EXTENDING A RECENT RESULT OF SANTOS ON PARTITIONS
INTO ODD PARTS

James A. Sellers
Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA
sellersjOmath.psu.edu

Received:8/27/02, Accepted: 4/7/03, Published: 4/9/03

Abstract

In a recent note, Santos proved that the number of partitions of n using only odd parts
equals the number of partitions of n of the form p; + ps + p3 + ps + ... such that
PL > P2 > p3 > Py > - > 0and p; > 2ps + p3 + ps + ... Via partition analysis, we
extend this result by replacing the last inequality with p; > kopo+ksps+kaps+. .., where
ko, k3, k4, ... are nonnegative integers. Several applications of this result are mentioned
in closing.

1 Background

One of the most celebrated identities in the theory of partitions is attributed to Leonhard
Euler and reads as follows:

Theorem 1.1. Let d(n) be the number of partitions of n into distinct parts and let o(n)
be the number of partitions of n into odd parts. Then, for alln >0, d(n) = o(n).

In a recent paper, Santos [12] proved via a bijection that o(n) also equals the number
of partitions of n of the form p1+ps+p3+ps+... suchthat py > ps >p3 >ps > --- >0
and p1 > 2pa+p3+pst....

Our goal in this note is to prove Santos’ result via generating functions. Actually,
we will prove a much more general result using the technique of partitions analysis,
introduced by Percy MacMahon [11, Vol. II, Section VIII] and heavily utilized recently
by G. Andrews, P. Paule, A. Riese and others [1, 2, 3, 4, 5, 6, 7, 8, 9].

Our main theorem is as follows:

Theorem 1.2. Let K = (ko, ks, ky,...) be an infinite vector of nonnegative integers.
Define p(n; K) as the number of partitions of n of the form py + pa + p3 + ps + ... with
pr = p2 2 p3 = pa--c = 0 and p1 = kapy + ksps + kapa + ... Then, for all n > 0,
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p(n; K) equals the number of partitions of n whose parts must be 1’s or of the form
O°", ki) + (m — 1) for some integer m > 2.

Before turning to the proof of Theorem 1.2, we briefly mention a few key items from
partition analysis. First, we define the Omega operator §>2

Definition 1.3. The operator §>2 s given by

Z e Z As1,...,3j)‘il . )\jj = Z e Z Asl,.‘.,s]w

§1=—00 §j=—00 s1=0 5;=0

v

where the domain of the Ay, s, 1s the field of rational functions over C in several complex
variables and the \; are restricted to annuli of the form 1 —e < |N\| < 1+e.

In the work below, we will also use the symbol p as a parameter like \; for some j.
Finally, we need the following lemma involving the Omega operator.

Lemma 1.4.
1 1

g(l—)\x) 1-2) (-2 -ay)

A proof of this result can be found in [3, Lemma 1.1].

2 Main Result

Now we are in position to prove Theorem 1.2 via generating function manipulations.

Proof. Note that

ip(n; K)¢" = Z PPt
n=0

p1L>2p2>p3 > 20
p1 > kop2 + k3ps + ...

p1+p2+p3+... P1—p2 \P2—P3 \P3—P4 p1—kopa—kap3—...
> g (AP \B R DS TR Y g

P1,pP2,P3, -+ >0
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e

by the definition of the Omega operator. Hence, after rewriting the above and applying
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Lemma 1.4 multiple times, we find that

> pniK)q" =
n=0
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We continue to apply Lemma 1.4 to eliminate all parameters A; to obtain

> 1 1 1
Zp(n;K)qn:&z(l ) 72 e
n=0 = —an 1= k21 - pFa k1

At this point, the only parameter to eliminate is u. We now rewrite the generating
function above in terms of geometric series and annilihate p based on the definition of
the Omega operator. Thus,

> pn; K)q"
n=0

The result follows.

Z (QM)M Z (q2M—k2+1)a2 Z (q3'u—k3—k2+1)a3 o

a1>0 az>0 a3>0

\e)

a1+2a2+3a3+... , a1+ (—k2+1)as+(—k3z—ka+1)az+...
g>2 E q m ( Jaz+( )
= ai,a2,a3,>0
a1+2as+3az+..., a1 —[(ka—1)as+(k3+ka—1)az+...
§>2 E q m [( Jaz+( ) ]
= az,az, -+ >0

a1 > (kg — Dag + (k3 + ko — Dag + ...
§ q2a2 X E q3a3 X .o X § qal
a2>0 a3>0 a1>(ke—1)az+(ka+ka—1)asz+...
kgfl)a2+(k3+k271)a3+...

ZqQ“QXZq?’“Sxqu( 1—g

a2>0 az=0

1
(1 _ q)(l _ qk2+1)(1 _ qk3+k2+2)(1 _ qk4+k3+k2+3) o

3 Applications

We close with several comments related to Theorem 1.2. First off, Santos’ result is clearly
proven via Theorem 1.2 using the vector K = (2,1,1,1,...). Next, note that the vector
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K =(1,0,0,0,...) also yields an obvious result. Namely, the number of partitions of n
of the form p; +ps +p3 + ... with p1 > py > p3 > -+ > 0 and p; > p, is simply p(n),
whose generating function is

1
(1—g)(1—¢?)(1—¢3)..

which is what we obtain in Theorem 1.2 with K = (1,0,0,0,...).

A third example of Theorem 1.2 arises in connection with the vector K = (1,1,1,1,...).
From Theorem 1.2 we find that the number of partitions of n with p; > po+ps+ps+...
equals the number of partitions of n using 1’s and even integers as parts. This means

1
(I=q)(1=¢*)(1 =g —q°%)...

> pni(1L,1,1,1,..))¢" =
n=0
Note that, by generating function dissection, we have
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Thus,

;p(Zn,(l,l,l,l,...))q A0
Similar analysis shows that p(2n + 1;(1,1,1,1,...)) has the same generating function.
A variant of this generating function recently arose in the context of graphical forest
partitions [10]. Namely, let ¢gf(2k) be the number of partitions of 2k such that each
partition, when viewed as the degree sequence of a graph, has a graphical representation
which is a tree or union of trees (forest). Since the generating function for ¢gf(2n), as

shown in [10], is
q

(1—92(1—¢)1-¢)...

we now know that
p(2n—2;(1,1,1,1,...)) = gf(2n)
for all n > 1.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 3 (2003), #A04 5)

We close with one last well-known partition function which is related to the Rogers-
Ramanujan identities. Namely, let pi(n) be the number of partitions of n into parts
congruent to +1 (mod 5). Then it is clear that pi(n) = p(n;(3,1,2,1,2,1,2,...)) for
all n. By way of generalization, let p¥ (n) be the number of partitions of n into parts
congruent to 1 (mod m) (for m > 3). Then, for all n > 0,

p:n(n):p(n7(m_zalam_galam_galam_gu))

Of course, the case m = 4 returns us to Santos’ result, the original motivation for this
note.
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