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Abstract

For each natural number n, let Cn represent the set of all 2-colorings of the set {1, 2, . . . , n}.
Given a natural number n and a coloring ∆ ∈ Cn, let S(∆) represent the set

S(∆) = {x3 | ∃ x1, x2 s.t. x1 + x2 = x3 and ∆(x1) = ∆(x2) = ∆(x3)}.

Given a natural number n, let
f(n) = min

∆∈Cn

S(∆).

For all natural numbers n and r where n
2 ≤ r ≤ n, let Cn,r represent the set of all 2-colorings

of the set {1, 2, . . . , n} where max{|∆−1(0)|, |∆−1(1)|} = r. Given natural numbers n and r
where n

2 ≤ r ≤ n, let
f(n, r) = min

∆∈Cn,r

S(∆).

In this paper it is determined that for all natural numbers n,

f(n) =

{
0 1 ≤ n ≤ 4⌊

n−3
2

⌋
n ≥ 5

and for all natural numbers n and r where n ≥ 5 and n
2 ≤ r ≤ n,

f(n, r) =

{
r − 2 r < n
r − 1 r = n.

1. Introduction

Let N represent the set of natural numbers and let [a, b] denote the set {n ∈ N| a ≤ n ≤ b}.
A function ∆ : [1, n] → [0, t−1] is referred to as a t-coloring of the set [1, n] or as a t-coloring
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of length n. For every natural number n, let Cn represent the set of all 2-colorings of length
n. For a given natural number n′ where n′ < n, a coloring ∆ restricted to the set [1, n′] will
be denoted by ∆|n′ . Given a t-coloring ∆ and a linear equation L in m variables, a solution
(x1, x2, . . . , xm) to L is monochromatic if and only if ∆(x1) = ∆(x2) = · · · = ∆(xm).

In 1916, I. Schur [21] proved that for every t ≥ 2, there exists a least integer n = Schur(t)
such that for every t-coloring of length n, there exists a monochromatic solution to

x1 + x2 = x3. (1)

Note that the integers x1 and x2 need not be distinct. The integers Schur(t) are called
Schur numbers. It is known that Schur(2) = 5, Schur(3) = 14 and Schur(4) = 45, but no
other Schur numbers are known [22]. A monochromatic solution to equation (1) is called a
monochromatic Schur triple. In 1933, R. Rado found necessary and sufficient conditions to
determine if an arbitrary system of linear equations admits a monochromatic solution for
every coloring of the natural numbers with a finite number of colors [5, 15, 16, 17].

Recently, several other problems related to Schur numbers have been considered [1, 2,
3, 4, 7, 8, 9, 10, 11, 12, 13, 14]. In 1996, R. Graham, V. Rödl and A. Rucinski proposed
the following problem [6]. Find (asymptotically) the least number of monochromatic Schur
triples that must occur in an arbitrary 2-coloring of length n. A problem of this nature where
the number of monochromatic solutions is to be determined is referred to as a multiplicity
problem. This problem was solved independently by A. Robertson and D. Zeilberger [19]
and by T. Schoen [20] and was found to be 1

22n
2 + O(n).

In this paper we modify the problem of Graham, Rödl and Rucinski by asking the follow-
ing question. In an arbitrary 2-coloring of length n, how many integers must there be that
are the third integer (i.e. x3) in at least one monochromatic Schur triple? For convenience in
this paper, we shall refer to the third integer in any monochromatic Schur triple as special,
formally defined below.

Definition 1. For every 2-coloring ∆ : [1, n] → [0, 1], an integer s ∈ [1, n] is special if and
only if there exist integers x1, x2 ∈ [1, n], such that x1 + x2 = s and ∆(x1) = ∆(x2) = ∆(s).
The set of all special integers for a 2-coloring ∆ is denoted by S(∆).

Definition 2. For every natural number n, let

f(n) = min
∆∈Cn

S(∆).

In this paper it is determined that

f(n) =

{
0 1 ≤ n ≤ 4⌊

n−3
2

⌋
n ≥ 5.

More importantly, and perhaps more surprisingly, it is found that the number of special
integers in a 2-coloring ∆ is more directly related to the number of monochromatic integers
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in ∆, rather than the length of ∆. For instance, the number of special integers that must
occur in an arbitrary 2-coloring of length seventy with fourty integers colored 0 is the same
as the number that must occur in an arbitrary 2-coloring of length sixty with fourty integers
colored 0 or an arbitrary 2-coloring of length fifty with fourty integers colored 0. We say that
a coloring ∆ has r monochromatic integers if max {|∆−1(0)| , |∆−1(1)|} = r. For all natural
numbers n and r where n

2 ≤ r ≤ n, let Cn,r represent the set of all 2-colorings of length n
with r monochromatic integers.

Definition 3. For all integers n and r where n ≥ 5 and n
2 ≤ r ≤ n, let

f(n, r) = min
∆∈Cn,r

S(∆).

In this paper it is determined that

f(n, r) =

{
r − 2 r < n
r − 1 r = n.

The above formula for f(n) follows immediately from this result.

2. Main Results

Theorem 1. If n and r are natural numbers such that n ≥ 5 and n
2 ≤ r ≤ n, then

f(n, r) =

{
r − 2 if r < n
r − 1 if r = n.

Proof. First we shall prove the case where r = n. Let a natural number n ≥ 5 be given,
let r = n and let ∆ : [1, n] → [0, 1] be a coloring with r monochromatic integers. Clearly
S(∆) = [2, n], so f(n, r) = r − 1.

We shall now consider the case where r < n. First we shall show that f(n, r) ≤ r − 2.
Let integers n and r be given such that n ≥ 5 and n

2 ≤ r < n. We shall exhibit a coloring
∆ : [1, n] → [0, 1] where |∆−1(0)| = r and |S(∆)| = r − 2. If r = n− 1 let ∆ be defined by

∆(x) =

{
1 x = 1
0 2 ≤ x ≤ n.

It is clear that S(∆) = [4, n] and that |S(∆)| = n− 3 = r− 2. If r ≤ n− 2, let ∆ be defined
by

∆(x) =






1 1 ≤ x ≤ n− r − 1
0 n− r ≤ x ≤ n− 1
1 x = n.

If r = n−2, then ∆(S) = [4, n−1]; if r = n
2 , then ∆(S) = [2, n−r−1]; and if n

2 < r < n−2,
then ∆(S) = [2, n − r − 1] ∪ [2n − 2r, n − 1]. Since in each case |S(∆)| = r − 2, it follows
that f(n, r) ≤ r − 2.
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Next we shall show that f(n, r) ≥ r − 2 for all integers n and r where n ≥ 5 and
n
2 ≤ r < n. We will use induction on the integer n. When n = 5 we must consider the two
cases of r = 3 and r = 4. Since the 2-color Schur number is 5, every 2-coloring of the set
[1, 5] with 3 monochromatic integers has at least 1 special integer, so f(5, 3) ≥ 1. It is easy
to check that every 2-coloring of the set [1, 5] with 4 monochromatic integers has as least 2
special integers, so f(5, 4) ≥ 2. In both cases f(5, r) ≥ r − 2, so the basis step is complete.
Now, let an integer n0 ≥ 6 be given. We may assume that

f(n, r) ≥ r − 2 for every n ∈ [5, n0 − 1] and for every r such that
n

2
≤ r < n. (2)

We must show that f(n0, r) ≥ r − 2 for all integers r such that n0
2 ≤ r < n0. Let an

integer r such that n0
2 ≤ r < n0 be given and let a coloring ∆ : [1, n0] → [0, 1] with r

monochromatic integers be given. We must show that |S(∆)| ≥ r − 2.

Without loss of generality, we may assume that ∆ has r integers colored 0. If ∆(n0) = 1,
then the coloring ∆|n0−1 has r integers colored 0. If r ≤ n0 − 2, then by (2) it follows that
∆|n0−1 has at least r − 2 special integers, so ∆ does as well. If r = n0 − 1 it has been
previously shown that ∆|n0−1 has r − 1 special integers. In each case |S(∆)| ≥ r − 2, so we
may assume that ∆(n0) = 0.

We shall consider three cases.

Case 1: Assume that r > n0+1
2 .

Since ∆ has r integers colored 0 and ∆(n0) = 0, it follows that ∆|n0−1 has r− 1 integers
colored 0. Hence, from (2) we have that

|S(∆|n0−1)| ≥ r − 3,

so it suffices to show that n0 is special. We shall consider the two subcases where n0 is even
and where n0 is odd.

(i) Assume that n0 is even. It follows that r > n0
2 .

If ∆
(

n0
2

)
= 0, then since ∆(n0) = 0 and n0

2 + n0
2 = n0, it follows that n0 is special. In

this case we are done, so we may assume that ∆
(

n0
2

)
= 1.

Let A =
[
1, n0

2 − 1
]
∪

[
n0
2 + 1, n0 − 1

]
. Since there are r − 1 integers colored 0 in the set

A and r > n0
2 , there are at least n0

2 integers in the set A colored 0. For every i ∈
[
1, n0

2 − 1
]

let Ai = {i, n0 − i}. Hence the set
{
A1, A2, . . . , An0

2 −1

}
is a partition of the set A into

n0
2 − 1 subsets and there exists an i ∈

[
1, n0

2 − 1
]

such that ∆(i) = ∆(n0 − i) = 0. Then
(i, n0 − 1, n0) is a monochromatic Schur triple, so n0 is special.

(ii) Assume that n0 is odd.

This subcase is very similar to the n0 even subcase. Let A = [1, n0 − 1] and for every
i ∈ [1, n0−1

2 ], let Ai = {i, n0−i}. Since the set A has r−1 integers colored 0 and r−1 ≥ n0+1
2 ,
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there exists an i ∈ [1, n0−1
2 ] such that (i, n0− i, n0) is a monochromatic Schur triple, so n0 is

special.

Since in both subcases n0 is special and it was previously shown that |S(∆|n0−1)| ≥ r−3,
we have that |S(∆)| ≥ r − 2.

Case 2: Assume that n0 is even and r = n0
2 .

It follows that ∆|n0−1 has r − 1 integers colored 0 and r integers colored 1. From (2) it
follows that ∆|n0−1 has at least r− 2 special integers, so ∆ does as well and |S(∆)| ≥ r− 2.

Case 3: Assume that n0 is odd and r = n0+1
2 .

Since n0 − 2 is odd, it follows that ∆|n0−2 has n0−1
2 = r − 1 monochromatic integers.

From (2) it follows that ∆|n0−2 has at least r − 3 special integers, so it will be sufficient to
show that S(∆) ∩ {n0 − 1, n0} )= ∅.

Recall that ∆ has r = n0+1
2 integers colored 0 and ∆ (n0) = 0. Hence, exactly n0−1

2

integers in the set [1, n0 − 1] are colored 0. Let A = [1, n0 − 1] and for every i ∈
[
1, n0−1

2

]

let Ai = {i, n0 − i}. Hence the set
{
A1, A2, . . . , An0−1

2

}
is a partition of the set A into n0−1

2

subsets. If, for any i ∈
[
1, n0−1

2

]
, the set Ai is monochromatic in 0, then (i, n0 − i, n0) is a

monochromatic Schur triple and n0 is special. In this case we are done, so we may assume
that, for every i ∈

[
1, n0−1

2

]
, Ai contains one integer colored 0 and one integer colored 1.

Now we will prove the following claim.

Claim. Let ∆(n0 − 1) = a and let b = 1− a. If S(∆)∩ {n0 − 1, n0} = ∅, then ∆(x) = b for
every x ∈

[
1, n0−1

2

]
.

Proof. Assume that the hypothesis of the claim is satisfied and note that {a, b} = {0, 1}.
We shall show that ∆

(
n0+1

2 − i
)

= b for every i ∈
[
1, n0−1

2

]
by using induction on i. First

we shall show that

∆

(
n0 + 1

2
− 1

)
= b.

If ∆
(

n0+1
2 − 1

)
= a, then

(
n0+1

2 − 1, n0+1
2 − 1, n0 − 1

)
is a monochromatic Schur triple

and n0− 1 ∈ S(∆), which is a contradiction. Hence, we may assume that ∆
(

n0+1
2 − 1

)
= b.

Now, let i0 ∈
[
2, n0−1

2

]
be given and assume that ∆

(
n0+1

2 − (i0 − 1)
)

= b. We will show
that

∆

(
n0 + 1

2
− i0

)
= b.

Now, An0+3
2 −i0

=
{

n0+1
2 − (i0 − 1), n0−3

2 + i0
}
. Since An0+3

2 −i0
contains an integer colored

a, it follows that

∆

(
n0 − 3

2
+ i0

)
= a.
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If ∆
(

n0+1
2 − i0

)
= a, then

(
n0−3

2 + i0,
n0+1

2 − i0, n0 − 1
)

is a monochromatic Schur triple
and n0−1 ∈ S3(∆), which is a contradiction. Hence, we may assume that ∆

(
n0+1

2 − i0
)

= b
and the proof of the claim is complete.

Now, as noted above, if S(∆) ∩ {n0 − 1, n0} )= ∅, then |S(∆)| ≥ r − 2. If S(∆) ∩
{n0 − 1, n0} = ∅, then from the claim we have that ∆(x) = b for every x ∈

[
1, n0−1

2

]
. This

implies that
[
2, n0−1

2

]
⊆ S(∆) and that |S(∆)| ≥ n0−3

2 = r − 2. In either case we have that
|S(∆)| ≥ r − 2, so we are done with Case 3.

Since in all three cases we showed that |S(∆)| ≥ r − 2, the proof of Theorem 1 is
complete.

We are now ready to state and prove Theorem 2. The theorem follows directly from
previous results.

Theorem 2. For every natural number n,

f(n) =

{
0 1 ≤ n ≤ 4⌊

n−3
2

⌋
n ≥ 5.

Proof. The case where 1 ≤ n ≤ 4 follows directly from the fact that the 2-color Schur number
is 5. If n ≥ 5, then every coloring of the set [1, n] contains at least

⌊
n+1

2

⌋
monochromatic

integers. From Theorem 1 it follows that every coloring of the set [1, n] contains at least⌊
n+1

2

⌋
− 2 =

⌊
n−3

2

⌋
special integers.
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