) as starting values for the order 2m+1 linear recurrence (15) below. The values are

obvious for k : 1 ≤ k ≤ 2m. For 0 < i < 2m, S2m(2m+1 − i) =
(
2m+1−i

0

)
−

(
2m+1−i

2m

)
is even

confirming ρ2(S2m(2m+1 − i)) ≥ 1 − i
2m = 2m+1−i

2m − 1. By Theorem 1 in [5], which is an
extension of identity (2), we have that for m ≥ 1 : ρ2(S2m(2m+1)) = 2. In fact,

1

2

(
2m+1

2m

)
≡ 3 mod 23

which yields S2m(2m+1) ≡ 1− 6 + 1 (mod 8).2

Now we prove the inductive statements. Identity (11) suggests a recurrence of order
2m. For k > 2m,

S2m(k + 2m) =
( 2m−1∑

i=1

(−1)i+1

(
2m

i

)
S2m(k + 2m − i)

)
− 2S2m(k).

This implies (12). In fact, for 1 ≤ i ≤ 2m − 1 we have ρ2(
(
2m

i

)
S2m(k + 2m − i)) ≥

m − ρ2(i) + k+2m−i
2m − 1 ≥ k

2m + 1
2
, with the unique minimum taken at i = 2m−1, and

ρ2(2S2m(k)) ≥ 1 + k
2m − 1 = k

2m .

To prove (13) we multiply both the numerator and denominator in (11) by (1−x)2m
+

x2m
. This results in the order 2m+1 recurrence

S2m(k + 2m+1) =
( 2m+1−1∑

i=1

ciS2m(k + 2m+1 − i)
)
− 4S2m(k), (15)

2Note that in general, for every N ≥ 1 there exists an m0 = m0(N) so that for all m ≥ m0 : 1
2

(
2m+1

2m

)
(mod 2N ) is the same.
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for k > 2m+1. It is fairly easy to see that ρ2(ci) ≥ 3 except for ρ2(c2m−2) = 2. Provided
that 2m+1|k, we get that ρ2(ciS2m(k + 2m+1 − i)) ≥ 3 + k+2m+1−i

2m − 1 > 2 + k
2m except

for i = 2m−2 when the lower bound still exceeds 2 + k
2m and for the last term whose

contribution is only ρ2(4S2m(k)) = 2 + k
2m . ¤

Now we turn back to the original problem and first prove

Lemma 6.

G2m,0(k) =
2k

2m
+

1

2m

m−1∑
q=1

2qS2q(k). (16)

Proof of Lemma 6. We use the corresponding generating functions of G2m(k) and
S2q(k), 0 < q ≤ m. Note that S2m(0) = 1. For m ≥ 1, we set Am(x) = 1

2m−1
1−x
1−2x

+∑m−1
q=1

(1−x)2
q−1

(1−x)2
q
+x2q

2q

2m , and observe that Am+1(x) = 1
2
Am(x) + 1

2
(1−x)2

m−1

(1−x)2
m

+x2m . Now identity

(16) follows by a simple inductive proof that Am(x) = g2m,0(x) for m ≥ 1. ¤

We are ready to proceed with the

Proof of Theorem 3. If k < 2m then G2m,0(k) = 1 holds in accordance with the assertions.
Otherwise, we can rely on the summation in (16) to estimate or determine ρ2(G2m,0(k)).

First we prove (5) without the “ceiling” function, i.e., in the form ρ2(G2m,0(k)) ≥
k

2m−1 − 2. For k ≥ 2m, we observe that the terms of (16) are divisible by various powers
of 2. The exponent of the term with index q is at least q − m + k

2q − 1 whose unique
minimum is k

2m−1 − 2 taken at q = m− 1, proving (5).

For the proof of (6) with k = (2c− 1)2m−1, we need only consider the term with index
q = m − 2 in (16). (In fact the last term, with index q = m − 1, is 0 by (14).) To see
this we observe that for k > 2m+1 and q ≤ m − 1: 1 < k

2m+1 < k
2m ≤ k

2q+1 . This means
that if 2m−1|k then for the 2-adic order of the terms with indices q and q + 1 we have
q−m+ k

2q > q+1−m+ k
2q+1 by (13). In other words, the terms on the right side of identity

(16) contribute smaller and smaller exponents of 2 as q increases. (For example, to get
ρ2(G16(24)) = 4 we need only ρ2(

2m−2

2m S2m−2(24)) = 2− 4 + 24
4

= 4 since m = 4 and 8|24.)
We immediately obtain ρ2(G2m,0((2c−1)2m−1)) = m−2−m+ρ2(S2m−2((2c−1)2m−1)) =
4c − 4. A similar analysis yields (7), for only the last term matters in (16) if k = c2m.
This leads to the 2-adic order (m− 1)−m + k/2m−1 = 2c− 1 by identity (13).

Now we turn to (9). Since by binomial identities G2m,0(c2
m− 1) = G2m,2m−1(c2

m− 1),
and their sum is G2m,0(c2

m), it follows from identity (7) that ρ2(G2m,l(c2
m−1)) = 2c−2,

if l = 0 or 2m − 1. This works for all cases if m = 2 (see [13]) but does not seem to work
for other values of l if m > 2 so we opt for a different approach below. On the other hand,
identity (8) can be derived from (9) since G2m,2m−1−1(c2

m− 1) = G2m,2m−1(c2m− 1), and
their sum is G2m,2m−1(c2m).

It turns out that (9) requires 2m−1-section of g2m,l(x). It can be derived by multiplying
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(cf. [4], [8]) both the numerator and denominator of g2m,l(x) by
∏2m−1−1

j=1 D(ωjx) with

D(x) = (1 − x)2m − x2m
=

∑2m−1
j=0

(
2m

j

)
(−1)jxj with ω being a 2m−1th primitive root of

unity. We expand the new denominator D∗(x) symbolically:

D∗(x) =
2m−1−1∏

j=0

D(ωjx) = 1− c2m−1x2m−1 − · · · − c(2m−1)2m−1x(2m−1)2m−1

(17)

which is a polynomial in x2m−1
since D∗(ωjx) = D∗(x), 0 ≤ j < 2m−1. Any combination

of 2m−1 factors contributing xk2m−1
to the expansion can be characterized by the number,

ij, of polynomial factors in which the term with xj is selected. By binomial expansion
and ignoring the factors of ω, the contribution of any term with the characterization
(i0, i1, . . . , i2m−1) is a multiple of(

2m

0

)i0(2m

1

)i1

· · ·
(

2m

2m − 1

)i2m−1

. (18)

We determine the exponent in the power of 2 which divides this quantity in terms of
(i0, i1, . . . , i2m−1). Here we need a finer analysis than that of Lemmas 1 and 2 of [8] which
is accomplished by the following two lemmas.

Lemma 7. We have ρ2(ck2m−1) ≥ k, for k : 1 ≤ k ≤ 2m − 1. Equality holds if and only
if k = 2m−1.

Lemma 8. With yc = G2m,l(c2
m−1 − 1) we have ρ2(yc) = c− 2, for c = 2, . . . , 2m.

We get the recurrence yc+1 =
∑2m−1

k=1 ck2m−1yc+1−k by (17). It follows that

ρ2(ck2m−1yc+1−k) ≥ k + (c + 1− k − 2) = c− 1

by Lemmas 7 and 8, with equality holding for the index k = 2m−1 only. This guarantees
the statement of identity (9), ρ2(yc+1) = c − 1. Hence, the proof of Theorem 3 is now
complete. ¤

Proof of Lemma 7. Indeed, in (18) for the terms contributing to xk2m−1
we get that

i0 + i1 + · · ·+ i2m−1 = 2m−1 and 0i0 + 1i1 + · · ·+ (2m− 1)i2m−1 = k2m−1 since each of the
2m−1 factors has exactly one contributing term. With C = i2m−1 , we have that k2m−1

is C2m−1 plus the other at most 2m−1 − C terms jij, j 6= 2m−1. Thus, (k − C)2m−1 ≤
(2m−1 − C)(2m − 1). This yields that k ≤ 2m−1−C

2m−1 (2m − 1) + C ≤ 2m − 1 − C + C
2m−1

leading to k ≤ 2m−C since C ≤ 2m−1 and equality holding if and only if C = k = 2m−1.
In order to determine ρ2(ck2m−1)we count the contribution of the corresponding factors in
(18) to the exponent of 2 and get that ρ2(ck2m−1) ≥ 1 ·C + 2 · (2m−1−C) = 2m−C ≥ k.
Equality holds in ρ2(ck2m−1) = k if and only if k = C = 2m−1. For example, for m = 3,
we get ρ2(c4k) ≥ k and equality holds if and only if k = 0 or k = C = 4; in fact, we have
that the exponents are 0, 3, 3, 6, 4, 7, 8, 12, in the order of k = 0, 1, 2, 3, 4, 5, 6, 7. ¤
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Proof of Lemma 8. We apply an argument similar to that used for proving Lemma 2 of
[8]. Recall that by the 2m−1-section used in (17), g2m,l(x) can be written with numerator

xl(1− x)2m−l−1 D∗(x)
D(x)

and denominator D∗(x). (In the above proof we have just discussed

the divisibility properties of the coefficients of the latter.) Let us focus now on the
numerator. To get the coefficient of xc2m−1−1, i.e., yc, c ≥ 2, we take

[xu]xl(1− x)2m−l−1 =

{ (
2m−l−1

u−l

)
(−1)u−l, if u : l ≤ u < 2m,

0, if u : 0 ≤ u < l,
(19)

and
[xc2m−1−1−u]D∗(x)/D(x) (20)

with 0 ≤ u < 2m and the usual notation. We will see shortly that the only interesting
cases are u = i2m−1 − 1, i = 1, 2. Note that the right hand side of (19) is ±1 if i = 2.

We observe that ρ2(
(
2m

j

)
), 1 ≤ j ≤ 2m − 1, is smallest for j = 2m−1. So to keep the

2-adic order small in (18) we try to maximize i0 and then C = i2m−1 . We now prove that
C is either c− 1 or c− 2. In fact, as we dropped D(x) from (17),

∑2m−1
j=0 ij = 2m−1 − 1

and
∑2m−1

j=0 jij = c2m−1 − 1 − u ≥ C2m−1 yield (c − C)2m−1 ≥ u + 1. To avoid adding
extra factors of 2 in (18), we take i0 = 2m−1− 1−C implying u = (c−C)2m−1− 1. Note
that 1 ≤ 1 + u ≤ 2m; therefore, C + 1 ≤ c ≤ C + 2.

If C = c − 1 then the contribution is 2c−1 from (20), while if C = c − 2 then the
contribution is 2c−2 since in this case u = 2m − 1 and there is no contribution from (19).
This gives ρ2(yc) = c− 2 for c ≥ 2. ¤

Remark. We note that identity (16) can be generalized. Let q′ be the smallest integer
q so that 2q > l. We set S2m,l(k) =

∑
t

(
k

l+2mt

)
(−1)t, 0 ≤ l < 2m, and prove that

G2m,l(k) =
1

2m−q′
G2q′ ,l(k) +

1

2m

m−1∑
q=q′

2qS2q ,l(k).

In fact, for m ≥ q′ we set Am,l(x) = 1
2m−q′

xl(1−x)2
q′−l−1

(1−x)2
q′−x2q′ +

∑m−1
q=q′

xl(1−x)2
q−l−1

(1−x)2
q
+x2q

2q

2m and observe

that Am+1,l(x) = 1
2
Am,l(x)+ 1

2
xl(1−x)2

m−l−1

(1−x)2
m

+x2m and Am,l(x) = g2m,l(x) by induction on m. The
previous proof with l = 0 suggests that it might be possible to utilize the above identity
and information on ρ2(S2m,l(k)) to obtain lower bounds on ρ2(G2m,l(k)) or even its value.
Numerical evidence, however, suggests that this job might be more complicated.

Identity (7) is generalized by

Theorem 9. For c ≥ 1 and 0 ≤ l ≤ 2m−1 − 1, we have ρ2(G2m,l(c2
m + l)) =

ρ2(G2m,0(c2
m)) = 2c− 1.

The proof parallels that of identity (9) and is based on the 2m-section of g2m,l(x)
and lemmas similar to Lemmas 7 and 8. The details are left to the reader. If l ≡
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2m−1 (mod 2m) then numerical evidence suggests that the pattern apparently changes
to ρ2(G2m,2m−1((2c− 1)2m−1)) = 4c− 4. Similarly, ρ2(G2m,0(k)) = ρ2(G2m,2m−1(k)) seems
to be true, in agreement with (7) and (8), if k is sufficiently large.

Finally we present the

Proof of Corollary 4. The proof is based on the combination of (5) and Lemma 7.
We have G2m,0(k + 22(m−1)) = c2m−1G2m,0(k + 22(m−1) − 2m−1) + c2mG2m,0(k + 22(m−1) −
2m) + . . . + c22(m−1)G2m,0(k) + . . . + c(2m−1)2m−1G2m,0(k + 22(m−1)− (2m− 1)2m−1) by (17).
Taking the 2-adic orders we get that ρ2(G2m,0(k + 22(m−1))) is at least as large as j +

1 + dk+22(m−1)−j2m−1

2m−1 e − 2, 1 ≤ j ≤ 2m − 1, except for j = 2m−1 where the unique
minimum is taken by Lemma 7, (5) and the assumption on k. In fact, the minimum is
2m−1 + ρ2(G2m,0(k)) = 2m−1 + d k

2m−1 e − 2 guaranteeing that equality in (5) will also hold
for k + 22(m−1). ¤

4. Related questions

We propose three conjectures. Numerical evidence suggests

Conjecture 1. Assertion (5) holds with equality with 2m−2 exceptions at and imme-
diately following odd multiples of 2m−1. (Even multiples of 2m−1 are taken care of by
(7).)

This means that (5) gives the exact order in about 75% of the cases. It seems interesting
to investigate the periodic increment of ρ2(G2m,0(k)) similar to (10) but for all k 6≡ 2m−1

(mod 2m). We believe that this “limited scope” period is 2m rather than 22(m−1).

Conjecture 2. ρ2(G2m,0(k + c2m)) = ρ2(G2m,0(k)) + 2c, for all sufficiently large k with
k 6≡ 2m−1 (mod 2m).

For example, if m = 2 then ρ2(G4,0(k + 4c)) = ρ2(G4,0(k)) + 2c, for k ≥ 3 and k 6≡ 2
(mod 4). For l > 0, ρ2(G2m,l(k)) seems to have a larger set of positions excluded from
the period. Typically, k ≡ 0, 1, . . . , l − 1 (mod 2m) are all excluded. We also propose

Conjecture 3. ρ2(G2m+s,0(2
sk)) = ρ2(G2m,0(k)) for s ≥ 1.

This evidently holds if 2m−1|k by (6) and (7), or if k ≤ 2m. This latter observation
proves that Conjecture 3 follows from Conjecture 2 by induction on k. In fact, repeated
use of Conjecture 2 implies that if ρ2(G2m+1,0(2k)) = ρ2(G2m,0(k)) then

ρ2(G2m,0(k+c2m)) = ρ2(G2m,0(k))+2c = ρ2(G2m+1,0(2k))+2c = ρ2(G2m+1,0(2k+c2m+1)).
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