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Abstract

We study infinite words coding an orbit under an exchange of three intervals which have full
complexity C(n) = 2n + 1 for all n ∈ N (non-degenerate 3iet words). In terms of parameters
of the interval exchange and the starting point of the orbit we characterize those 3iet words
which are invariant under a primitive substitution. Thus, we generalize the result recently
obtained for Sturmian words.

1. Introduction

We study invariance under substitution of infinite words coding exchange of three intervals
with permutation π(1) = 3, π(2) = 2, π(3) = 1, denoted by (3,2,1). These words, which
are here called 3iet words, are one of the possible generalizations of Sturmian words to a
three-letter alphabet. Our main result provides necessary and sufficient conditions on the
parameters of a 3iet word to be invariant under substitution.

A Sturmian word (un)n∈N over the alphabet {0, 1} is defined as

un = "(n + 1)α + x0# − "nα + x0# for all n ∈ N,

1corresponding author
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or
un = %(n + 1)α + x0& − %nα + x0& for all n ∈ N,

where α ∈ (0, 1) is an irrational number called the slope, and x0 ∈ [0, 1) is called the
intercept.

There are many various equivalent definitions of Sturmian words, among others also as an
infinite word coding an exchange of 2 intervals of length α and 1−α. A direct generalization
of this definition are infinite words coding exchange of k intervals, as introduced by Stepin
and Katok [12].

Definition 1.1. Let α1, . . . ,αk be positive real numbers and let π be a permutation over
the set {1, 2, . . . , k}. Denote I = I1 ∪ I2 ∪ · · · ∪ Ik, where Ij :=

[∑
i<j αi,

∑
i≤j αi

)
. Put

tj :=
∑

π(i)<π(j) αi −
∑

i<j αi. The mapping T : I (→ I given by the prescription

T (x) = x + tj for x ∈ Ij

will be called k-interval exchange transformation (k-iet) with permutation π and parameters
α1, . . . ,αk.

Note that usually one defines a k-iet in a less general way, where I = [0, 1), since scaling
of the interval I does not influence properties of the corresponding transformation. On the
other hand, one can give a more general definition: Having any affine transformation of the
interval I, say A(x) := µx + ν, consider the transformation ATA−1 instead of T . This is
a modification which will be useful in our paper. It is convenient for us to study the orbit
of 0 in a general interval I, instead of the orbit of a general point x0 in [0, 1). This, in
consequence, will allow us to express our main result in a nice way.

Keane [13] has studied under which assumptions a k-iet satisfies the so-called minimality
condition, i.e., when the orbit {T n(x0) | n ∈ Z} of every point x0 ∈ I is dense in I. It is easy
to see that the minimality condition can be satisfied only if the permutation π is irreducible,
i.e., π{1, 2, . . . , j} *= {1, 2, . . . , j} for all j < k .

Keane has also derived a sufficient condition for minimality: Denote βj the left boundary
point of the interval Ij, i.e., βj =

∑
i<j αi. If the orbits of points β1, . . . ,βk under the

transformation T are infinite and disjoint, then T satisfies the minimality property. In the
literature, this sufficient condition is known under the notation i.d.o.c. However, in general,
i.d.o.c. is not a necessary condition for the minimality property.

To the orbit of every point x0 ∈ I, one can naturally associate an infinite word u = (un)n∈Z
in a k-letter alphabet A = {1, 2, . . . , k}. For n ∈ Z put

un = i if T n(x0) ∈ Ii .

Infinite words coding k-iet with i.d.o.c. are called here non-degenerate k-iet words. Non-
degenerate k-iet words are studied in [10]. The authors give a combinatorial characterization
of the language of infinite words which correspond to a k-iet with the permutation

π(1) = k, π(2) = k − 1, . . . , π(k) = 1 (1)
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or to permutations in some sense equivalent with it.

For k = 2, the only irreducible permutation is of the form (1). The minimality property
for parameters α1,α2 means that they are linearly independent over Q. Infinite words coding
2iet with the minimality property are precisely the Sturmian words.

In this paper we concentrate on infinite words coding exchange of 3 intervals under the
permutation given in (1). The transformation which we study is thus given by a triple of
positive parameters α1,α2,α3 and the prescription

T̃ (x) :=






x + α2 + α3 for x ∈ [0,α1) ,
x− α1 + α3 for x ∈ [α1,α1 + α2) ,
x− α1 − α2 for x ∈ [α1 + α2,α1 + α2 + α3) .

(2)

For such a transformation, the minimality property is equivalent to the following condition
(as proved in [3]): numbers α1 + α2 and α2 + α3 are linearly independent over Q.2 It is
known [1, 11] that infinite words coding (2) are non-degenerate if and only if (2) satisfies
the minimality property and

α1 + α2 + α3 /∈ (α1 + α2)Z + (α2 + α3)Z . (3)

The central problem of this paper is the substitution invariance of given infinite words.
For Sturmian words this question was extensively studied; Chapter 2. of [14] gives references
to authors who gave some contributions to its solution. The complete answer to this question
was first provided by Yasutomi [17] for one-directional Sturmian words, other proof of the
same result is given in [6]. In [5] we have provided yet another proof valid for bidirectional
Sturmian words. Crucial for stating this result is the notion of a Sturm number. The original
definition of a Sturm number used continued fractions. In 1998, Allauzen [2] has provided a
simple characterization of Sturm numbers: A quadratic irrational number α with conjugate
α′ is called a Sturm number if α ∈ (0, 1) and α′ /∈ (0, 1) .

Theorem 1.2 ([5]). Let α be an irrational number, α ∈ (0, 1), x0 ∈ [0, 1). The bidirectional
Sturmian word with slope α and intercept x0 is invariant under a primitive3 substitution if
and only if the following three conditions are satisfied:

(i) α is a Sturm number,

(ii) x0 ∈ Q(α),

(iii) min(α′, 1 − α′) ≤ x′0 ≤ max(α′, 1 − α′), where x′0 denotes the image of x0 under the
Galois automorphism of the quadratic field Q(α).

2Let us mention that the question of expressing the minimality property in terms of parameters α1, . . . ,αk

has not been solved for general k.
3Note that the only non-primitive substitution under which a Sturmian word can be invariant, is the

identity.
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Let us mention that one can also study a weaker property than substitution invariance;
namely, substitutivity. For an infinite word u coding an exchange of k intervals, Boshernitzan
and Carroll [8] have shown that the belonging of lengths of all intervals I1, . . . , Ik to the same
quadratic field is a sufficient condition for substitutivity of u. For k = 2 in [7], and for k = 3
in [1], it is shown that such condition is also necessary.

However, quadraticity of parameters is not sufficient for the property of substitution
invariance. Already in [4] it is shown that substitution invariance of 3iet words implies that
a certain parameter of the 3iet, namely

ε =
α1 + α2

α1 + 2α2 + α3
,

is a Sturm number. The main result of this paper is given as Theorem 6.3, where a necessary
and sufficient condition for substitution invariance is expressed using simple inequalities for
other parameters of the 3iet word.

Important tool for the proof of the theorem is the geometrical representation of an infinite
word u coding an orbit of a 3iet T : I (→ I with permutation (3, 2, 1) by a cut-and-project
sequence. This allows us to show that the first return map to any subinterval of I is again
an exchange of intervals, namely a 3iet with permutation (3, 2, 1) or a 2iet with permutation
(2, 1), (see Theorem 4.1). Then we use the result of [4] which states that substitution
invariance of u forces T to be homothetic with the first return map of T to the interval
λI, for a quadratic unit4 λ in Q(ε). Fact that ε is a Sturm number is crucial in order that
the orbit T n(0) be, under the Galois automorphism x (→ x′ in Q(ε), mapped to a strictly
increasing sequence

(
T n(0)

)′
. This is used to decide for which parameters of the 3iet there

exists the above mentioned unit λ for which the 3iet T on I and its first return map on λI
are homothetic.

2. Basic Notions of Combinatorics on Words

We will deal with infinite words over a finite alphabet, say A = {1, 2, . . . , k}. We consider
either right-sided infinite words

u = (un)n∈N = u0u1u2u3 · · · , ui ∈ A ,

or pointed bidirectional infinite words,

u = (un)n∈Z = · · ·u−2u−1|u0u1u2u3 · · · , ui ∈ A ,

A finite word w = w0w1 · · ·wn−1 of length |w| = n is a factor of an infinite word u = (un) if
w = uiui+1 · · ·ui+n−1 for some i.

4An algebraic number λ is a unit if both λ and λ−1 are algebraic integers.
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The (factor) complexity of a one-sided infinite word u = (un)n∈N is the function C : N (→
N,

C(n) := #{ui · · ·ui+n−1 | i ∈ N} ;

analogously we define it for a bidirectional infinite word u = (un)n∈Z. Obviously, every
infinite word satisfies 1 ≤ C(n) ≤ kn for all n ∈ N. It is not difficult to show [15] that
an infinite word u = (un)n∈N is eventually periodic if and only if there exists n0 such that
C(n0) ≤ n0. Obviously, the aperiodic words of minimal complexity satisfy C(n) = n + 1 for
all n ∈ N. Such infinite words are called Sturmian words. The definition of Sturmian words
is extended to bidirectional infinite words (un)n∈Z, requiring except of C(n) = n + 1 for all
n ∈ N also the irrationality of the densities of letters.

In our paper we study invariance of infinite words under substitution. A substitution is a
mapping ϕ : A∗ (→ A∗, where A∗ is the monoid of all finite words including the empty word,
satisfying ϕ(vw) = ϕ(v)ϕ(w) for all v, w ∈ A∗. In fact, a substitution is a special case of a
morphism A∗ (→ B∗, where A = B. Obviously, ϕ is uniquely determined, if defined on all
the letters of the alphabet. A substitution ϕ is called primitive, if there exists n ∈ N such
that ϕn(a) contains b for all letters a, b ∈ A.

The action of ϕ can be naturally extended to infinite words. For a pointed bidirectional
infinite word u = (un)n∈Z we in particular have

ϕ(· · ·u−2u−1|u0u1u2 · · · ) = · · ·ϕ(u−2)ϕ(u−1)|ϕ(u0)ϕ(u1)ϕ(u2) · · ·

An infinite word u is said to be a fixed point of ϕ (or invariant under ϕ), if ϕ(u) = u.

3. Exchange of Three Intervals and Cut-and-project Sets

Our aim is to study substitution invariance of words coding an exchange of three intervals (2).
The main tool is the fact that the orbit of an arbitrary point under this transformation can
be geometrically represented by a so-called cut-and-project sequence.

Definition 3.1. Let ε, η ∈ R, ε *= −η, ε, η irrational, and let Ω = [c, c + l), c ∈ R, l > 0.
The set

Σε,η(Ω) := {a + bη | a, b ∈ Z, a− bε ∈ Ω} (4)

is called a cut-and-project set with parameters ε, η and acceptance window Ω.

The above definition is a very special case of a general cut-and-project set, introduced
in [16]. Here, points of the cut-and-project set are obtained by projection of chosen points
of the square lattice Z2 onto the straight line y = εx, along the line y = −ηx. For projection
we chose those points of Z2 which belong to a bounded strip parallel with the line y = εx.
The projection of such points onto the line y = −ηx along y = εx belongs to a bounded
interval, determining the acceptance window. This construction is illustrated in Figure 1.
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In the definition we have used an interval Ω, closed from the left and open from the right.
One can also consider an interval Ω̂ = (ĉ, ĉ + l̂]. However, by doing this, we do not obtain
anything new, since Σε,η(Ω) = −Σε,η(−Ω̂).

For simplicity of notation, we denote the additive group

{a + bε | a, b ∈ Z} = Z + εZ =: Z[ε]

and analogously for Z[η]. The morphism of these groups

x = a + bη (→ x∗ = a− bε (5)

will be called the star map. In this formalism, the cut-and-project set Σε,η(Ω) can be
rewritten as

Σε,η(Ω) = {x ∈ Z[η] | x∗ ∈ Ω} .

The relation between the set Σε,η(Ω) and the exchange of 3 intervals is explained by the
following theorem proved in [11].

Theorem 3.2 ([11]). Let Σε,η(Ω) be defined by (4). Then there exist positive numbers
∆1, ∆2 ∈ Z[η] := Z + ηZ and a strictly increasing sequence (sn)n∈Z such that

1. Σε,η(Ω) = {sn | n ∈ Z} ⊂ Z[η].

2. ∆∗
1 > 0, ∆∗

2 < 0, ∆∗
1 −∆∗

2 ≥ l > max(∆∗
1,−∆∗

2).

3. sn+1 − sn ∈ {∆1, ∆2, ∆1 + ∆2}, for all n ∈ Z, and, moreover,

sn+1 =






sn + ∆1 if s∗n ∈ Ω1 := [c, c + l −∆∗
1) ,

sn + ∆1 + ∆2 if s∗n ∈ Ω2 := [c + l −∆∗
1, c−∆∗

2) ,

sn + ∆2 if s∗n ∈ Ω3 := [c−∆∗
2, c + l) .

4. Numbers ∆1 and ∆2 depend only on parameters ε, η and the length l of the interval Ω.
In particular, they do not depend on the position c of Ω on the real line.

We see that the set {s∗n | n ∈ Z} is an orbit under the 3iet with permutation π = (3, 2, 1)
and parameters l − ∆∗

1, ∆∗
1 − ∆∗

2 − l and l + ∆∗
2 (if l < ∆∗

1 − ∆∗
2), or it is an orbit under

the 2iet with permutation π = (2, 1) and parameters l − ∆∗
1 and l + ∆∗

2 (if l = ∆∗
1 − ∆∗

2).
Thus every cut-and-project sequence can be viewed as a geometric representation of an orbit
of a point under exchange of two or three intervals. The construction of sequences (sn)n∈Z,
(s∗n)n∈Z and the role of numbers ∆1, ∆2 in the interval exchange is illustrated in Figure 1.

The determination of ∆1, ∆2 is in general laborious; the values ∆1, ∆2 depend on the
continued fraction expansions of parameters ε or η, according to the length l of the acceptance
window Ω = [c, c + l).
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Figure 1: Construction of a cut-and-project sequence (sn)n∈Z and the corresponding interval
exchange, see Theorem 3.2. For projection onto the line y = εx we use points of the lattice
Z2 belonging to a bounded strip; they are marked by bullets. The strip is divided into three
disjoint substrips: the presence of a lattice point in a substrip determines the distance of its
projection sn to the neighbour sn+1. The projection of the entire strip onto the line y = −ηx
determines the acceptance window Ω; the substrips correspond to subintervals Ωi.

In case that
ε ∈ (0, 1), η > 0 and 1 ≥ l > max(1− ε, ε) , (6)

one has
∆1 = 1 + η and ∆2 = η , (7)

i.e., the corresponding triple of shifts in the prescription of the exchange of intervals is
∆∗

1 = 1 − ε, ∆∗
1 + ∆∗

2 = 1 − 2ε, ∆∗
2 = −ε. In fact, without loss of generality, we can limit

our consideration to cut-and-project sequences with parameters satisfying (6), since in [11]
it is shown that every cut-and-project sequence is equal to µΣε,η(Ω), where ε, η and length
l of the interval Ω satisfy (6), and µ ∈ R. By that, we have shown how to interpret a
cut-and-project set as an orbit under an exchange of 3 (or 2) intervals with the permutation
(3,2,1) (or (2,1)).

On the other hand, let us show that every exchange of three intervals with permutation
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(3,2,1) can be represented geometrically using a cut-and-project scheme. First realize that
studying the orbit of a point x0 ∈ I under the 3iet T̃ of (2), we can, without loss of generality,
substitute T̃ by the transformation T (x) = 1

µ T̃
(
µ(x− c)

)
+ c for arbitrary µ, c ∈ R, µ *= 0,

and instead of the orbit of x0 under T̃ consider the orbit of the point y0 = c + x0
µ under the

transformation T . In particular, putting µ = α1 + 2α2 + α3 and c = −x0µ−1, we have the
orbit of y0 = 0 under the mapping T : [c, c + l) (→ [c, c + l)

T (x) =






x + 1− ε for x ∈ I1 := [c, c + l − 1 + ε) ,
x + 1− 2ε for x ∈ I2 := [c + l − 1 + ε, c + ε) ,
x− ε for x ∈ I3 := [c + ε, c + l) ,

(8)

where we have denoted by ε and l the new parameters

ε :=
α1 + α2

α1 + 2α2 + α3
and l :=

α1 + α2 + α3

α1 + 2α2 + α3
. (9)

Let us mention that under such parameters, the minimality property of the transformation
T in (8) is equivalent to the requirement ε to be irrational.

For the above defined values of ε, l, c and arbitrary irrational η > 0 put Ω = [c, c+ l) and
consider the cut-and-project set Σε,η(Ω). Since 0 ∈ Ω, we have also 0 ∈ Σε,η(Ω). The strictly
increasing sequence (sn)n∈Z from Theorem 3.2 can be indexed in such a way that s0 = 0.
Since our parameters ε, l, η satisfy (6) (and l < 1), the right neighbor sn+1 of the point sn is
given by the position of s∗n in the interval [c, c + l), namely by the transformation T (x). In
particular, we have s∗n+1 = T (s∗n). Therefore the set

{s∗n | n ∈ Z} =
(
Σε,η[c, c + l)

)∗
= Z[ε] ∩ Ω

is the orbit of the point 0 under the transformation T .

Note that we have decided to consider instead of an orbit of an arbitrary point under a
3iet T̃ with the domain being an interval starting at 0, the orbit of 0 under the 3iet T given
by (8), with parameters ε, l, c satisfying

ε ∈ (0, 1), 1 > l > max(1− ε, ε), 0 ∈ [c, c + l) . (10)

Let us summarize the advantages of this notation in the following proposition.

Proposition 3.3. Let T be a 3iet given by (8) with parameters satisfying (10).

• For the orbit of an arbitrary point z0 ∈ [c, c + l) under T , one can write

{T n(z0) | n ∈ Z} = z0 +
(
Z[ε] ∩ [c− z0, c + l − z0)

)
= (z0 + Z[ε]) ∩ [c, c + l) . (11)

In particular, {T n(0) | n ∈ Z} = Z[ε] ∩ [c, c + l).

• For arbitrary irrational η > 0, denote the mapping −∗ : Z[ε] (→ Z[η] given by

x = a + bε (→ x−∗ = a− bη . (12)

Then the sequence (sn)n∈Z defined by sn =
(
T n(0)

)−∗
is strictly increasing.
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Further advantages of the presented point of view on 3iets by cut-and-project sequences
will be clear from the following section.

Remark 3.4. To conclude the section, let us stress that for the 3iet T the parameter η was
chosen arbitrarily, except the requirement of irrationality and positiveness. Then adjacency
of points x, y, x < y, in the set Σε,η(Ω) indicates that their star map images x∗, y∗ are
consecutive iterations of T , i.e., T (x∗) = y∗. Choosing the parameter η < 0, we obtain again
a cut-and-project set Σε,η(Ω) but with different ∆1, ∆2. Therefore the corresponding 3iet is
different from T . From the definition of a cut-and-project set, it can be easily shown that

Σε,η(Ω) = Σ1−ε,1−η(Ω).

Therefore in case that η < −1, the corresponding cut-and-project set represents a 3iet, in
which we interchange the lengths of the first and last intervals, i.e., the mapping T−1. In
fact, the ‘dangerous’ choice for the irrational parameter η is η ∈ (−1, 0).

4. First Return Map

Let T : I (→ I be a k-interval exchange transformation with minimality property and let J
be an interval J ⊂ I, J closed from the left and open from the right, say [ĉ, ĉ + l̂).

The minimality property of T ensures that for every z ∈ J there exists a positive integer
i ∈ N such that T i(z) ∈ J . The minimal such i is called the return time of z and denoted
by r(z).

To every z ∈ J we associate a ‘return name’, i.e., a finite word w = v0v1 · · · vr(z)−1 in the
alphabet {1, . . . , k}, whose length is equal to the return time of z and for all i, 0 ≤ i < r(z)
we have

vi = X if T i(z) ∈ IX .

To the given subinterval J of I, we define the map TJ : J (→ J by the prescription

TJ(z) = T r(z)(z) ,

which is called the first return map.

Since for a fixed interval J the return time r(z) is bounded, there exist only finitely many
return names. It is obvious, that points z ∈ J with the same return name form an interval,
and J is thus a finite disjoint union of such subintervals, say J1, . . . , Jp. The boundary points
of these intervals can be easily described by the notion of ancestor in J .

The minimality property of T ensures that for every y ∈ I there exists z ∈ J such that
y ∈ {z, T (z), . . . , T r(z)−1(z)}. Such z is uniquely determined and we call it the ancestor of y
in the interval J . We denote z = ancJ(y).
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The boundary points of the intervals J1, . . . , Jp are then exactly the following points:

• ĉ, ĉ + l̂ (i.e., the boundary points of J itself);
• ancJ(ĉ + l̂);
• ancJ(α1 + α2 + · · · + αi) for i = 1, 2, . . . , k − 1;
• and the point z ∈ J such that T r(z)(z) = ĉ.

(13)

This implies that for a k-iet the number of different return names is at most k + 2. It is
obvious, that the first return map TJ is again a m-iet for some m ≤ k + 2. In fact, it is
known that m ≤ k + 1 (see [9], Chap. 5). For a 3iet which we study in this paper, we can
say even more. The following theorem is a consequence of Theorem 3.2 and Proposition 3.3.

Theorem 4.1. Let T : I (→ I be a 3iet with permutation (3,2,1) and satisfying minimality
property, and let J ⊂ I be an interval. Then the first return map TJ is either a 3iet with
permutation (3,2,1) or a 2iet with permutation (2,1).

Proof. Without loss of generality, consider a 3iet T given by (8), i.e. I = [c, c + l), and let
η > 0 be an arbitrary irrational. Then Σε,η[c, c+ l) is a geometric representation of the orbit
of 0 under T , and using Theorem 3.2 there exists a strictly increasing sequence (sn)n∈Z such
that

Σε,η[c, c + l) = {sn | n ∈ Z}.

Moreover, by Proposition 3.3, we have

{T n(0) | n ∈ Z} = Z[ε] ∩ [c, c + l) = {s∗n | n ∈ Z} .

Consider a subinterval J := [c̃, c̃+ l̃) ⊂ I, and a cut-and-project set with parameters ε, η and
acceptance window J , as in Definition 3.1. According to Theorem 3.2, there exists a strictly
increasing sequence (rn)n∈Z such that

Σε,η(J) = {rn | n ∈ Z} ,

and r∗n+1 is the iteration of the point r∗n under a transformation T̃ : J (→ J . This transforma-
tion T̃ is either a 3iet with permutation (3, 2, 1) or a 2iet with permutation (2, 1). Formally,
we have

r∗n+1 = T̃ (r∗n) .

Since J ⊂ I implies {rn | n ∈ Z} = Σε,η(J) ⊂ Σε,η(I) = {sn | n ∈ Z}, there exists a strictly
increasing sequence of indices (kn)n∈Z such that rn = skn, for all n ∈ Z.

As {r∗n | n ∈ Z} = Z[ε] ∩ J , we must have T i(0) ∈ J if and only if i = kn for some
n ∈ Z. We see that the image of x under the first return map TJ(x) coincides with T̃ (x) for
arbitrary x ∈ Z[ε] ∩ J . Since Z[ε] ∩ J is dense in J and a first return map to any interval is
an interval exchange, we must have TJ(x) = T̃ (x) for all x ∈ J .
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5. First Return Map and Substitution Invariance

Let us now see how the notions of first return map, return time and return name are related
to substitution invariance of words coding 3iet. We will focus on non-degenerate 3iet words.
Let us mention that non-degeneracy in terms of parameters ε, l of (9) means that l /∈ Z[ε],
cf. (3).

Consider a 3iet T : [c, c + l) (→ [c, c + l) of (8) with parameters (10) and an interval
J ⊂ [c, c + l) such that 0 ∈ J . Let w1, . . . , wp be all possible return names of points z ∈ J .
Then the infinite word u = (un)n∈Z coding 0 under the transformation T can be written as
a concatenation

u = · · ·wj−2wj−1|wj0wj1wj2 · · · , with ji ∈ {1, . . . , p} . (14)

The starting positions of the blocks wjm correspond to positions n in the infinite word u if
and only if T n(0) ∈ J .

Suppose we have an interval J ⊂ I, 0 ∈ J such that the first return map TJ satisfies

P1. TJ is homothetic with T , i.e.,

TJ(x) = νT (x
ν ) , for x ∈ J and some ν ∈ (0, 1) ,

which means that TJ is an exchange of intervals J1 = νI1, J2 = νI2, and J3 = νI3;

P2. the set of return names defined by J has three elements.

Then the sequence of indices (jm)m∈Z defining the ordering of finite words w1, w2, w3 in the
concatenation (14) equals to the infinite word u. In particular, it means that u is invariant
under the substitution

1 (→ ϕ(1) = w1,
2 (→ ϕ(2) = w2,
3 (→ ϕ(3) = w3.

The following example shows that a 3iet T with the domain I and a subinterval J ⊂ I
with properties P1. and P2. exist.

Example 5.1. Consider ε = 1
2(
√

5− 1) and l = 1
2(1 + ε), and c = −ε. The transformation

T : I (→ I, where I =
[
−ε, 1

2(1− ε)
)
, is thus the exchange of intervals

I1 =
[
−ε,−1

2(1− ε)
)
, I2 =

[
−1

2(1− ε), 0
)
, and I3 =

[
0, 1

2(1− ε)
)
.

Choosing the subinterval J = ε6I, we can easily verify that TJ is homothetic with T and the
set of return names has three elements, namely

for z ∈ J1 = ε6I1 the return name is w1 = 21312131131213121 ;
for z ∈ J2 = ε6I2 the return name is w2 = 213121312121312131131213121;
for z ∈ J3 = ε6I3 the return name is w3 = 31131213121 .
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Therefore the infinite word u coding the orbit of 0 under the transformation T is invariant
under the substitution ϕ(i) (→ wi, i = 1, 2, 3.

We stand therefore in front of the following questions: How to decide, for which 3iets a
subinterval J ⊂ I with properties P1. and P2. exists? What can be said in case that such J
does not exist?

In case that u = (un)n∈Z is a non-degenerate 3iet word coding the orbit of 0 under the
transformation T defined by (8), the second question is solved by the paper [4], as follows.

The existence of a substitution ϕ over the alphabet {1, 2, 3}, under which the word u is
invariant, means that u can be written as a concatenation of blocks ϕ(1), ϕ(2), ϕ(3), i.e.,

u = · · ·u−2u−1|u0u1u2 · · · = · · ·ϕ(u−2)ϕ(u−1) | ϕ(u0)ϕ(u1)ϕ(u2) · · · . (15)

In [4] one considers a non-degenerate 3iet word u invariant under a primitive substitution
ϕ and studies for i = 1, 2, 3 the set Eϕ(i) of points T n(0) such that the block ϕ(i) starts at
position n in the concatenation (15). Formally,

Eϕ(i) = {T n(0) | ∃m ∈ Z, um = i and ϕ(um)ϕ(um+1)ϕ(um+2) · · · = unun+1un+2 · · · } .

As a result, several properties of a matrix of substitution ϕ are described. Recall that for a
substitution ϕ over the alphabet A = {1, 2, . . . , k} one defines the substitution matrix Mϕ

by
(Mϕ)ij = number of letters i in the word ϕ(j) , 1 ≤ i, j ≤ k .

Such matrix has obviously non-negative integer entries and if the substitution ϕ is primi-
tive, the matrix Mϕ is primitive as well, and therefore one can apply the Perron-Frobenius
theorem.

We summarize several statements of [4] in the following theorem.

Theorem 5.2 ([4]). Let u = (un)n∈Z be a non-degenerate 3iet word with parameters ε, l, c
satisfying (10). Let ϕ be a primitive substitution such that ϕ(u) = u. Then

(i) ε is a Sturm number, i.e., ε is a quadratic irrational in (0, 1) such that its algebraic
conjugate ε′ satisfies ε′ /∈ (0, 1);

(ii) the dominant eigenvalue Λ of the matrix Mϕ of the substitution ϕ is a quadratic unit
in Q(ε);

(iii) the column vector (1− ε, 1−2ε,−ε)T is a right eigenvector of Mϕ corresponding to the
eigenvalue Λ′, i.e., to the algebraic conjugate of Λ;

(iv) parameters c, l belong to Q(ε);

(v) Eϕ(i) = Λ′(Ii ∩ Z[ε]
)

for i = 1, 2, 3, Z[ε] := Z + εZ.
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The statement (v) in particular says that the existence of a substitution ϕ under which a
non-degenerate 3iet word u is invariant forces existence of an interval J ⊂ I with properties
P1. and P2. We have already explained that existence of an interval J with properties P1.
and P2. forces substitution invariance. We have thus the following statement.

Proposition 5.3. Let u = (un)n∈Z be a non-degenerate 3iet word with parameters ε, l, c
satisfying (10). Then there exists a primitive substitution ϕ under which u is invariant, if
and only if there exists an interval J ⊂ I with properties P1. and P2.

Let us first derive two simple observations which complement results of [4].

Lemma 5.4. For Λ, Λ′ and ε from Theorem 5.2 we have

ΛZ[ε] = Λ′Z[ε] = Z[ε] .

Proof. Statement (iii) of Theorem 5.2 implies

Mϕ




1− ε
1− 2ε
−ε



 = Λ′




1− ε
1− 2ε
−ε



 .

Since Mϕ is an integer matrix, we obtain from the third row of the above equality that
Λ′ε ∈ Z[ε]. Subtracting third row from the first one we get Λ′ ∈ Z[ε]. As Z[ε] is closed under
addition, we have Λ′Z[ε] ⊆ Z[ε].

Since Λ is a quadratic integer, we have Λ + Λ′ ∈ Z. This implies that Λ ∈ Z−Λ′ ⊂ Z[ε],
whence Λε ∈ εZ− Λ′ε ⊂ Z[ε], and thus ΛZ[ε] ⊆ Z[ε].

Now since Λ is a unit, we have ΛΛ′ = ±1, and therefore multiplying ΛZ[ε] ⊆ Z[ε] by Λ′

we obtain Z[ε] ⊆ Λ′Z[ε].

It is obvious that in our considerations, ε must be a quadratic irrational. When putting a
3iet with such a parameter into context of cut-and-project sets, we need to specify the slope
of the second projection, i.e., the parameter η. Choosing η = −ε′, where ε′ is the algebraic
conjugate of ε, the star map x = a + bη (→ x∗ = a− bε becomes the Galois automorphism in
Q(ε). The Galois automorphism is a mapping of order 2, therefore ∗ and −∗ given by (5)
and (12) coincide. Instead of x∗ we will use the notation x′ = a + bε′ if x = a + bε, a, b ∈ Q,
as usual. Recall that for x, y ∈ Q(ε) we have

(x + y)′ = x′ + y′ and (xy)′ = x′y′ .

With such notation, Σε,−ε′(Ω) can be rewritten in the form

Σε,−ε′(Ω) = {x ∈ Z[ε′] | x′ ∈ Ω} . (16)
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Lemma 5.5. Let ε be a quadratic irrational and let Λ be a quadratic unit in Q(ε) such that

ΛZ[ε] = Z[ε] := Z + εZ . (17)

• Then for any acceptance window Ω we have

ΛΣε,−ε′(Ω) = Σε,−ε′(Λ
′Ω) .

• If moreover ε′ < 0, Λ > 1, Λ′ ∈ (0, 1) and T : [c, c + l) (→ [c, c + l) is a 3iet with
parameters satisfying (10), then the first return map TJ for the interval J = Λ′[c, c+ l)
is a 3iet homothetic with T .

Proof. Since ΛΛ′ = ±1, multiplying of (17) by Λ′ leads to Λ′Z[ε] = Z[ε] = Z[−ε]. By
algebraic conjugation we obtain ΛZ[ε′] = Z[ε′] = Z[−ε′]. Note that in general Z[ε] *= Z[ε′].
From (16) we obtain

ΛΣε,−ε′(Ω) = Λ{x ∈ Z[ε′] | x′ ∈ Ω} = {Λx ∈ Z[ε′] | Λ′x′ ∈ Λ′Ω} =

= {y ∈ Z[ε′] | y′ ∈ Λ′Ω} = Σε,−ε′(Λ
′Ω).

This however means that the distances between adjacent elements of the cut-and-project
set Σε,−ε′(Λ′Ω) are Λ multiples of the distances between adjacent elements of the cut-and-
project set Σε,−ε′(Ω). Since the star map images (in our case the images under the Galois
automorphism) of the distances between neighbors in a cut-and-project set correspond to
translations in the corresponding 3iet (see Theorem 3.2), the factor of homothety between
the two 3iets is Λ.

If the parameter η = −ε′ > 0, the 3iet mappings corresponding to Σε,−ε′(Ω) and
Σε,−ε′(Λ′Ω) are precisely T and TJ respectively, see Remark 3.4.

Using Lemma 5.4 and statement (v) of Theorem 5.2,we obtain

Eϕ(i) = (Λ′Ii) ∩ Z[ε] = (Λ′Ii) ∩ {T n(0) | n ∈ Z} . (18)

We are now in position to prove the main theorem of this section, which provides a
necessary and sufficient condition for substitution invariance of a non-degenerate 3iet word.

Proposition 5.6. Let u be a non-degenerate 3iet word with parameters ε, l, c, such that ε
is a Sturm number having ε′ < 0 and l, c ∈ Q(ε), l /∈ Z[ε] := Z + εZ. Then u is invariant
under a primitive substitution if and only if there exists a quadratic unit Λ ∈ Q(ε), Λ > 1,
with conjugate Λ′ ∈ (0, 1), such that

C1. ΛZ[ε] = Z[ε], and
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C2. for the interval J = Λ′[c, c + l), one has

ancJ(c + ε), ancJ(c + l − (1− ε)) ∈
{
Λ′c,Λ′(c + ε), Λ′(c + l − (1− ε))

}
.

Proof. Let u be invariant under a primitive substitution ϕ. We search for Λ with properties
C1. and C2. of the proposition. According to Theorem 5.2, the dominant eigenvalue of the
matrix Mϕ is a quadratic unit in Q(ε), i.e., its conjugate belongs to the interval (−1, 1). If
the conjugate is positive, we use for Λ the dominant eigenvalue of Mϕ. Otherwise, since u
is invariant also under the substitution ϕ2, we take for Λ the dominant eigenvalue of the
matrix Mϕ2 = M2

ϕ.

The validity of property C1. follows from Lemma 5.4. Equation (18) states that the
interval J = Λ′I defines only three return names and that the subintervals corresponding to
these return names are Λ′I1, Λ′I2 and Λ′I3. Since I = [c, c + l), these are Λ′I1 =

[
Λ′c,Λ′(c +

l − 1 + ε)
)
, Λ′I2 =

[
Λ′(c + l − 1 + ε), Λ′(c + ε)

)
, and Λ′I1 =

[
Λ′(c + ε), Λ′(c + l)

)
. The

list (13) defines the boundary points of subintervals determining the return names. Property
C2. follows.

For the opposite implication, realize that by Lemma 5.5 property C1. ensures that TJ is a
3iet with subintervals Λ′[c, c+l−1+ε) Λ′[c+l−1+ε, c+ε), and Λ′[c+ε, c+l). This, together
with property C2., forces that points of the list (13) belong to the set {Λ′c,Λ′(c + ε), Λ′(c +
l − 1 + ε)}, and thus the interval J = Λ′I defines three return names. Hence according to
Proposition 5.3, the infinite word u is invariant under a primitive substitution.

Remark 5.7. The proof of the above proposition directly implies that in case that u is
invariant under a substitution ϕ, the scaling factor Λ from Proposition 5.6 can be taken to
be the dominant eigenvalue of the substitution matrix Mϕ or Mϕ2 = M2

ϕ.

6. Characterization of Substitution Invariant 3iet Words

We now have to solve the question, when for a given Sturm number ε and parameters
c, l ∈ Q(ε) satisfying (10) there exists Λ with properties C1. and C2. of Proposition 5.6.
Finding Λ having the first of the properties is simple. For the comfort of the reader, we
provide the following lemma with a short proof. More detailed demonstration can be found
as Lemma 7.1 in [5].

Lemma 6.1. Let ε be irrational, solution of the equation Ax2 + Bx + C = 0. Then there
exists a quadratic unit Λ ∈ Q(ε) such that

Λ > 1, Λ′ ∈ (0, 1), and ΛZ[ε] = Λ′Z[ε] = Z[ε] , (19)

where Z[ε] := Z + εZ.
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Proof. Let the pair of integers X,Y be a non-trivial solution of the Pell equation

X2 − (B2 − 4AC)Y 2 = 1 .

Put γ := X + BY + 2AY ε. Using Aε2 = −Bε − C, we easily verify that γε ∈ Z[ε]. Using
A(ε + ε′) = −B and Aεε′ = C, we derive that γγ′ = 1. This implies

γZ[ε] = γ′Z[ε] = Z[ε].

Finally, we put Λ = max{|γ|, |γ′|}.

In Lemma 6.1 we have found Λ with property C1. It is more difficult to decide when Λ
satisfies also property C2. of Proposition 5.6. By definition of the map T , it follows that x
and T (x) differ by an element of Z[ε]. Therefore for arbitrary z0 and its ancestor ancJ(z0)
we have z0− ancJ(z0) ∈ Z[ε]. It is useful to introduce an equivalence on Q(ε) as follows. We
say that elements x, y ∈ Q(ε) are equivalent if their difference belongs to Z[ε]. Formally,

x− y ∈ Z[ε] ⇐⇒ x ∼ y .

For the parameters c, l ∈ Q(ε), one can find q ∈ N such that c, l ∈ 1
qZ[ε]. Clearly,

ancJ(c + ε) and ancJ(c + l − 1 + ε) also belong to the set 1
qZ[ε]. The set to which belong

ancestors of c + ε and c + l − 1 + ε can be restricted even more. For, the equivalence ∼
divides the set 1

qZ[ε] into q2 classes of equivalence of the form

Tij :=
i + jε

q
+ Z[ε] , where 0 ≤ i, j ≤ q − 1 .

Relation Λ′Z[ε] = Z[ε] implies

z ∈ Z[ε] ⇐⇒ Λ′z ∈ Z[ε] .

Therefore the mapping ψ(Tij) = Λ′Tij is a bijection on the set of q2 classes of equivalence.
For every bijection ψ on a finite set, there exists an iteration s ∈ N, s ≥ 1, such that ψs = id.
Denoting L := Λs, the number L has obviously similar properties as Λ, namely

a) L is a quadratic unit in Q(ε);

b) L > 1, L′ ∈ (0, 1);

c) LZ[ε] = Z[ε];

and moreover

d) L′( i+jε
q + Z[ε]

)
= i+jε

q + Z[ε], for all i, j, with 0 ≤ i, j ≤ q − 1.
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Having a quadratic unit Λ with properties of the number L in items a) – d), it is less
difficult to decide about validity of the condition

ancJ(c + ε), ancJ(c + l − 1 + ε) ∈
{
Λ′c,Λ′(c + ε), Λ′(c + l − 1 + ε)

}
. (20)

Non-degeneracy of the infinite word u implies that l /∈ Z[ε], and therefore c+ε *∼ c+l−1+ε.
Since for every z0 ∈ 1

qZ[ε] we have now

z0 ∼ ancJ(z0) ∼ Λ′z0 ,

the condition (20) in fact means

ancJ(c + l − 1 + ε) = Λ′(c + l − 1 + ε) (21)

and
ancJ(c + ε) ∈

{
Λ′c,Λ′(c + ε)

}
. (22)

Lemma 6.2. Let ε be a Sturm number with ε′ < 0. Let l, c ∈ 1
qZ[ε]. Let Λ satisfy properties

of L in a) – d) and let J = Λ′[c, c + l). Then for arbitrary z0 ∈ 1
qZ[ε] ∩ [c, c + l), one has

ancJ(z0) = Λ′z0 ⇐⇒ z′0 ≤ 0 ≤ (T (z0))
′ .

Proof. The transformation T preserves the classes of equivalence and thus for the orbit of a
point z0 it holds that

{T n(z0) | n ∈ Z} ⊂ z0 + Z[ε] .

As (T n+1(z0) − T n(z0))′ ∈ {1 − ε′, 1 − 2ε′,−ε′}, the assumption ε′ < 0 implies that the
sequence (sn)n∈Z,

sn := (T n(z0))
′

is strictly increasing. By (11) we have moreover

{T n(z0) | n ∈ Z} = {s′n | n ∈ Z} = (z0 + Z[ε]) ∩ [c, c + l) .

Since 0 ∈ [c, c + l) and Λ′ ∈ (0, 1), we have Λ′[c, c + l) ⊂ [c, c + l). This inclusion together
with property d) implies

{s′n | n ∈ Z} ⊃ Λ′
(
(z0 + Z[ε]) ∩ [c, c + l)

)
= {Λ′s′n | n ∈ Z} .

The strictly increasing sequence (Λsn)n∈Z is therefore a subsequence of the strictly increasing
sequence (sn)n∈Z. Thus there exists a unique index m such that

Λsm ≤ s0 < s1 ≤ Λsm+1 . (23)

For determination of the ancestor of the point z0 = s′0 by definition, we search for the
maximal non-positive exponent k ∈ Z such that T k(z0) ∈ Λ′[c, c+ l), i.e., such that T k(z0) is
an element of the sequence (Λ′s′n)n∈Z. Since both (sn)n∈Z and (Λsn)n∈Z are strictly increasing,
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we have (T k(z0))′ = Λsm and thus ancJ(s′0) = Λ′s′m. Denoting s′m = y0, equation (23) can
be rewritten

Λy′0 ≤ z′0 < (T (z0))
′ ≤ Λ(T (y0))

′ . (24)

On the other hand, recall that {s′n | n ∈ Z} = (z0 + Z[ε]) ∩ [c, c + l) and the index m for
which (23) holds, is determined uniquely. Therefore we can claim that ancJ(z0) = Λ′y0 if
and only if y0 verifies inequalities (24). Thus ancJ(z0) = Λ′z0 if and only if

Λz′0 ≤ z′0 < (T (z0))
′ ≤ Λ(T (z0))

′ . (25)

Note that strict inequality in the middle is trivial and it is satisfied by arbitrary z0. Since
Λ > 1 we have Λz′0 ≤ z′0 ⇔ z′0 ≤ 0 and (T (z0))′ ≤ Λ(T (z0))′ ⇔ 0 ≤ (T (z0))′, which completes
the proof.

Theorem 6.3. Let u be a non-degenerate 3iet word coding the orbit of the point x0 under a
3iet with permutation (3,2,1) and parameters α1,α2,α3. Put

ε :=
α1 + α2

α1 + 2α2 + α3
, l :=

α1 + α2 + α3

α1 + 2α2 + α3
, and c :=

−x0

α1 + 2α2 + α3
.

Then u is invariant under a primitive substitution if and only if

1. ε is a Sturm number;

2. c, l ∈ Q(ε);

3. min(ε′, 1− ε′) ≤ −c′ ≤ max(ε′, 1− ε′) and min(ε′, 1− ε′) ≤ c′ + l′ ≤ max(ε′, 1− ε′).

Proof. Theorem 5.2 claims that items 1. and 2. are necessary conditions for existence of a
primitive substitution under which u be invariant. Therefore we shall prove the following
statement:

If ε is a Sturm number and c, l ∈ Q(ε), then u is invariant under a primitive substitution
if and only if condition 3. holds.

Note that the infinite word

· · ·u−3u−2u−1|u0u1u2 · · ·

is substitution invariant if and only if

· · ·u2u1u0|u−1u−2u−3 · · ·

is substitution invariant. At the same time, · · ·u2u1u0|u−1u−2u−3 · · · is a 3iet word coding
the transformation T−1, i.e. the 3iet with parameters 1− ε, l, c. The fact that ε is a Sturm
number means either ε′ < 0 or ε′ > 1. Instead of parameters ε, l, c we can thus have 1−ε, l, c,
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and therefore limit our study (without loss of generality) to Sturm number ε satisfying ε′ < 0.
In that case, inequalities in item 3. of the theorem are of the form

ε′ ≤ c′ + l′ ≤ 1− ε′ and ε′ ≤ −c′ ≤ 1− ε′ . (26)

Denote q ∈ N, such that c, l ∈ 1
qZ[ε]. With the use of Lemma 6.1 we find Λ with

properties of L given in a) – d). Put J = Λ′[c, c + l). According to Proposition 5.6, for such
Λ, substitution invariance of the infinite word u is equivalent to validity of relations (21)
and (22). We show that these relations are equivalent to inequalities (26).

The first of inequalities (26) can be rewritten as

c′ + l′ − 1 + ε′ ≤ 0 ≤ c′ + l′ − ε′ =
(
T (c + l − 1 + ε)

)′
.

which is, applying Lemma 6.2, equivalent to

ancJ(c + l − 1 + ε) = Λ′(c + l − 1 + ε) ,

which is (21).

The second of inequalities (26), namely ε′ ≤ −c′ ≤ 1− ε′, can be rewritten as

ε′ ≤ −c′ ≤ 0 or 0 < −c′ ≤ 1− ε′ ,

equivalently,

c′ + ε′ ≤ 0 ≤ c′ =
(
T (c + ε)

)′
or c′ < 0 ≤ c′ + 1− ε′ =

(
T (c)

)′
.

Again, by Lemma 6.2,

ancJ(c + ε) = Λ′(c + ε) or c *= 0 and ancJ(c) = Λ′(c) .

For c = 0, it is obvious that condition (22) is automatically satisfied. For c *= 0, it suffices
to realize that ancJ(c) = ancJ(c + ε), since T (c + ε) = c.

Example 6.4. In Example 5.1, we have seen a non-degenerate 3iet word invariant under
a primitive substitution. Its parameters are ε = 1

2(
√

5 − 1), l = 1
2(1 + ε), and c = −ε. In

this case min(ε′, 1− ε′) = ε′, and max(ε′, 1− ε′) = 1− ε′. It is straightforward to verify that
−c′ = ε′ and c′ + l′ = 1

2(1− ε′) satisfy the inequalities of Theorem 6.3.

It is clear that the factor Λ of homothety influences the length of words used in the
substitution. Whenever an infinite word u is invariant under a substitution ϕ, it is invariant
also under all its powers, for which the substituted words are obviously longer. It can
be shown that in Example 5.1 we have given the shortest substitution possible for given
parameters. The following remark may be helpful when searching for such substitutions.

Remark 6.5. Note that in the proof of the main theorem we have applied Lemma 6.2 only
to points z0 = c+ l−1+ε and z0 = c+ε. Realize that in fact, we do not need that Λ satisfies
property d) of L, i.e. that all classes of the equivalence ∼ are preserved when multiplied by
Λ. It is sufficient that two of the classes are preserved, namely

Λ′(c + Z[ε]
)

= c + Z[ε] and Λ′(c + l + Z[ε]
)

= c + l + Z[ε] .

This can be important when we search for minimal Λ > 1 with desired properties.
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7. Characterization of Substitution Invariant 3iet Words Using Sturmian Words

Comparing Theorems 6.3 and 1.2 we immediately see a striking narrow connection between
3iet words and Sturmian words, namely that the 3iet word u = (un)n∈Z is invariant under a
primitive substitution if and only if the Sturmian word with slope ε and intercept −c and
the Sturmian word with slope ε and intercept l + c are both invariant under a primitive
substitution.

In fact, as shown in [3], these two Sturmian words appear naturally as images of the
given 3iet word by the following morphisms.

Let us denote by σ01 : {1, 2, 3}∗ → {0, 1}∗ the morphism given by

1 (→ 0 , 2 (→ 01 , 3 (→ 1 , (27)

and by σ10 : {1, 2, 3}∗ → {0, 1}∗ the morphism given by

1 (→ 0 , 2 (→ 10 , 3 (→ 1 . (28)

One verifies in [3] that if u = (un)n∈Z is a non-degenerate 3iet word with parameters ε, l, c
satisfying (10), then the infinite word

σ01(u) = · · ·σ01(u−2)σ01(u−1) | σ01(u0)σ01(u1)σ01(u2) · · ·

is the Sturmian word with slope ε and intercept −c and the infinite word σ10(u) is the
Sturmian word with slope 1− ε and intercept l + c.

With the definition of morphisms σ01 and σ10, we can give a characterization of substi-
tution invariant non-degenerate 3iet words without use of any parameters.

Corollary 7.1. Let u = (un)n∈Z be a non-degenerate 3iet word coding an orbit under a 3iet
with permutation (3,2,1). Then u is invariant under a primitive substitution if and only if
both Sturmian words σ10(u) and σ01(u) are invariant under a primitive substitution.

Let us mention that morphisms σ01 and σ10 can be used for characterizing 3iet words
using Sturmian words, as proven in [4].

Theorem 7.2 ([4]). Let u be a sequence on the alphabet {1, 2, 3} whose letters have positive
densities. The sequence u is an aperiodic 3iet word if and only if σ01(u) and σ10(u) are
Sturmian words.

Since the whole paper [4] is devoted to the study of one-directional infinite words, the
above theorem applies to words u = (un)n∈N. However, a slight modification of the proof
can be made so that the statement holds also for bidirectional words.
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