ON THE t-CORE OF AN s-CORE PARTITION

Rishi Nath

York College (CUNY), Jamaica, NY 11451 rnath@york.cuny.edu

Received: 4/17/08, Revised: 6/4/08, Accepted: 6/22/08, Published: 7/16/08

Abstract

Given two relatively prime positive integers s and t, J. Olsson proved that the t-core of an s-core partition ρ is again an s-core. In this note we extend this result to the case where s and t are arbitrary distinct positive integers.

1. Main Result

Let \mathbb{N} be the set of nonnegative integers and let $n \in \mathbb{N}$. Consider sequences $(\alpha_1, \dots, \alpha_t)$ of integers from \mathbb{N} with $\alpha_1 \leq \alpha_2 \leq \dots \leq \alpha_t$ and $\sum_{i=1}^t \alpha_i = n$. Two such sequences $(\alpha_1, \dots, \alpha_t)$ and $(\alpha'_1, \dots, \alpha'_{t'})$ are said to be equivalent if their nonzero terms are the same. A partition λ of n will then be defined as an equivalence class of such sequences.

A sequence $(\alpha_1, \dots, \alpha_t)$ representing λ determines a corresponding β -set, namely $\beta(\lambda) = \{x_1, \dots, x_t\}$, where $x_i = \alpha_i + (i-1)$. The equivalence relation on sequences induces an equivalence relation on β -sets. Two β -sets $\beta(\lambda) = \{x_1, \dots, x_t\}$ and $\beta(\lambda)' = \{x'_1, \dots, x'_{t'}\}$ are equivalent if $t' - t = d \ge 0$ and $\{x'_1, \dots, x'_{t'}\} = \{0, 1, 2, \dots, d-1\} \cup \{x_1 + d, \dots, x_t + d\}$.

We may write this as $\beta(\lambda)' = \{0, \dots, d-1\} \cup \{\beta(\lambda) + d\}$. Then $f_d : (y, x] \longrightarrow (y + d, x + d]$ is a bijection between $\beta(\lambda)$ and $\beta(\lambda)'$. A hook h of λ is a pair of nonnegative integers h = (y, x) where $x \in \beta(\rho)$, $y \notin \beta(\rho)$ and y < x. We say h has length s(t) if x - y = s(x - y = t). A hook h of length s(t) is also called an s-hook (t-hook). A partition ρ is an s-core (t-core) if it contains no s-hooks (t-hooks). In particular, f_d preserves hook lengths.

Theorem 1.1 Suppose s and t are distinct positive integers and ρ is an s-core. Then the t-core of ρ is also an s-core.

To prove Theorem 1.1, we must define the s-abacus $\mathcal{A}^s(\beta(\rho))$ of ρ . We do so as follows: create s runners numbered $0, 1, \ldots, s-1$ running from north to south. In the i-th runner we place all non-negative integers of residue i modulo s in increasing order, and then underline

the numbers that occur in $\beta(\rho)$. These underlined numbers will be referred to as *beads* while the numbers that are not underlined will be referred to as *spaces*.

The subset of beads on the *i*-th runner will be denoted $\beta(\rho)_i$. Removing an *s*-hook from ρ is equivalent to replacing an \underline{x} (in some $\beta(\rho)_i$) with $\underline{x-s}$. Notice x-s is the position directly above x on the *i*-th runner. This will be described as moving a bead *one position north*. Then $\mathcal{A}^s(\beta(\rho))$ is the *s*-abacus of a *s*-core if for every $\beta(\rho)_i$ there are no available moves one position north (Theorem 2.7.16, [2]). The replacement $\underline{x} = i + ms$ on the *i*-th runner of the *s*-abacus with $\underline{x}' = i' + m's$ where x' < x, $i' \neq i$ will be described as moving a bead x - x' positions west. (The reader is referred to Section 2.7, [2] and Sections I.1–I.3, [6] for further details on partitions, β -sets, hooks, and the *s*-abacus.)

Proof. When (s,t)=1 the result is true by [5]. Suppose $(s,t)\neq 1$. Either (1) s divides t or (2) $\gcd(s,t)\not\in\{1,s\}$. If s divides t, then any s-core partition is itself a t-core, so we are done. Suppose s does not divide t and $\gcd(s,t)>1$. Removing a t-hook from ρ is equivalent to taking a bead x on the ℓ -th runner (for some ℓ between 0 and s-1) of $\mathcal{A}^s(\beta(\rho))$ and placing it in empty position to the west in the $(\ell-t)$ -th runner. (For the remainder of this note, if $t>\ell$ we will interpret this difference as $\ell-t$ (mod s).) Removing another t-hook starting from a bead on the $(\ell-t)$ -th runner, we arrive at the $(\ell-2t)$ -th runner, and so on, until eventually for some j>0 we obtain $\ell-jt\equiv\ell\pmod{s}$. This suggests the following definition. A t-orbit of the s-abacus is a finite sequence (read from right-to-left) of distinct runners reached by repeated moves of t-positions west. Then, if $k'=\gcd(s,t)$, each t-orbit of $\mathcal{A}^s(\beta(\rho))$ will have exactly k' distinct runners. Starting from $\ell=1$, for each value $1,2,3\cdots$ we denote by $\mathcal{O}_t(s-\ell)$ a t-orbit of runners which begins at the $(s-\ell)$ -th runner. Since for $0 \le z, z' \le s-1$ and $z \ne z'$ either $\mathcal{O}_t(z) \cap \mathcal{O}_t(z') = \emptyset$ or $\mathcal{O}_t(z) = \mathcal{O}_t(z')$, there will be exactly $k = \frac{s}{k'}$ distinct t-orbits of $\mathcal{A}^s(\beta(\rho))$.

Now $\mathcal{O}_t(s-\ell)$ can itself be seen as a k'-abacus of runners plucked from $\mathcal{A}^{(s)}(\beta(\rho))$ and re-arranged in such a way that moving a bead one position west is equivalent to removing a t-hook from ρ . (Note: from the westmost runner removing a t-hook requires placing the bead one position north on the eastmost runner.) Viewed as a k'-abacus, moving a bead one position north in $\mathcal{O}_t(s-\ell)$ will still be equivalent to removing a s-hook from ρ , since it is comprised of runners of $\mathcal{A}^s(\beta(\rho))$. This construction is a variation of the (s,t)-abacus of J. Olsson and D. Stanton (see Section 5, [4]) which they define when s,t are relatively prime.

For all $1 \leq \ell \leq k$ the runners in $\mathcal{O}_t(s-\ell) \subset \mathcal{A}^s(\beta(\rho))$ will be labeled

$$\mathcal{O}_t(s-1) = (\beta(\rho)_{s-1-(k'-1)t}, \cdots, \beta(\rho)_{s-1})$$

$$\vdots$$

$$\mathcal{O}_t(s-k) = (\beta(\rho)_{s-k-(k'-1)t}, \cdots, \beta(\rho)_{s-k}).$$

For a fixed ℓ we obtain the *t-core of* $\mathcal{O}_t(s-\ell)$ by moving all available beads one position west on $\mathcal{O}_t(s-\ell)$ until we obtain a k'-abacus with no available westward moves. We denote this k'-abacus by $\widehat{\mathcal{O}}_t(s-\ell)$. It can be obtained systematically from $\mathcal{O}_t(s-\ell)$.

Algorithm for finding $\widehat{\mathcal{O}}_t(s-\ell)$. Let $i\in\{1,\cdots,k'\}$ and $b_i=|\beta(\rho)_{(s-\ell)-(i-1)t}|$ be the number of beads in the runner i positions west on $\mathcal{O}_t(s-\ell)$. Then $B(1,2)=b_1-b_2$ is the difference between the number of beads in the eastmost or $(s-\ell)$ -th runner and the runner immediately to the west of it, the $(s-\ell-t)$ -th runner. If B(1,2) is negative or zero, move no beads. If B(1,2)=2f, place f of the southmost beads from the $(s-\ell)$ -th runner in the northmost empty spaces of the $(s-\ell-t)$ -th runner, so that the number of beads in the two runners now become equal. If B(1,2)=2f+1, place the f+1 of the southmost beads from the $(s-\ell)$ -th runner in the northmost empty spaces of $(s-\ell-t)$ -th runner, so that the runner to the west now has one more bead than the eastmost runner. For $i=2,3,\cdots$ etc. follow the same procedure for B(i,i+1), except when B=(k',1)=2f+1. In this case, place only f beads from the westmost runner in the northmost available empty spaces on the eastmost or $(s-\ell)$ -th runner. Repeating this procedure a finite number of times results in the modified subsequence $\widehat{\mathcal{O}}_t(s-\ell)=(\widehat{\beta}(\rho)_{s-\ell-(k'-1)t},\cdots,\widehat{\beta}(\rho)_{s-\ell})$ which when viewed as a k'-abacus has no available westward moves.

Finding the t-core of ρ . For each ℓ , obtain $\widehat{\mathcal{O}}_t(s-\ell)$ from $\mathcal{O}_t(s-\ell)$ as above. Then $\mathcal{A}^s(\widehat{\beta}(\rho)) = (\widehat{\beta}(\rho)_0, \cdots, \widehat{\beta}(\rho)_{s-1})$ will be the s-abacus for the t-core of ρ . This follows by construction, since using the runners of the modified t-orbits $\widehat{\mathcal{O}}_t(s-\ell)$ implies there are no available moves t positions west. However $\mathcal{A}^s(\widehat{\beta}(\rho))$ still has no available moves one position north (by our algorithm) and hence remains an s-abacus of an s-core.

2. Examples

Example 2.1. Let s=6 and t=3. Consider the following 6-abacus $\mathcal{A}^6(\beta(\rho))$ of a 6-core ρ :

Since gcd(6,3)=3, we have k=3 and $k'=\frac{6}{3}=2$. Hence we have three 3-orbits $\mathcal{O}_t(s-\ell)$ (each with k'=2 runners) and their corresponding 3-cores $\widehat{\mathcal{O}}_t(s-\ell)$:

$$\mathcal{O}_{3}(2) = \begin{array}{cccc} \beta(\rho)_{1} & \beta(\rho)_{4} & & \widehat{\beta}(\rho)_{1} & \widehat{\beta}(\rho)_{4} \\ \frac{1}{2} & \frac{4}{2} & & & \\ \frac{1}{2} & \frac{10}{22} & \widehat{\mathcal{O}}_{3}(2) = \begin{array}{cccc} \frac{1}{7} & \frac{4}{10} \\ \frac{13}{13} & \frac{16}{19} & \\ 19 & 22 & & \\ \end{array}$$

$$\beta(\rho)_{0} & \beta(\rho)_{3} & & \widehat{\beta}(\rho)_{0} & \widehat{\beta}(\rho)_{3} \\ 0 & \frac{3}{2} & & \widehat{\mathcal{O}}_{3}(3) = \begin{array}{cccc} \widehat{\delta}(\rho)_{0} & \widehat{\beta}(\rho)_{3} \\ 0 & 3 & \\ 12 & 15 & & \\ \end{array}$$

18

21.

Finally we obtain the 6-abacus $\mathcal{A}^6(\widehat{\beta}(\rho))$ of $\widehat{\rho}$ the 3-core of ρ :

18

21

Example 2.2. Let s=12 and t=8. Consider the following 12-abacus $\mathcal{A}^{12}(\beta(\rho))$ of a 12-core ρ :

Since $\gcd(12,8)=4$, we have k=4 and $k'=\frac{12}{4}=3$. Hence we have four 8-orbits $\mathcal{O}_8(s-\ell)$ (each with k'=3 runners) and their corresponding 8-cores $\widehat{\mathcal{O}}_8(s-\ell)$:

Finally we obtain the 12-abacus $\mathcal{A}^{12}(\widehat{\beta}(\rho))$ of $\widehat{\rho}$ the 8-core of ρ :

$\widehat{eta}(ho)_1$	$\widehat{eta}(ho)_2$	$\widehat{eta}(ho)_3$	$\widehat{eta}(ho)_4$	$\widehat{eta}(ho)_4$	$\widehat{eta}(ho)_5$	$\widehat{eta}(ho)_6$	$\widehat{eta}(ho)_7$	$\widehat{eta}(ho)_8$	$\widehat{eta}(ho)_9$	$\widehat{\beta}(\rho)_{10}$	$\widehat{\beta}(\rho)_{11}$
0	<u>1</u>	<u>2</u>	<u>3</u>	$\underline{4}$	<u>5</u>	<u>6</u>	<u>7</u>	<u>8</u>	9	<u>10</u>	<u>11</u>
12	<u>13</u>	14	<u>15</u>	16	<u>17</u>	18	19	20	21	22	23
24	$\underline{25}$	<u>26</u>	27	28	<u>29</u>	<u>30</u>	31	32	33	34	35
36	<u>37</u>	38	39	40	$\underline{41}$	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69	70	71.

For other results on partitions that are simultaneously s-cores and t-cores see [1], [3], [7].

Acknowledgments. The author thanks P. Fong, J. Malkevitch and F. Mawyer for useful conversations on this topic. The author also thanks the organizers of the *Representation Theory of Finite Groups and Related Topics* program at MSRI for their support; a portion of this research was done while visiting. Finally, the author thanks the referee for the helpful comments and suggestions.

References

- [1] J. Anderson, Partitions which are simultaneously t_1 and t_2 -core. Discrete Math. **248** (2002), 237-243.
- [2] G. James and A. Kerber, *The Representation Theory of the Symmetric Groups*. Encyclopedia of Mathematics, 16, Addison-Wesley 1981
- [3] B. Kane, D. Aukerman, and L. Sze, On Simultaneous s-cores/t-cores lsze.cosam.calpoly.edu/research.html (2001).
- [4] J. Olsson and D.Stanton, Block inclusions and cores of partitions Aequationes Math. 74 (2007), 90-110.
- [5] J. Olsson, A theorem on the cores of partitions arXiv:0801.4884v1.
- [6] J. Olsson, Combinatorics and Representations of Finite Groups, Vorlesungen aus dem FB Mathematick der Univ. Essen, Heft 20 Essen, 1993.
- [7] J. C. Puchta, Partitions which are p- and q-core Integers 1 (2001), A6, 3 pp. (electronic).