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Abstract

In this paper, we develop the theory of a p, q-analogue of the binomial coefficients. Some
properties and identities parallel to those of the usual and q-binomial coefficients will be
established including the triangular, vertical, and the horizontal recurrence relations, hor-
izontal generating function, and the orthogonality and inverse relations. The construction
and derivation of these results give us an idea of how to handle complex computations in-
volving the parameters p and q. This may be a good start in developing the theory of
p, q-analogues of some special numbers in combinatorics. Furthermore, several interesting
special cases will be disclosed which are analogous to some established identities of the usual
binomial coefficients.

Introduction

The binomial coefficients, denoted by
(

n
k

)
, play an important role in enumerative combina-

torics. These numbers appear as the coefficients in the expansion of the binomial expression
(x + y)n. That is,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

This identity is known as the Binomial Theorem [5][6][16][19]. If y = 1, this identity becomes

(x + 1)n =
n∑

k=0

(
n

k

)
xk (1)

which is the horizontal generating function for the binomial coefficients. The explicit value
of the binomial coefficients is given by

(
n

k

)
=

n!

k!(n− k)!
, if 0 ≤ k ≤ n, and

(
n

k

)
= 0, otherwise.
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A more general definition of the binomial coefficients is given in [11] where n can be a complex
number; in particular the binomial theorem (1) holds in this more general setting if r ≥ 0
is an integer or |x/y| < 1. This can be interpreted as the number of possible k-subsets out
of a set of n distinct elements or the number of ways to choose k elements from the set of n
distinct elements. The binomial coefficients are also known as combinations or combinatorial
numbers.

Almost all books in combinatorics devote one chapter for the discussion of binomial
coefficients ( see, e.g., [5] [6][16][19] ). This shows that the binomial coefficients are already
well-studied and well-discussed in the past resulting to possession of numerous properties
and identities. To mention a few, we have the triangular recurrence relation

(
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
, (2)

the identity
∑

k even

(
n

k

)
=

∑

k odd

(
n

k

)
, (3)

the inverse relation

fn =
n∑

k=0

(
n

k

)
gk ⇐⇒ gn =

n∑

k=0

(−1)n−k

(
n

k

)
fk, (4)

Chu Shih-Chieh’s identity
(

n + 1

k + 1

)
=

(
k

k

)
+

(
k + 1

k

)
+ . . . +

(
n

k

)
,

and the orthogonality relation

n∑

j=i

(−1)n−j

(
n

j

)(
j

i

)
=

n∑

j=i

(−1)j−i

(
n

j

)(
j

i

)
= δni =

{
0 n &= i
1 n = i

(5)

where δni is called the Kronecker delta.

In constructing the properties and identities of some special numbers, binomial coeffi-
cients are frequently involved. That is why the q-analogue of the binomial coefficients plays
an important role in developing the theory of the q-analogue of these special numbers. From
[3][6], the q-analogue of the binomial coefficients

[
n
k

]
q

is defined by

[n

k

]

q
=

k∏

i=1

qn−i+1 − 1

qi − 1
,

[n

0

]

q
= 1, q &= 1.

This q-analogue is also called the q-binomial coefficient, a Gaussian coefficient, or a Gaussian
polynomial. Using the notation

[k]q =
qk − 1

q − 1
, q &= 1,
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we can rewrite the q-binomial coefficient as
[n

k

]

q
=

[n]q!

[k]q![n− k]q!
=

[n]q
[k]q

[
n− 1

k − 1

]

q

where [k]q!

denotes the q-factorial which is given by [k]q! = [k]q[k−1]q . . . [2]q[1]q. It can easily be verified
that, when q → 1, the q-binomial coefficients turn into the usual binomial coefficients.

Unlike the usual binomial coefficients, the q-binomial coefficients
[

n
k

]
q
have only a limited

number of properties and identities. The following are some of the properties and identities
for

[
n
k

]
q

which are taken from [6]. We have the triangular recurrence relation

[n

k

]

q
=

[
n− 1

k − 1

]

q

+ qk

[
n− 1

k

]

q

, (6)

the identity ∑

k even

[n

k

]

q
=

∑

k odd

[n

k

]

q
, (7)

the inverse relation

fn =
n∑

k=0

[n

k

]

q
gk ⇐⇒ gn =

n∑

k=0

(−1)n−kq(
n−k

2 )
[n

k

]

q
fk, (8)

and the orthogonality relation

n∑

j=i

(−1)n−jq(
n−j

2 )
[
n

j

]

q

[
j

i

]

q

=
n∑

j=i

(−1)j−iq(
j−i
2 )

[
n

j

]

q

[
j

i

]

q

= δni. (9)

Analogous to the expansion in (1), we have

n−1∏

r=0

(1 + xqr) =
n∑

k=0

q(
k
2)

[n

k

]

q
xk. (10)

Moreover, the q-binomial coefficient
[

m+n
m

]
q

may be interpreted as a polynomial in q whose

coefficient in qk counts the number of distinct partitions of k elements which fit inside an
m× n rectangle [1].

The p, q-analogue of the usual binomial coefficient which is also called the p, q-binomial
coefficient is defined by

[n

k

]

pq
=

k∏

i=1

pn−i+1 − qn−i+1

pi − qi
, p &= q. (11)

Using the notation [k]pq = pk−qk

p−q we can rewrite (11) as follows

[n

k

]

pq
=

[n]pq!

[k]pq![n− k]pq!
=

[n]pq

[k]pq

[
n− 1

k − 1

]

pq
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where [k]pq! = [k]pq[k − 1]pq . . . [2]pq[1]pq. It may be worth noticing that

[n

k

]

pq
=

k∏

i=1

qn−i+1 − pn−i+1

qi − pi
and

[n

k

]

pq
=

[n]pq!

[n− k]pq![n− (n− k)]pq!
.

Hence, [n

k

]

pq
=

[n

k

]

qp
and

[n

k

]

pq
=

[
n

n− k

]

pq

. (12)

Clearly, when p = 1, the p, q-binomial coefficient
[

n
k

]
pq

reduces to the q-binomial coefficient[
n
k

]
q
.

In this paper, we develop the theory of p, q-analogue of the binomial coefficients by
establishing some properties and identities parallel to those in (6) - (10). Some special cases
will be disclosed which somehow give a clearer description of the p, q-binomial coefficients.

Recurrence Relations and Generating Function

For a quick computation of the first values of p, q-binomial coefficients, we have the following
triangular recurrence relations which are of similar form with those in (2) and (6).

Theorem 1. The p, q-binomial coefficients satisfy the following triangular recurrence rela-
tions [

n + 1

k

]

pq

= pk
[n

k

]

pq
+ qn−k+1

[
n

k − 1

]

pq

(13)

[
n + 1

k

]

pq

= qk
[n

k

]

pq
+ pn−k+1

[
n

k − 1

]

pq

(14)

with initial conditions
[

0
0

]
pq

= 1,
[

n
n

]
pq

= 1, and
[

n
k

]
pq

= 0 for k > n.

Proof. Evaluating the right-hand side of (13), we get

pk
[n

k

]

pq
+ qn−k+1

[
n

k − 1

]

pq

= pk
k∏

i=1

pn−i+1 − qn−i+1

pi − qi
+ qn−i+1

k−1∏

i=1

pn−i+1 − qn−i+1

pi − qi

=

{∏k−1
i=1 (pn−i+1 − qn−i+1

}{
pk(pn−k+1 − qn−k+1 + qn−k+1(pk − qk)

}

∏k
i=1(p

i − qi)

=

∏k
i=1(p

(n+1)−i+1 − q(n+1)−i+1)
∏k

i=1(p
i − qi)

=

[
n + 1

k

]

pq

.

Note that we can rewrite (13) as
[

n+1
k

]
qp

= qk
[

n
k

]
qp

+ pn−k+1
[

n
k−1

]
qp

. Using (12), we obtain

(14). !
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Taking p = 1, (14) yields
[

n+1
k

]
q

= qk
[

n
k

]
q
+

[
n

k−1

]
q

which is precisely equivalent to (6).

Similarly, when p = 1, (13) gives
[

n+1
k

]
q

=
[

n
k

]
q
+ qn−k+1

[
n

k−1

]
q

which is another form of the

triangular recurrence relation for q-binomial coefficients.

Using Theorem 1, we can quickly generate the first values of
[

n
k

]
pq

as shown in the
following table.

n/k 1 2 3 4 5
1 1
2 p + q 1
3 p2 + pq + q2 p2 + pq + q2 1
4 p3 + p2q + pq2 (p2 + pq + q2)(p2 + q2) p3 + p2q + pq2 + q3 1

+q3

5 p4 + p3q + p2q2 p2(p2 + pq + q2)(p2 + q2) p3(p3 + p2q + pq2 + q3) p4 + p3q + p2q2 1
+pq3 + q4 +q3(p3 + p2q + pq2 + q3) +q2(p2 + pq + q2)(p2 + q2) +pq3 + q4

Table 1. Table of Values for
[

n
k

]
pq

One may try to verify (12) for n = 1, 2, 3, 4, 5 using Table 1. In fact, we can easily see it if
we write the entries of Table 1 in the following way:

1

1 1

1 p + q 1

1 p2 + pq + q2 p2 + pq + q2 1

1 p3 + p2q + pq2 + q3 (p2 + pq + q2)(p2 + q2) p3 + p2q + pq2 + q3 1

1 p4 + p3q + p2q2 p2(p2 + pq + q2)(p2 + q2) p3(p3 + p2q + pq2 + q3) p4 + p3q + p2q2 1

+pq3 + q4 + q3(p3 + p2q + pq2 + q3) + q2(p2 + pq + q2)(p2 + q2) + pq3 + q4

This figure is analogous to Pascal’s Triangle of the usual binomial coefficients. As we can
see, it possesses the same symmetry as Pascal’s Triangle. However, the identities that we
have for the p, q-binomial coefficients may not exactly be of the same structure as those in
the usual binomial coefficients.

Note that if we apply (13) thrice to
[

n+1
k+1

]
pq

, we obtain
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[
n + 1

k + 1

]

pq

= qn−(k+1)+1
[n

k

]

pq
+ pk+1

[
n

k + 1

]

pq

= qn−k
[n

k

]

pq
+ pk+1

(
qn−k−1

[
n− 1

k

]

pq

+ pk+1

[
n− 1

k + 1

]

pq

)

= qn−k
[n

k

]

pq
+ pk+1qn−k−1

[
n− 1

k

]

pq

+ p2(k+1)

(
qn−k−2

[
n− 2

k

]

pq

+ pk+1

[
n− 2

k + 1

]

pq

)

= qn−k
[n

k

]

pq
+ pk+1qn−k−1

[
n− 1

k

]

pq

+ p2(k+1)qn−k−2

[
n− 2

k

]

pq

+ p3(k+1)

[
n− 2

k + 1

]

pq

.

Continuing this process until the (n− k)th application of (13), we get
[
n + 1

k + 1

]

pq

= qn−k
[n

k

]

pq
+ pk+1qn−k−1

[
n− 1

k

]

pq

+ p2(k+1)qn−k−2

[
n− 2

k

]

pq

+ p3(k+1)qn−k−3

[
n− 3

k

]

pq

+ · · · + p(n−k)(k+1)

[
k

k

]

pq

.

This is a vertical recurrence relation for the p, q-binomial coefficients. On the other hand, if
we rewrite (14) as

[n

k

]

pq
= p−(n−k)

[
n + 1

k + 1

]

pq

− p−(n−k)qk+1

[
n

k + 1

]

pq

and apply this recurrence relation to itself (n− k) times, we obtain a horizontal recurrence
relation for the p, q-binomial coefficients. Let us state these results in the following theorem.

Theorem 2. The p, q-binomial coefficients satisfy the following vertical recurrence relation

[
n + 1

k + 1

]

pq

=
n∑

j=k

p(n−j)(k+1)qj−k

[
j

k

]

pq

and horizontal recurrence relation

[n

k

]

pq
=

n−k∑

j=0

(−1)jp−(j+1)(n−k)+(j+1
2 )qjk+(j+1

2 )
[

n + 1

k + j + 1

]

pq

.
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For example, using the vertical recurrence relation in Theorem 2, we can compute
[

4
3

]
pq

as follows:
[
4

3

]

pq

= p(3−2)(2+1)q2−2

[
2

2

]

pq

+ p(3−3)(2+1)q3−2

[
3

2

]

pq

= p3 + q(p2 + pq + q2) = p3 + p2q + pq2 + q3.

This is exactly the value of
[

4
3

]
pq

that appears in Table 1. One may also try to compute[
4
3

]
pq

using the horizontal recurrence relation.

The vertical and horizontal recurrence relations in Theorem 2 may be considered p, q-
analogues of the Hockey Stick identities, which are also known as Chu Shih-Chieh’s identities.
More precisely, if we let p = 1, Theorem 2 will give the following vertical and horizontal
recurrence relations for the q-binomial coefficients, respectively,

[
n + 1

k + 1

]

q

=
n∑

j=k

qj−k

[
j

k

]

q

and
[n

k

]

q
=

n−k∑

j=0

(−1)jqjk+(j+1
2 )

[
n + 1

k + j + 1

]

q

.

Furthermore, when q → 1, the former will reduce to Chu Shih-Chieh’s identity as given in
the introduction and the latter will reduce to

(
n

k

)
=

(
n + 1

k + 1

)
−

(
n + 1

k + 2

)
+ . . . + (−1)n−k

(
n + 1

n + 1

)

which is another recurrence relation for the usual binomial coefficients.

The vertical and horizontal recurrence relations in Theorem 2 can easily be remembered
with the help of the pattern as shown in the table below.

n / k . . . k k + 1 k + 2 . . . n + 1

... ↓ ↓
↓ ↓

k
[

k
k

]

pq

↓ ↓
↓ ↓

k + 1
[

k+1
k

]

pq

↓ ↓
... ↓

... ↓
↓ ↓

n
[ n

k

]
pq

↘ ↖
↘ ↖
↘ ↖
↘ ←−←−←−←− ←−←−←−←− ←− ←−←−←−←−

n + 1 ↘
[

n+1
k+1

]

pq

[
n+1
k+2

]

pq
. . .

[
n+1
n+1

]

pq

←−←−←−←− ←−←−←−←− ←− ←−←−←−←−
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The entries involved in the table to compute the value of
[

n+1
k+1

]
pq

and
[

n
k

]
pq

using the vertical

and horizontal recurrence relations in Theorem 2 clearly form a hockey stick as illustrated
by the arrows in the table.

We observe that

1 + x =

[
1

0

]

pq

+

[
1

1

]

pq

x

(1 + x)(p + qx) = p + (p + q)x + qx2

= p

[
2

0

]

pq

+

[
2

1

]

pq

x + q

[
2

2

]

pq

x2

and

(1 + x)(p + qx)(p2 + q2x) = p3 + p(p2 + pq + q2)x + q(p2 + pq + q2)x2 + q3x3

= p3

[
3

0

]

pq

+ p

[
3

1

]

pq

x + q

[
3

2

]

pq

x2 + q3

[
3

3

]

pq

x3.

This observation gives us an idea that we can also construct a horizontal generating function
for the p, q-binomial coefficients which is analogous to those in (1) and (6). The next theorem
contains the horizontal generating function mentioned above.

Theorem 3. The horizontal generating function for the p, q-binomial coefficients is given
by

n−1∏

r=0

(pr + xqr) =
n∑

k=0

p(
n−k

2 )q(
k
2)

[n

k

]

pq
xk.

Proof. We prove this by induction on n. For n = 1, 2, 3, the generating function is already
verified above. Suppose it is true for some n ≥ 1, that is,

n−1∏

r=0

(pr + xqr) =
n∑

k=0

p(
n−k

2 )q(
k
2)

[n

k

]

pq
xk.

Then, using the inductive hypothesis, we have

n∏

r=0

(pr + xqr) = (pn + xqn)
n∑

k=0

p(
n−k

2 )q(
k
2)

[n

k

]

pq
xk

=
n∑

k=0

p(
n−k

2 )+nq(
k
2)

[n

k

]

pq
xk +

n∑

k=0

p(
n−k

2 )q(
k
2)+n

[n

k

]

pq
xk+1

=
n+1∑

k=0

{
p(

n−k
2 )+nq(

k
2)

[n

k

]

pq
+ p(

n−k+1
2 )q(

k−1
2 )+n

[
n

k − 1

]

pq

}
xk

=
n+1∑

k=0

p(
n−k+1

2 )q(
k
2)

{
pk

[n

k

]

pq
+ qn−k+1

[
n

k − 1

]

pq

}
xk.
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Applying Theorem 1, we get
n∏

r=0

(pr + xqr) =
n+1∑

k=0

p(
n−k+1

2 )q(
k
2)

[
n + 1

k

]

pq

xk. !

As a direct consequence of Theorem 3, we have the following corollary which contains an
identity analogous to those in (3) and (7).

Corollary 1. For n ≥ 1, we have
∑

k even

p(
n−k

2 )q(
k
2)

[n

k

]

pq
=

∑

k odd

p(
n−k

2 )q(
k
2)

[n

k

]

pq
. (15)

Proof. With x = −1, Theorem 3 gives
n−1∏

r=0

(pr − qr) =
n∑

k=0

(−1)kp(
n−k

2 )q(
k
2)

[n

k

]

pq
.

Since pr − qr = 0 when r = 0, we have
n∑

k=0

(−1)kp(
n−k

2 )q(
k
2)

[n

k

]

pq
= 0.

This is precisely equivalent to (15). !

The next corollary can easily be deduced from Theorem 3 by taking x = 1.

Corollary 2. For n ≥ 1, we have

n∑

k=0





p(

n−k
2 )q(

k
2)

[
n
k

]
pq∏n−1

r=0 (pr + qr)




 = 1. (16)

Corollary 2 may be interpreted as follows. Consider an experiment with Ω as the sample
space such that

|Ω| =
n−1∏

r=0

(pr + qr),

and a random variable X that takes the value from 0 to n which determines the outcome
of the experiment. Suppose that a given event Ek ⊂ Ω is associated with the value X = k
such that

|Ek| = p(
n−k

2 )q(
k
2)

[n

k

]

pq
.

Then (16) shows that

Pr(X = k) =
p(

n−k
2 )q(

k
2)

[
n
k

]
pq∏n−1

r=0 (pr + qr)

is a probability distribution of X.

The horizontal generating function in Theorem 3 may be a good tool in giving a combi-
natorial interpretation of the p, q-binomial coefficients. One may try to use the method of
generating functions as discussed in [5],[16], and [19].
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Orthogonality and Inverse Relations

Inverse relations are useful tools in deriving necessary formulas of some special numbers in
combinatorics. The inverse relations in (4) and (8) were used many times in transforming
some identities into a completely different and interesting form. For instance, the second form
of the horizontal recurrence relation for the generalized Stirling numbers [7] was obtained
by transforming the explicit formula of the generalized Stirling numbers using the inverse
relation in (4), and the explicit formula of the q-analogue for the generalized Stirling numbers
[8] was transformed into a horizontal recurrence relation using (8). Thus, for possible use in
developing the theory of p, q-analogue of some special numbers, an inverse relation for the
p, q-binomial coefficients must also be established.

The following theorem contains the orthogonality relation for the p, q-binomial coefficient
which is necessary in establishing the inverse relation.

Theorem 4. The orthogonality relation for the p, q-binomial coefficients is given by

n∑

j=i

(−1)n−jp(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

[
j

i

]

pq

=
n∑

j=i

(−1)j−ip(
j−i
2 )q(

n−j
2 )

[
n

j

]

pq

[
j

i

]

pq

= δni.

Proof. Clearly, it is true for n = 0, 1. Suppose that for some n ≥ 0

Hn =
n∑

j=i

(−1)n−jp(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

[
j

i

]

pq

= δni.

Then, by Theorem 1, we have

Hn+1 =
n+1∑

j=i

(−1)n+1−jp(
n+1−j

2 )q(
j−i
2 )pj

[
n

j

]

pq

[
j

i

]

pq

+
n+1∑

j=i

(−1)n+1−jp(
n+1−j

2 )q(
j−i
2 )qn−j+1

[
n

j − 1

]

pq

[
j

i

]

pq

.

Using the facts that
[

n

n + 1

]

pq

= 0, p(
n+1−j

2 )+j = p(
n−j

2 )pn, and q(
j−i
2 )+(n−j+1) = q(

j−1−i
2 )qn−i,

we obtain

Hn+1 = (−1)pnδni + qn−i
n∑

j=i−1

p(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

[
j + 1

i

]

pq

.

Again, by applying Theorem 1, we get

Hn+1 = −pnδni + qn−ipiδni + qn−i
n∑

j=i−1

p(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

qj−i+1

[
j

i− 1

]

pq
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= (−pn + qn−ipi)δni + qn−iq
n∑

j=i−1

p(
n−j

2 )q(
j−(i−1)

2 )
[
n

j

]

pq

[
j

i− 1

]

pq

= 0 + qn−i+1δn,i−1 = δn+1,i.

This proves the first form of the orthogonality relation.

To prove the other form, we first interchange p and q to obtain

n∑

j=i

(−1)j−ip(
j−i
2 )q(

n−j
2 )

[
n

j

]

pq

[
j

i

]

pq

= (−1)n−i
n∑

j=i

(−1)n−jp(
n−j

2 )q(
j−i
2 )

[
n

j

]

qp

[
j

i

]

qp

.

Using (12) and the first form of the orthogonality relation, we have

n∑

j=i

(−1)j−ip(
j−i
2 )q(

n−j
2 )

[
n

j

]

pq

[
j

i

]

pq

= (−1)n−i
n∑

j=i

(−1)n−jp(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

[
j

i

]

pq

= (−1)n−iδni = δni. !

The first form of the orthogonality relation in Theorem 4 may be written as
∑n

j=i anjbji =
δni where

anj = (−1)n−jp(
n−j

2 )
[
n

j

]

pq

and bji = q(
j−i
2 )

[
j

i

]

pq

.

If we let M and M̃ be two matrices such that M = [aij]0≤i,j≤m and M̃ = [bij]0≤i,j≤m, then

MM̃ = [δij]0≤i,j≤m = Im. That is, M̃ = M−1 and M = M̃−1.

The next theorem is a kind of transformation from the identity in Theorem 3 that inter-
changes the role of xk and

∏n−1
r=0 (qr + xpr) in the formula.

Theorem 5. The p, q-binomial coefficients satisfy the following relation

p(
n
2)xn =

n∑

j=0

(−1)n−jp(
n−j

2 )
[
n

j

]

pq

j−1∏

r=0

(qr + xpr).

Proof. Clearly, p(
n
2)xn =

n∑

i=0

δnip(
i
2)xi. Then, using Theorem 4, we have

p(
n
2)xn =

n∑

i=0

{
n∑

j=i

(−1)n−jp(
n−j

2 )q(
j−i
2 )

[
n

j

]

pq

[
j

i

]

pq

}
p(

i
2)xi

=
n∑

j=0

(−1)n−jp(
n−j

2 )
[
n

j

]

pq

{
j∑

i=0

q(
j−i
2 )p(

i
2)

[
j

i

]

pq

xi

}
.

Applying Theorem 3 completes the proof of the theorem. !
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We notice that when x = 0, Theorem 5 gives
n∑

j=0

(−1)n−jp(
n−j

2 )q(
j
2)

[
n

j

]

pq

= 0, which is

precisely equivalent to Corollary 1. On the other hand, when x = 1, Theorem 5 yields
n∑

j=0

(−1)n−jp(
n−j

2 )−(n
2)

[
n

j

]

pq

j−1∏

r=0

(qr + pr) = 1

which consequently gives
n∑

j=1

(−1)n−jp(
n−j

2 )−(n
2)

[
n

j

]

pq

j−1∏

r=0

(qr + pr) = 0 if n is even.

That means

∑

j even(#=0)

p(
n−j

2 )−(n
2)

[
n

j

]

pq

j−1∏

r=0

(qr + pr) =
∑

j odd

p(
n−j

2 )−(n
2)

[
n

j

]

pq

j−1∏

r=0

(qr + pr)

if n is even.

With the aid of Theorem 4, we can easily prove the inverse relation for the p, q-binomial
coefficients which is given in the following theorem.

Theorem 6. The inverse relation for the p, q-binomial coefficients is given by

fn =
n∑

j=0

(−1)n−jp(
n−j

2 )
[
n

j

]

pq

gj ⇐⇒ gn =
n∑

j=0

q(
n−j

2 )
[
n

j

]

pq

fj.

Proof. (⇒) Using the given hypothesis, we have

n∑

j=0

q(
n−j

2 )
[
n

j

]

pq

fj =
n∑

j=0

j∑

i=0

(−1)j−ip(
j−i
2 )q(

n−j
2 )

[
n

j

]

pq

[
j

i

]

pq

gi

=
n∑

i=0

{
n∑

j=i

(−1)j−ip(
j−i
2 )q(

n−j
2 )

[
n

j

]

pq

[
j

i

]

pq

}
gi.

Applying the second form of the orthogonality relation in Theorem 4, we obtain
n∑

j=0

q(
n−j

2 )
[
n

j

]

pq

fj =
n∑

j=0

δnigi = gn.

(⇐) This can easily be done by following the same argument as above and applying the first
form of the orthogonality relation. !

If we set fn = p(
n
2)xn and gj =

∏j−1
r=0(q

r + xpr), then, using Theorem 6, the identity in
Theorem 5 becomes

n−1∏

r=0

(qr + xpr) =
n∑

j=0

q(
n−j

2 )p(
j
2)

[
n

j

]

pq

xj

which gives the expansion in Theorem 3 by interchanging p and q.
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Some Remarks and Related Literature

There are still many properties and identities that we need to establish for the p, q-binomial
coefficients which are parallel to those in the usual binomial coefficients. For instance,
Vandermonde’s identity, which is given by

(
m + n

k

)
=

k∑

r=0

(
m

r

)(
n

k − r

)
, (17)

can be obtained using the Binomial Theorem by multiplying the expansions (x + 1)m and
(x+1)n to get the coefficients of xk which turns out to be the right-hand side of (17), which
is then compared to the coefficients of xk in the expansion of (x + 1)m+n.

The corresponding q-analogue of Vandermonde’s identity is also known as the q-Vander-
monde identity [10], which is given by

[
m + n

k

]

q

=
k∑

r=0

qr(m−k+r)
[m

r

]

q

[
n

k − r

]

q

,

and can be derived by paralleling what has been done to obtain (17), but this time using
the identity in q-binomial theory

(A + B)m(A + B)n = (A + B)m+n

with operators A and B that q-commute (i.e., BA = qAB). With these facts, one may try
to construct a p, q-analogue of Vandermonde’s identity by defining some operators analogous
to those operators that q-commute.

The q-binomial coefficients were included in the classical families of numbers that arise
as a particular case of U -Stirling numbers by Medicis and Leroux [9]. More precisely, the
q-binomial coefficients can be expressed as

[n

k

]

q
=

∑

Φ∈TA(k,n−k)

∏

c∈Φ

q|c| (18)

where TA(k, n − k) denotes the set of A-tableaux ( defined in [9] ) with exactly n − k
columns whose lengths are in the set {0, 1, 2, . . . , k}. This formula may give a combinatorial
interpretation of the q-binomial coefficients in the context of 0-1 tableau as defined in [9].
Furthermore, identity (18) may be written as

[n

k

]

q
=

∑

0≤j1≤j2≤...≤jn−k≤k

n−k∏

i=1

qji =
∑

0≤j1≤j2≤...≤jn−k≤k

qj1+j2+...+jn−k .

If we can express the p, q-binomial coefficients parallel to this expression, then the p, q-
binomial coefficients may also be given a combinatorial interpretation in the context of 0-1
tableau.
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In the study of (p, q)-hypergeometric series rΦs [10][13] which is defined by

rΦs((a1p, a1q), . . . , (arp, arq); (b1p, b1q), . . . , (bsp, bsq); (p, q), z)

=
∞∑

n=0

((a1p, a1q), . . . , (arp, arq); (p, q))n

((b1p, b1q), . . . , (bsp, bsq); (p, q))n((p, q); (p, q))n

(
(−1)n(q/p)n(n−1)/2

)1+s−r
zn

where |q/p| < 1 and

((x1p, x1q), . . . , (xrp, xrq); (p, q))n =
r∏

i=1

((xip, xiq); (p, q))n

with ((xip, xiq); (p, q))n =
∏n−1

m=0(xippm − xiqqm), the p, q-binomial coefficients appeared in
some of its identities. As mentioned in [13], when r = 1 and s = 0, the above (p, q)-
hypergeometric series gives

1Φ0((p
n, qn);−; (p, q), z) =

∞∑

k=0

[
n− 1 + k

k

]

pq

=

{
n∑

k=0

[n

k

]

pq
(pq)k(k−1)/2(−z)k

}−1

(18)

and this can further be written as

1Φ0((p
n, qn);−; (p, q), z) =

{
n∑

k=0

[n

k

]

q−1q
(−z)k

}−1

with [n

k

]

q−1q
=

((q−1, q); (q−1, q))n

((q−1, q); (q−1, q))k((q−1, q); (q−1, q))n−k

which should be relevant in the context of quantum groups. Now, taking a = pζp and
b = pnζq with z = ζq/ζp, we can rewrite (18) as

((a, b); (p, q))n =
n∑

k=0

[n

k

]

pq
(−1)kp(

n−k
2 )q(

k
2)an−kbk. (19)

When a = 1, (19) gives

n−1∏

i=0

(pi − bqi) =
n∑

k=0

p(
n−k

2 )q(
k
2)

[n

k

]

pq
(−b)k,

which can also be obtained from Theorem 3 by taking x = −b.

The (p, q)-hypergeometric series is a generalization of the basic hypergeometric series or
the q-hypergeometric series which is given by

rφs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z) =
∞∑

n=0

(a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n(q; q)n

(
(−1)nqn(n−1)/2

)1+s−r
zn,
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such that when a1p = a2p = . . . = arp = b1p = b2p = . . . = bsp = 1, a1q = a1, a2q =
a2, . . . , arq = ar, b1q = b1, b2q = b2, . . . , bsq = bs, and p = 1, rΦs → rφs. Another form of a
generalization of q-hypergeometric series is the bibasic hypergeometric series [10] with two
bases q and q1, which is given by

F (ā, c̄; b̄, d̄; q, q1, z) =
∞∑

n=0

(ā; q)n(c̄; q1)n

(ā; q)n(c̄; q1)n(q; q)n

(
(−1)nqn(n−1)/2

)1+s−r
(
(−1)nqn(n−1)/2

1

)s1−r1

zn,

where

(ā; q)n =
r∏

i=1

(ai; q)n, (ai; q)n =
(ai; q)∞

(aiqn; q)∞
, (ai; q)∞ =

∞∏

k=0

(1− aqk).

In this series, the two unconnected bases q and q1 are regarded and assigned partially to
different numerator and denominator parameters whereas in the (p, q)-hypergeometric series
the parameters p and q are inseparable and assigned to all the numerator and denominator
parameter doublets. As we can see in [13], it is very interesting and profitable to study the
(p, q)-hypergeometric series as well as the p, q-binomial coefficients. It is worth mentioning
that there is research related to physics which considers identities of p, q-binomial coefficients
[12]. For instance, Katriel and Kibler [14] defined the p, q-binomial coefficients and derived a
p, q-binomial theorem while discussing normal ordering for deformed boson operators obeying
(p, q)-oscillator algebra introduced by R. Chakrabarti and R. Jagannathan in [4]. Smirnov
and Wehrhahn [18] expressed the expansion of

(
qJ0(1)J±(2) + J±(1)p−J0(2)

)l

in terms of the p, q-binomial coefficients, where {J0(1), J±(1)} and {J0(2), J±(2)} are the
generators of two commuting (p, q)-angular momentum algebras.

There are algorithmic approaches which can prove multi-basic hypergeometric series
identities. Zeilberger’s creative telescoping paradigm in the algebraic setting of differ-
ence fields [17] is one of these algorithms which computes a recurrence for the given sum
S(n) =

∑m
k=0 f(n, k) where m might depend linearly on n, by finding c0(n), . . . , cδ(n) and

g(n, k) such that g(n, k+1)−g(n, k) = c0(n)f(n, k)+. . .+cδ(n)f(n+δ, k). Another is Gosper’s
summation algorithm which finds a hypergeometric closed form of an indefinite sum of hyper-
geometric terms, if such a closed form exists. This algorithm was extended by Bauer in [2] to
the case when the terms are simultaneously hypergeometric and multibasic hypergeometric.
Riese[15] also presented an algebraically motivated generalization of Gosper’s algorithm to
indefinite bibasic hypergeometric summation. Exploiting these algorithms might contribute
to find and prove additional identities of the p, q-binomial coefficients.

Acknowledgement. The author is grateful for the corrections and suggestions of the
anonymous referee.
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