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Montpellier Cédex 5, France
and

LIRMM, Univ. Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier, France
Patrice.Seebold@lirmm.fr

Received: 9/21/07, Accepted: 1/18/08, Published: 1/29/08

Abstract

We start a general study of counting the number of occurrences of ordered patterns in
words generated by morphisms. We consider certain patterns with gaps (classical patterns)
and those with no gaps (consecutive patterns). Occurrences of the patterns are known,
in the literature, as rises, descents, (non-)inversions, squares and p-repetitions. We give
recurrence formulas in the general case, then deducing exact formulas for particular families
of morphisms. Many (classical or new) examples are given illustrating the techniques and
showing their interest.

1. Introduction

Different notions of pattern can be encountered in several domains of combinatorics. In
algebraic combinatorics, an occurrence of a pattern p in a permutation π is a subsequence
of π (of the same length as the length of p) whose elements are in the same relative order as
those in p. For example, the permutation π = 536241 contains an occurrence of the pattern
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p = 2431 : indeed the elements of the subsequence 3641 of π are in the same relative order
as those in p. Examples of results concern permutations avoiding a pattern of length 3 in
the symmetric group Sn (see [19, 30]).

Motivated by the study of Mahonian statistics, Babson and Steingŕımsson introduced a
generalization where two adjacent elements of the pattern must also be adjacent in the per-
mutation [4]. In [11], this generalization provides interesting results related to set partitions,
Dyck paths, Motzkin paths, or involutions.

In combinatorics on words, an occurrence of a pattern p in a word u is a factor of u having
the same shape as p, i.e., for which there exists a nonerasing morphism transforming p in
this factor. For example the word u = abaabaaabab contains an occurrence of the pattern
p = ααβααβ : indeed the morphism f(α) = a, f(β) = ba transforms the pattern p in
aabaaaba which is a factor of u. The main question is to determine whether or not a given
pattern is unavoidable, that is if it is possible to construct an infinite word containing no
occurrence of the pattern. The interested reader should refer to Chapter 3 of [22].

In [7-10] the authors realized a “mixing” of these two notions. They consider ordered
alphabets. Here, an occurrence of a pattern in a word is a factor or a subsequence having the
same shape, and in which the relative order of the letters is the same as in the pattern. For
example, on the alphabet {a, b} with a < b, the word u = abaaabab contains an occurrence
of the pattern 2111 (the factor baaa) but not of the pattern 1222 (abbb is not a factor of
u). However, the word u contains an occurrence of the pattern with gaps 1#2#2#2 because
abbb is a subsequence of u (here # means that the letters corresponding to 1 and 2 may be
not consecutive). To avoid confusion with previous notions we call these patterns ordered
patterns (with gaps if there is at least one #, with no gaps if there is no #).

In [18] we computed the number of occurrences of a lot of ordered patterns in the Peano
words (words corresponding to finite approximations of the Peano space filling curve). An
interesting property of these words is that they are generated by a tag-system, i.e., by
applying two morphisms. A motivation for this choice is the interest in studying classes of
words defined by iterative schemes, in particular with morphisms that are a fundamental
tool of formal languages [2, 22, 27].

In the present paper we start a general study of counting the number of occurrences of
ordered patterns in words generated by morphisms. After some preliminaries (Section 2), we
give in Section 3 some general results (recurrence formulas) on counting elementary ordered
patterns with gaps ((non-)inversions and p-repetitions) in words generated by morphisms,
and applications to two well known binary words. Section 4 is dedicated to more precise
results (exact formulas) in the case of a particular family of morphisms, and in Section 5
we give many examples of morphisms belonging to this family. Section 6 is dedicated to
counting elementary ordered patterns with no gaps (rises, descents, and squares) in words
generated by morphisms and giving some examples.
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2. Preliminaries

2.1. Definitions and Notations

The terminology and notations are mainly those of Lothaire [22].

Let A be a finite set called the alphabet and A∗ the free monoid generated by A. The
elements of A are called letters and those of A∗ are called words. The empty word ε is the
neutral element of A∗ for the concatenation of words (the concatenation of two words u and
v is the word uv), and we denote by A+ the semigroup A∗ \ {ε}.

The length of a word u, denoted by |u|, is the number of occurrences of letters in u. In
particular |ε| = 0. If n is a nonnegative integer, un is the word obtained by concatenating
n occurrences of the word u. Of course, |un| = n · |u|. The cases n = 2, and n = 3 deserve
a particular attention in what follows. A word u2 (resp. u3), with u != ε, is called a square
(resp. a cube).

A word w is called a factor (resp. a prefix) of u if there exist words x, y such that
u = xwy (resp. u = wy). The factor (resp. the prefix) is proper if xy != ε (resp. y != ε).
The number of distinct occurrences of w in u is denoted by |u|w. A word u is a subsequence
of the word v if there exist words u1, . . . , un, v1, . . . , vn, vn+1 such that u = u1 · · ·un and
v = v1u1v2u2 · · · vnunvn+1.

An infinite word (or sequence) over A is an application a : IN → A. It is written a =
a0a1 · · · ai · · · , i ∈ IN, ai ∈ A.

The notion of factor is extended to infinite words as follows: a (finite) word u is a factor
(resp. prefix) of an infinite word a over A if there exist n ∈ IN (resp. n = 0) and m ∈ IN
(m = |u|) such that u = an · · · an+m−1 (by convention an · · · an−1 = ε).

In what follows, we will consider morphisms on A. Let B be an alphabet (often, B = A).

A morphism on A is an application f : A∗ → B∗ such that f(uv) = f(u)f(v) for all
u, v ∈ A∗. It is uniquely determined by its value on the alphabet A. A morphism f on A is
a literal morphism if |f(a)| = 1 for all a ∈ A.

For A = B, let n be a non-negative integer. The incidence matrix of fn is the k × k
matrix

M(fn) = (mn,i,j)1≤i,j≤k

where mn,i,j is the number of occurrences of the letter ai in the word fn(aj), i.e., mn,i,j =
|fn(aj)|ai . For details on the incidence matrix of a morphism see, e.g., [2], chapter 8, in which
is given the following.

Property 1 For every n ∈ IN, M(f)n = M(fn).
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A morphism is nonerasing if f(a) != ε for all a ∈ A. Such a morphism is prolongable on
x0, x0 ∈ A+, if there exists u ∈ A+ such that f(x0) = x0u. In this case, for all n ∈ IN the
word fn(x0) is a proper prefix of the word fn+1(x0) and this defines a unique infinite word

x = x0uf(u)f2(u) · · · fn(u) · · ·

which is the limit of the sequence (fn(x0))n≥0. We write x = fω(x0) and say that x is
generated by f.

A (finite or infinite) word u over A is square-free (resp. cube-free) if none of its factors is
a square (resp. a cube). A morphism f on A is square-free if the word f(u) is square-free
whenever u is a square-free word. The morphism f is weakly square-free if f generates a
square-free infinite word.

A tag-system is a quintuple T = (A, u, f, g, B) where A and B are alphabets, u ∈ A+, f
is a nonerasing morphism on A, prolongable on u, and g is a morphism from A onto B. An
infinite word y is generated by G if y = g((fk)ω(u)) for some k ∈ IN.

Remark that what we call here a tag-system is sometimes called a HD0L-system. The
terminology of tag-system comes from the fundamental study of Cobham [12]. Chapter 5 of
[26] is dedicated to a deep study of D0L-systems.

2.2. Ordered Patterns

Let A be a totally ordered alphabet and let ℵ be the ordered alphabet whose letters are the
first n positive integers in the usual order (thus ℵ = {1, 2, . . . , n}). An ordered pattern is any
word1 over ℵ ∪ {#}, # !∈ ℵ, without two consecutive #. If a pattern contains at least one
#, not at the very beginning or at the very end, it is an ordered pattern with gaps; otherwise
it is an ordered pattern with no gaps2. Moreover, in this paper the ordered patterns u, #u,
u#, and #u# are considered to be the same. In particular, if x is a word over ℵ, we will
write (x#)" or (#x)" to represent the ordered pattern x#x# · · ·#x containing l occurrences
of the word x.

A word v over A contains an occurrence of the ordered pattern u = u1#u2# · · ·#un,
where ui ∈ ℵ+ and n ≥ 1, (or, equivalently the ordered pattern u occurs in v) if v =
w0v1w1v2w2 · · ·wn−1vnwn and there exists a literal morphism f : ℵ∗ → A∗ such that f(ui) =
vi, 1 ≤ i ≤ n, and if x, y ∈ ℵ, x < y ⇒ f(x) < f(y). Thus the word v contains an occurrence

1In algebraic combinatorics when defining a pattern it is claimed that each letter from the interval [k]
must occur at least once. This requirement is not useful here, what is important is the relative value of each
letter because this gives the order. However it will be often implicit that these letters (which are only formal
representations of the pattern) are taken in the order from 1.

2Our choice here is to use terminology of combinatorics on words. For example, our notion of pattern with
no gaps is often referred to as pattern without internal dashes or consecutive pattern in the literature about
algebraic combinatorics (see, e.g., [17]). However this terminology does not seem to be solid since Burstein
and Mansour used subword pattern without hyphens [10], and segmented pattern is also encountered.
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of the ordered pattern u if v contains a subsequence v′ which is equal to f(u′) where u′ is
obtained from u by deleting all the occurrences of #, with the additional condition that two
adjacent (not separated by #) letters in u must be adjacent in v. The number of different
occurrences of u as an ordered pattern in v is denoted by |v|u (this is consistent with the
classical notation because if u is a single letter then |v|u is just the number of occurrences
of the letter u in the word v).

Example. Let A = {a, b, c, d, e, f} with a < b < c < d < e < f. The word v = eafdbc contains
one occurrence of the ordered pattern 2#31, namely the subsequence efd (|e afd b c|2#31 =
1). In v, the ordered pattern 2#3#1 occurs in three occurrences: efd, ef b, and efc
(|e afd b c|2#3#1 = 3); the ordered pattern 231 does not occur in v (|e afd b c|231 = 0).

3. Ordered Patterns with Gaps and Morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}.
Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with pi ≥ 0 (pi = 0 if and
only if f(ai) = ε).

3.1. Inversions, Non-inversions, and Repetitions with Gaps of fn

In what follows we are interested in some particular forms of ordered patterns. In accordance
with permutations theory, an inversion (resp. non-inversion) is an occurrence of the ordered
pattern 2#1 (resp. 1#2). Repetitions with gaps of one letter are occurrences of the ordered
patterns (1#)p, p ≥ 1.

3.1.1. Inversions and Non-inversions

Let n be a non-negative integer. The vector3 of non-inversions (denoted by RG for “rises
with gaps”) of fn is the k vector whose i-th entry is the number of occurrences of the ordered
pattern 1#2 in the word fn(ai), i.e.,

RG(fn) = (|fn(ai)|1#2)1≤i≤k.

The vector of inversions (denoted by DG for “descents with gaps”) of fn is the k vector
whose i-th entry is the number of occurrences of the ordered pattern 2#1 in the word fn(ai),

3The computation of the number of ordered patterns in words is related to so-called Parikh matrices.
For example the number of occurrences of the ordered pattern 1#2 in a word w over a three-letter alphabet
is equal to M1,3 + M2,4 where M is the Parikh matrix of w (for more information on Parikh matrices see,
e.g., Mateescu et al. [23] or Fossé and Richomme [14]). However Parikh matrices are not well adapted to
compute the number of most of the ordered patterns (for example in the case of ordered patterns as 1#2#1
or 1#23) which explains that here we use another more convenient representation with vectors.
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i.e.,
DG(fn) = (|fn(ai)|2#1)1≤i≤k.

Our goal is to obtain recurrence formulas giving the entries of RG(fn+1) and DG(fn+1).
Since fn+1 = fn◦f = f◦fn, we have two different ways to compute RG(fn+1) and DG(fn+1).

Let % be an integer, 1 ≤ % ≤ k. Either |fn+1(a")|1#2 (resp. |fn+1(a")|2#1) will be obtained
from the value of f(a") and the entries of RG(fn) (resp. DG(fn)) (see 1. below), or it will
be computed from the values of RG(f) (resp. DG(f)) and fn(a") (see 2. below).

1. From fn+1 = fn ◦ f.

Since f(a") = a"1 . . . a"p!
, the number of occurrences of the ordered pattern 1#2 in

fn+1(a") = fn(f(a")) = fn(a"1 . . . a"p!
) is obtained by adding two values:

• the number of occurrences of the ordered pattern 1#2 in each fn(a"i), 1 ≤ i ≤ p".
Since the %-th column of the incidence matrix of f indicates which letters appear
in f(a") (and how many times), this number is obtained by multiplying the vector
RG(fn) by the %-th column of M(f), i.e., it is equal to

∑k
t=1 |fn(at)|1#2 · m1,t," ,

• the number of occurrences of the ordered pattern 1#2 in each of the fn(a"ia"j),
1 ≤ i < j ≤ p", where the letter corresponding to 1 is in fn(a"i) and the letter
corresponding to 2 is in fn(a"j). In what follows we will call such an occurrence of
1#2 in fn(a"ia"j) an external occurrence of the ordered pattern 1#2 in fn(a"ia"j),
and denote it |fn(a"ia"j)|ext

1#2.

The value of |fn(a"ia"j)|ext
1#2 is obtained by adding, for all the integers r, 1 ≤

r ≤ k − 1, the product of the number of occurrences of the letter ar in fn(a"i)
(|fn(a"i)|ar) by the number of occurrences of all the letters of fn(a"j) greater than

ar (|fn(a"j)|as , r + 1 ≤ s ≤ k). This gives
∑k−1

r=1(mn,r,"i ·
∑k

s=r+1 mn,s,"j).

The number of external occurrences of 1#2 in all the fn(a"ia"j), 1 ≤ i < j ≤ p", is

thus given by
∑

1≤i<j≤p!
|fn(a"ia"j)|ext

1#2 =
∑

1≤i<j≤p!
(
∑k−1

r=1(mn,r,"i·
∑k

s=r+1 mn,s,"j)).

2. From fn+1 = f ◦ fn.

Let q" = |fn(a")| : fn+1(a") = f(fn(a")) = f(a"′1
. . . a"′q!

). Here the number of occur-

rences of the ordered pattern 1#2 in fn+1(a") is obtained by adding

• the number of occurrences of the ordered pattern 1#2 in each f(a"′i
), 1 ≤ i ≤ q".

Since the %-th column of the incidence matrix of fn indicates which letters appear
in fn(a") (and how many times), this number is obtained by multiplying the vector
RG(f) by the %-th column of M(fn), i.e., it is equal to

∑k
t=1 |f(at)|1#2 · mn,t," ,

• the number of external occurrences of the ordered pattern 1#2 in each of the
f(a"′i

a"′j
), 1 ≤ i < j ≤ q". This number is obtained by adding, for all the integers

r, 1 ≤ r ≤ k − 1, the product of the number of occurrences of the letter ar in
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f(a"′i
) (|f(a"′i

)|ar) by the number of occurrences of all the letters of f(a"′j
) greater

than ar (|f(a"′j
)|as , r + 1 ≤ s ≤ k). This gives

∑k−1
r=1(m1,r,"′i

·
∑k

s=r+1 m1,s,"′j
).

The number of external occurrences of 1#2 in all the f(a"′i
a"′j

), 1 ≤ i < j ≤ q", is

thus given by
∑

1≤i<j≤q!
|f(a"′i

a"′j
)|ext

1#2 =
∑

1≤i<j≤q!
(
∑k−1

r=1(m1,r,"′i
·
∑k

s=r+1 m1,s,"′j
)).

The same reasoning applies for calculating the entries of DG(fn+1), replacing 1#2 by
2#1 and “greater” by “smaller”.

Thus, we have the following.

Proposition 1 For each letter a" ∈ A, let p" and q" be such that f(a") = a"1 . . . a"p!
and

fn(a") = a"′1
. . . a"′q!

. Then, for all n ∈ IN,

|fn+1(a")|1#2 =
∑

1≤i<j≤p!

(
k−1∑

r=1

(mn,r,"i ·
k∑

s=r+1

mn,s,"j)) +
k∑

t=1

|fn(at)|1#2 · m1,t," , (1)

=
∑

1≤i<j≤q!

(
k−1∑

r=1

(m1,r,"′i
·

k∑

s=r+1

m1,s,"′j
)) +

k∑

t=1

|f(at)|1#2 · mn,t," , (2)

|fn+1(a")|2#1 =
∑

1≤i<j≤p!

(
k∑

r=2

(mn,r,"i ·
r−1∑

s=1

mn,s,"j)) +
k∑

t=1

|fn(at)|2#1 · m1,t," , (3)

=
∑

1≤i<j≤q!

(
k∑

r=2

(m1,r,"′i
·

r−1∑

s=1

m1,s,"′j
)) +

k∑

t=1

|f(at)|2#1 · mn,t," . (4)

Of course, the analysis we have done above could be realized to compute more complex
ordered patterns with gaps, such as 1#23, 1#2#3, · · · The only difficulty is to adapt the
computation of external inversions and non-inversions.

3.1.2. Repetitions of One Letter

Let n be a non-negative integer and p a positive integer. The vector of p-repetitions with
gaps of one letter of fn is the k vector whose i-th entry is the number of occurrences of the
ordered pattern (1#)p in the word fn(ai), i.e.,

RpG(fn) = (|fn(ai)|(1#)p)1≤i≤k.

The following is obvious.

Proposition 2 For each letter a" ∈ A and for all n ∈ IN,

|fn(a")|(1#)p =
k∑

t=1

(
mn,t,"

p

)
. (5)
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3.2. Some Examples in the Binary Case

Since equations (1) to (5) are recurrence formulas they are not always suitable to produce
exact formulas giving the entries of RG(fn), DG(fn), and RpG(fn). However, in some
particular cases we obtained such exact formulas. This is in particular the case for the
following two classical morphisms on the two-letter ordered alphabet {a1 < a2}.

3.2.1. The Thue-Morse Morphism

The Thue-Morse morphism µ was introduced in 1912 by Thue [31], although it was hinted
at sixty years earlier by Prouhet [25]. It was discovered independently in 1921 by Morse
[24]. This morphism is defined by µ(a1) = a1a2, µ(a2) = a2a1. It generates the famous
Thue-Morse sequence t = µω(a1) which has been widely studied (see, e.g., Lothaire [21], or
Allouche and Shallit [2], and references therein).

For every positive integers n, the incidence matrix of µn is M(µn) =

[
2n−1 2n−1

2n−1 2n−1

]
.

Thus, from equations (1), (3), and (5) we obtain

|µn+1(a1)|1#2 = |µn+1(a2)|1#2 = 22(n−1) + |µn(a1)|1#2 + |µn(a2)|1#2,
|µn+1(a1)|2#1 = |µn+1(a2)|2#1 = 22(n−1) + |µn(a1)|2#1 + |µn(a2)|2#1,

|µn(a1)|(1#)p = |µn(a2)|(1#)p = 2 ·
(
2n−1

p

)
.

Since RG(µ) =
[

1 0
]

and DG(µ) =
[

0 1
]
, we obtain from Proposition 1 the

following trivial result.

Corollary 1 For any integer n ≥ 2,

RG(µn) = DG(µn) =
[

22n−3 22n−3
]

and RpG(µn) =
[

2 ·
(
2n−1

p

)
2 ·

(
2n−1

p

) ]
.

3.2.2. The Fibonacci Morphism

The Fibonacci morphism ϕ is defined by ϕ(a1) = a1a2, ϕ(a2) = a1. It generates the well
known Fibonacci sequence f = ϕω(a1) which has numerous remarkable properties and is the
prototype of a Sturmian word (see, e.g., Chapter 2 of [22]).

Let (Fn)n≥−1 be the sequence of Fibonacci numbers: F−1 = 0, F0 = 1, Fn = Fn−1 + Fn−2

for n ≥ 1. The following property of Fibonacci numbers will be useful below.

Property 2 For every positive integer n,

FnFn−2 = F 2
n−1 +

{
1 if n is even,

−1 if n is odd.
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An easy computation gives, for every positive integer n, the incidence matrix of ϕn:

M(ϕn) =

[
Fn Fn−1

Fn−1 Fn−2

]
.

The vector of non-inversions of ϕ is RG(ϕ) =
[

1 0
]
. Moreover, from equation (1), we

obtain for n ≥ 1

|ϕn+1(a1)|1#2 = mn,1,1 · mn,2,2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= FnFn−2 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2

= F 2
n−1 + |ϕn(a1)|1#2 + |ϕn(a2)|1#2 +

{
1 if n is even,

−1 if n is odd
(see Property 2).

The vector of inversions of ϕ is DG(ϕ) =
[

0 0
]
. Moreover, from equation (3), we

obtain for n ≥ 1

|ϕn+1(a1)|2#1 = mn,2,1 · mn,1,2 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1

= F 2
n−1 + |ϕn(a1)|2#1 + |ϕn(a2)|2#1.

Now, |ϕn+1(a2)|1#2 = |ϕn(a1)|1#2 and |ϕn+1(a2)|2#1 = |ϕn(a1)|2#1 because ϕ(a2) =
a1. From this we obtain direct formulas to compute, for every n ≥ 0, |ϕn+2(a1)|1#2 and
|ϕn+2(a1)|2#1 from the sequence of Fibonacci numbers.

Corollary 2 For every integer n ≥ 0,

|ϕn+2(a1)|2#1 =
∑n

p=0 FpF 2
n−p ,

|ϕn+2(a1)|1#2 = |ϕn+2(a1)|2#1 + Fn +

{
1 if n is odd,

−1 if n is even.

Proof. Since F0 = 1 and ϕ2(a1) = a1a2a1, the result is obviously true if n = 0. Also, since
F0 = 1, F1 = 1, and ϕ3(a1) = a1a2a1a1a2, the result is true for n = 1. Now suppose n ≥ 2
and the assertions are true for all m < n. We prove they are true for n.

• We first compute |ϕn+2(a1)|2#1.

|ϕn+2(a1)|2#1 = F 2
n + |ϕn+1(a1)|2#1 + |ϕn(a1)|2#1

= F 2
n +

∑n−1
p=0 FpF 2

n−1−p +
∑n−2

p=0 FpF 2
n−2−p.

But
∑n−2

p=0 FpF 2
n−2−p =

∑n−1
p=1 Fp−1F 2

n−2−(p−1)

=
∑n−1

p=1 Fp−1F 2
n−1−p.

Thus |ϕn+2(a1)|2#1 = F 2
n + F0F 2

n−1 +
∑n−1

p=1(Fp + Fp−1)F 2
n−1−p

= F 2
n + F 2

n−1 +
∑n−1

p=1 Fp+1F 2
n−(p+1)

= F 2
n + F 2

n−1 +
∑n

p=2 FpF 2
n−p

=
∑n

p=0 FpF 2
n−p (because F0 = F1 = 1).
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• For |ϕn+2(a1)|1#2, we remark that if n is even then n− 2 is even, and n− 1, n + 1 are
odd. And if n is odd then n− 2 is odd, and n− 1, n + 1 are even. Consequently,

|ϕn+2(a1)|1#2 = F 2
n + |ϕn+1(a1)|1#2 + |ϕn(a2)|1#2 +

{
1 if n + 1 is even (n odd),

−1 if n + 1 is odd (n even)

= F 2
n +

n−1∑

p=0

FpF
2
n−1−p + Fn−1 + 1 +

n−2∑

p=0

FpF
2
n−2−p + Fn−2 − 1

+

{
1 if n is odd,

−1 if n is even

=
∑n

p=0 FpF 2
n−p + Fn−1 + Fn−2 +

{
1 if n is odd,

−1 if n is even

=
∑n

p=0 FpF 2
n−p + Fn +

{
1 if n is odd,

−1 if n is even.

!

Regarding repetitions of one letter, RpG(ϕ) =
[ (

1
p

)
+

(
1
p

) (
1
p

) ]
and, for n ≥ 0, the

vector RpG(ϕn+2) is obtained from equation (5).

Corollary 3 For any integer n ≥ 0,

RpG(ϕn+2) =
[ (

Fn+2

p

)
+

(
Fn+1

p

) (
Fn+1

p

)
+

(
Fn

p

) ]
.

4. A Particular Family of Morphisms

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}.
In this section we are interested in morphisms f having the following particularities:

a) there exists a positive integer m such that |f(a1)|ai = m, 1 ≤ i ≤ k ,

b) there exists a positive integer d such that |f(a2 . . . ak)|ai = d, 1 ≤ i ≤ k ,

c) for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext
1#2 = |f(ajai)|ext

1#2.

(Conditions (a) and (b) are particular cases of the more general situation, considered in
Theorem 1 below, in which the alphabet A is partitioned into sets A1, A2, . . ., An such that,
for each Ai, the sum of the number of occurrences of each letter in the images of letters of
Ai is the same.)

In this case we are able to give direct formulas to compute |fn+1(a1)|1#2 and others from m,
d, and n.
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Proposition 3 For every positive integer n,

|fn+1(a1)|1#2 = m(d + m)n−1
∑k

i=1 |f(ai)|1#2 + [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2

+m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 ,

|fn+1(a2 . . . ak)|1#2 = d(d + m)n−1
∑k

i=1 |f(ai)|1#2 + [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2

+d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Proof. Let n ≥ 1. As in Proposition 1, let q1 = |fn(a1)| so that fn(a1) = a1′1
. . . a1′q1

. Equation
(2) gives

|fn+1(a1)|1#2 =
∑

1≤i<j≤q1
(
∑k−1

r=1(m1,r,1′i
·
∑k

s=r+1 m1,s,1′j
)) +

∑k
t=1 |f(at)|1#2 · mn,t,1

=
∑

1≤i<j≤q1
|f(a1′i

a1′j
)|ext

1#2 +
∑k

t=1 |f(at)|1#2 · |fn(a1)|at .

Now, conditions (a) to (c) above imply that the incidence matrix of fn is rather special.
From (a) and (b), |fn(a1)|at = m(d + m)n−1 for each t, 1 ≤ t ≤ k. This implies that∑k

t=1 |f(at)|1#2 · |fn(a1)|at = m(d + m)n−1
∑k

i=1 |f(ai)|1#2 . This also implies that q1 =
km(d + m)n−1.

But, from (c), the computation of
∑

1≤i<j≤km(d+m)n−1 |f(a1′i
a1′j

)|ext
1#2, realized from the

word fn(a1) which contains m(d + m)n−1 occurrences of each letter, can be equivalently

realized from the word am(d+m)n−1

1 am(d+m)n−1

2 · · · am(d+m)n−1

k .

Then the first letter a1 (i = 1) gives [m(d + m)n−1 − 1] · |f(a1a1)|ext
1#2 +

∑k
j=2 m(d +

m)n−1|f(a1aj)|ext
1#2.

The second letter a1 (i = 2) gives [m(d + m)n−1 − 2] · |f(a1a1)|ext
1#2 +

∑k
j=2 m(d +

m)n−1|f(a1aj)|ext
1#2.

...

The next to last letter a1 (i = m(d + m)n−1 − 1) gives 1 · |f(a1a1)|ext
1#2 +

∑k
j=2 m(d +

m)n−1|f(a1aj)|ext
1#2.

The last letter a1 (i = m(d+m)n−1) gives 0·|f(a1a1)|ext
1#2+

∑k
j=2 m(d+m)n−1|f(a1aj)|ext

1#2.

The first letter a2 (i = m(d + m)n−1 + 1) gives [m(d + m)n−1 − 1] · |f(a2a2)|ext
1#2 +∑k

j=3 m(d + m)n−1|f(a2aj)|ext
1#2.

And so on.
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Consequently
∑

1≤i<j≤km(d+m)n−1 |f(a1′i
a1′j

)|ext
1#2

=
∑m(d+m)n−1−1

i=0 i·
∑k

j=1 |f(ajaj)|ext
1#2+m(d+m)n−1

∑k−1
i=1

∑k
j=i+1 m(d+m)n−1|f(aiaj)|ext

1#2

= [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2 + m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Hence, we have

|fn+1(a1)|1#2 = m(d + m)n−1
∑k

i=1 |f(ai)|1#2

+ [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2

+m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 .

Now, for |fn+1(a2 . . . ak)|1#2, equation (2) gives

|fn+1(a2 . . . ak)|1#2 =
∑k

"=2(
∑

1≤i<j≤q!
|f(a"′i

a"′j
)|ext

1#2 +
∑k

t=1 |f(at)|1#2 · |fn(a")|at)

=
∑k

"=2

∑
1≤i<j≤q!

|f(a"′i
a"′j

)|ext
1#2 +

∑k
t=1

∑k
"=2 |f(at)|1#2 · |fn(a")|at .

Again from (a) and (b),
∑k

"=2 |fn(a")|at = d(d + m)n−1 for each t, 1 ≤ t ≤ k. In
particular,

∑k
"=2

∑
1≤i<j≤q!

|f(a"′i
a"′j

)|ext
1#2 =

∑
1≤i<j≤kd(d+m)n−1 |f(a"′i

a"′j
)|ext

1#2 . As above, the

computation can be realized from the word ad(d+m)n−1

1 ad(d+m)n−1

2 · · · ad(d+m)n−1

k . This gives us∑
1≤i<j≤kd(d+m)n−1 |f(a"′i

a"′j
)|ext

1#2

=
∑d(d+m)n−1−1

i=0 i ·
∑k

j=1 |f(ajaj)|ext
1#2 + d(d + m)n−1

∑k−1
i=1

∑k
j=i+1 d(d + m)n−1|f(aiaj)|ext

1#2

= [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

1#2 + d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
1#2 . !

Now the same reasoning can be applied for |fn+1(a1)|2#1 and |fn+1(a2 . . . ak)|2#1, because
of the following obvious property.

Property 3 Let f be a morphism on A. For every non-negative integer n, and for every
integers i, j, 1 ≤ i, j ≤ k, |fn(aiaj)|ext

1#2 = |fn(ajai)|ext
2#1.

Thus, using equation (4), we have the following.

Proposition 4 For every positive integer n,

|fn+1(a1)|2#1 = m(d + m)n−1
∑k

i=1 |f(ai)|2#1 + [m(d+m)n−1−1]m(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

2#1

+m2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
2#1 ,

|fn+1(a2 . . . ak)|2#1 = d(d + m)n−1
∑k

i=1 |f(ai)|2#1 + [d(d+m)n−1−1]d(d+m)n−1

2

∑k
j=1 |f(ajaj)|ext

2#1

+d2(d + m)2n−2
∑

1≤i<j≤k |f(aiaj)|ext
2#1 .
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The previous reasoning can of course be applied if conditions (a) and (b) are verified
for any partition of the alphabet (in Propositions 3 and 4 the partition is in two sets A =
{a1} ∪ {a2 . . . ak}). Then we obtain the following general result.

Theorem 1 Let k be an integer (k ≥ 2), and A the k-letter ordered alphabet A = {a1 <
a2 < . . . < ak}. Let f be a morphism on A fulfilling the following conditions:

• there exist a positive integer p and a set of p positive integers {m1, . . . ,mp} such that
A can be partitioned into p subsets A1, . . . , Ap with

∑
a∈A!

|f(a)|ai = m", 1 ≤ i ≤ k,

• for every i, j, 1 ≤ i, j ≤ k, |f(aiaj)|ext
1#2 = |f(ajai)|ext

1#2.

Let M = m1 + . . . + mp and let u = 1#2 or u = 2#1. Then, for every positive integer n and
for each A", 1 ≤ % ≤ p,

∑
a∈A!

|fn+1(a)|u = m"Mn−1
∑k

i=1 |f(ai)|u + (m!Mn−1−1)m!Mn−1

2

∑k
j=1 |f(ajaj)|ext

u

+m2
"M

2n−2
∑

1≤i<j≤k |f(aiaj)|ext
u .

5. Examples

In this section we give a series of examples of application of Theorem 1. The first ones (5.1
to 5.4) are related to the well known Thue-Morse morphism and they give results that of
course can be found with some other techniques, but they are presented in order to make
the results more comprehensible. The last ones are original; they illustrate some general
representative situations.

5.1. The Thue-Morse Morphism

The Thue-Morse morphism (see Section 3.2) is the simplest example of a morphism fulfill-
ing conditions (a) to (c) above. Indeed m = d = 1, and |µ(a1a2)|ext

1#2 = |a1a2a2a1|ext
1#2 =

1 = |a2a1a1a2|ext
1#2 = |µ(a2a1)|ext

1#2, |µ(a1a1)|ext
1#2 = |µ(a2a2)|ext

1#2 = 1. Since |µ(a1)|1#2 =
|µ(a2)|2#1 = 1, and |µ(a1)|2#1 = |µ(a2)|1#2 = 0, we obtain from Propositions 3 and 4
that |µn+1(a1)|1#2 = |µn+1(a1)|2#1 = |µn+1(a2)|1#2 = |µn+1(a2)|2#1 = 22n−1 (see Corollary 1
above).

5.2. The Istrail Morphism

In [15] we have the following well known example of a weakly square-free morphism. The
morphism h is defined on the three-letter ordered alphabet A = {a1 < a2 < a3} by

h(a1) = a1a2a3, h(a2) = a1a3, h(a3) = a2
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(we remark that h generates a square-free infinite word, hω(a1), but is not a square-free
morphism: h(a1a2a1) = a1a2a3a1a3a1a2a3 contains the square a3a1a3a1).

The word hω(a1) is closely related to the Thue-Morse word t. Indeed, let B be the
two-letter alphabet B = {a1, a2}, and consider the morphism

δ : A∗ → B∗

a1 ,→ a1

a2 ,→ a1a2

a3 ,→ a1a2a2.

Then t = δ(hω(a1)) (see Proposition 2.3.2 in [21]).

Here again the morphism h fulfills conditions (a) to (c) with m = d = 1. Moreover
|h(a1)|1#2 = |h(a1a1)|ext

1#2 = 3, |h(a2)|1#2 = |h(a2a2)|ext
1#2 = 1, |h(a3)|1#2 = |h(a3a3)|ext

1#2 = 0,
and |h(a1a2)|ext

1#2 = 2, |h(a1a3)|ext
1#2 = |h(a2a3)|ext

1#2 = 1. Then, from Proposition 3, for every
integer n ≥ 1, |hn+1(a1)|1#2 = |hn+1(a2a3)|1#2 = 3 · 22n−1 + 2n.

From Property 3, the values for 2#1 are the same as for 1#2, except for |h(ai)|2#1,
1 ≤ i ≤ 3. Here |h(a1)|2#1 = |h(a2)|2#1 = |h(a3)|2#1 = 0. Thus, from Proposition 4, for every
integer n ≥ 1, |hn+1(a1)|2#1 = |hn+1(a2a3)|2#1 = 3 · 22n−1 − 2n.

5.3. The Prouhet morphisms

In 1851, Prouhet [25] gave an algorithm to realize an arithmetic construction. This algorithm
produces intermediate infinite words that are a generalization of the Thue-Morse word (see
above). It was proved in [28] that these words can be generated by morphisms (see also [1]).

Let k ≥ 2, and let A be the k-letter ordered alphabet A = {a1 < · · · < ak}. The Prouhet
morphism πk is defined on A by πk(ai) = aiai+1 . . . aka1 . . . ai−1, 1 ≤ i ≤ k.

Example. Let k = 6. The morphism π6 is given by

a1 ,→ a1a2a3a4a5a6

a2 ,→ a2a3a4a5a6a1

a3 ,→ a3a4a5a6a1a2

a4 ,→ a4a5a6a1a2a3

a5 ,→ a5a6a1a2a3a4

a6 ,→ a6a1a2a3a4a5.

For every k the morphism πk fulfills the conditions of Theorem 1. Since, for every i,
1 ≤ i ≤ k, the word πk(ai) contains exactly one occurrence of each letter of A, there are a
lot of possibilities to choose the partition of A. Here we choose p = k and A = A1 ∪ . . .∪Ak,
Ai = {ai}, 1 ≤ i ≤ k. This implies that mi = 1, 1 ≤ i ≤ k and, of course, M = k.

Also, for every i, j, 1 ≤ i, j ≤ k, |πk(aiaj)|ext
1#2 = |πk(aiaj)|ext

2#1 = k(k−1)
2 .
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Now it is easy to verify that, due to the particular form of the images of the letters by
πk, one has for every %, 1 ≤ % ≤ k, |πk(a")|1#2 = [k−("−1)](k−")

2 + ("−1)("−2)
2 and |πk(a")|2#1 =

(%− 1)[k − (%− 1)].

Thus we obtain the following corollary of Theorem 1.

Corollary 4 For every i, 1 ≤ i ≤ k, and for every positive integer n,

|πn+1
k (ai)|1#2 =

(k − 1)kn

12

(
3kn+1 + k − 2

)
,

|πn+1
k (ai)|2#1 =

(k − 1)kn

12

(
3kn+1 − k + 2

)
.

Proof. From Theorem 1 and from what precedes,

|πn+1
k (ai)|1#2 = kn−1 ·

∑k
"=1

(
[k−("−1)](k−")

2 + ("−1)("−2)
2

)
+ (kn−1−1)kn−1

2

∑k
j=1

k(k−1)
2

+k2n−2 ·
∑

1≤j<"≤k
k(k−1)

2

= kn−1 ·
[

∑k
"=1

(
[k−("−1)](k−")

2 + ("−1)("−2)
2

)
+ (kn−1−1)

2 · k2(k−1)
2

+kn−1 ·
[

k(k−1)
2

]2
]
.

Since
∑k

"=1[k− (%−1)](k− %) = k3−k
3 and

∑k
"=1(%−1)(%−2) = k

3 (k−2)(k−1), we obtain

|πn+1
k (ai)|1#2 = kn−1 ·

[
(k+1)

6 k(k − 1) + (k−2)
6 k(k − 1) + k(kn−1−1)

4 k(k − 1)

+kn−1k(k−1)
4 k(k − 1)

]

= (k−1)kn

12 (3kn+1 + k − 2) .

The proof is the same for |πn+1
k (ai)|2#1, using

∑k
"=1(%− 1)[k − (%− 1)] = k

6 (k2 − 1). !

Example (continued).

|π6(a1)|1#2 = 15, |π6(a1)|2#1 = 0,
|π6(a2)|1#2 = 10, |π6(a2)|2#1 = 5,
|π6(a3)|1#2 = 7, |π6(a3)|2#1 = 8,
|π6(a4)|1#2 = 6, |π6(a4)|2#1 = 9,
|π6(a5)|1#2 = 7, |π6(a5)|2#1 = 8,
|π6(a6)|1#2 = 10, |π6(a6)|2#1 = 5.
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Here, k = 6, so for every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|πn+1
6 (ai)|1#2 = 5·6n

12 (3 · 6n+1 + 6− 2)

= 6n−1 · (45 · 6n + 10),

|πn+1
6 (ai)|2#1 = 6n−1 · (45 · 6n − 10).

5.4. The Arshon Morphisms

In a paper written in 1937, Arshon [3] gives an algorithm to construct for each integer n,
n ≥ 3, an infinite square-free word over an n-letter alphabet, and in the case of two letters
a cube-free word. It appears now that this construction is closely connected to the use of
Prouhet morphisms. In the case of two letters the Arshon word is the Thue-Morse word
and Arshon’s algorithm gives exactly the Thue-Morse morphism which is a particular case
of Prouhet morphism.

The Arshon words were proved to be, in the odd case, an example of infinite words that
can be generated by a tag-system but not by a morphism (see [5], [16], and [13]). In [29] a
family of morphisms is given which generates the even case Arshon words (see also [13] and
[16]). These morphisms are the following.

Let k be any even positive integer. The morphism βk is defined, for every r, 1 ≤ r ≤ k/2,
by

a2r−1 ,→ a2r−1a2r . . . ak−1aka1a2 . . . a2r−3a2r−2,
a2r ,→ a2r−1a2r−2 . . . a2a1akak−1 . . . a2r+1a2r.

(We remark that, again, though they generate square-free infinite words, the morphisms βk

are not square-free morphisms.)

Example. Let k = 6. The morphism β6 is given by

a1 ,→ a1a2a3a4a5a6

a2 ,→ a1a6a5a4a3a2

a3 ,→ a3a4a5a6a1a2

a4 ,→ a3a2a1a6a5a4

a5 ,→ a5a6a1a2a3a4

a6 ,→ a5a4a3a2a1a6.

Of course, since it is obtained from πk in an obvious manner, the morphism βk fulfills
the conditions of Theorem 1 for every even k. Since, for every i, 1 ≤ i ≤ k, the word βk(ai)
contains exactly one occurrence of each letter of A, there are again a lot of possibilities to
choose the partition of A. Here we again choose p = k and A = A1 ∪ . . . ∪ Ak, Ai = {ai},
1 ≤ i ≤ k. This implies that mi = 1, 1 ≤ i ≤ k and, of course, M = k.

Also, for every i, j, 1 ≤ i, j ≤ k, |βk(aiaj)|ext
1#2 = |βk(aiaj)|ext

2#1 = k(k−1)
2 .
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Now, again because βk is directly obtained from πk, one has for every r, 1 ≤ r ≤ k
2 ,

|βk(a2r−1)|1#2 = [k−(2r−2)][k−(2r−1)]
2 + (2r−2)(2r−3)

2 ,

|βk(a2r)|1#2 = (2r − 1)[k − (2r − 1)],

|βk(a2r−1)|2#1 = (2r − 2)[k − (2r − 2)],

|βk(a2r)|2#1 = [k−(2r−1)](k−2r)
2 + (2r−1)(2r−2)

2 .

Thus, we obtain another corollary of Theorem 1.

Corollary 5 Let k be any even positive integer. For every i, 1 ≤ i ≤ k, and for every
positive integer n,

|βn+1
k (ai)|1#2 =

kn−1

4

[
kn+2 · (k − 1) + 2k

]
,

|βn+1
k (ai)|2#1 =

kn−1

4

[
kn+2 · (k − 1)− 2k

]
.

Proof. As for the proof of Corollary 4, we obtain from Theorem 1 and from what precedes,

|βn+1
k (ai)|1#2 = kn−1 ·

[∑k
"=1 |βk(a")|1#2 − k2(k−1)

4

]
+ kn−1 ·

[
kn+2·(k−1)

4

]
.

But
∑k

"=1 |βk(a")|1#2 =
∑k/2

r=1 [|βk(a2r−1)|1#2 + |βk(a2r)|1#2] = k2(k−1)
4 + k

2 , and the result

follows. The proof is the same for |βn+1
k (ai)|2#1, using

∑k
"=1 |βk(a")|2#1 = k2(k−1)

4 − k
2 . !

Example (continued).

|β6(a1)|1#2 = 15, |β6(a1)|2#1 = 0,
|β6(a2)|1#2 = 5, |β6(a2)|2#1 = 10,
|β6(a3)|1#2 = 7, |β6(a3)|2#1 = 8,
|β6(a4)|1#2 = 9, |β6(a4)|2#1 = 6,
|β6(a5)|1#2 = 7, |β6(a5)|2#1 = 8,
|β6(a6)|1#2 = 5, |β6(a6)|2#1 = 10.

For every i, 1 ≤ i ≤ k, and for every n ≥ 1,

|βn+1
6 (ai)|1#2 = 6n−1

4 · (6n+2 · 5 + 2 · 6)
= 6n−1 · (45 · 6n + 3),

|βn+1
6 (ai)|2#1 = 6n−1 · (45 · 6n − 3).
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5.5. Three Other Examples

To end this list of examples, we give three morphisms that fulfill the conditions of Theorem
1, but are not linked with the Thue-Morse morphism. Moreover they are interesting because
the first one is an erasing morphism, the second gives a non trivial partition of the alphabet
when applying Theorem 1, and the third is an example of a ternary square-free morphism
fulfilling the conditions.

1. Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}. Define the morphism
f by

f : A∗ → A∗

a1 ,→ a1a3a2a4

a2 ,→ ε
a3 ,→ a1a4

a4 ,→ a2a3.

The morphism f fulfills the conditions of Theorem 1. Here we choose p = 3, A =
A1 ∪ A2 ∪ A3 with A1 = {a1}, A2 = {a2}, A3 = {a3, a4}, and m1 = m3 = 1, m2 = 0
(thus M = 2). One has |f(a1)|1#2 = 5, |f(a3)|1#2 = |f(a4)|1#2 = 1, |f(a1)|2#1 = 1,
|f(a3)|2#1 = |f(a4)|2#1 = 0, |f(a1a1)|ext

1#2 = |f(a1a1)|ext
2#1 = 6, |f(a3a3)|ext

1#2 = |f(a3a3)|ext
2#1 =

|f(a4a4)|ext
1#2 = |f(a4a4)|ext

2#1 = 1, |f(a1a3)|ext
1#2 = |f(a1a3)|ext

2#1 = |f(a1a4)|ext
1#2 = |f(a1a4)|ext

2#1 =
3, |f(a3a4)|ext

1#2 = |f(a3a4)|ext
2#1 = 2. All the values with a2 are of course 0.

Then we have the following corollary of Theorem 1.

Corollary 6 For every positive integer n,

|fn+1(a1)|1#2 = |fn+1(a3a4)|1#2 = 3 · 2n−1 · (2n+1 + 1),

|fn+1(a1)|2#1 = |fn+1(a3a4)|2#1 = 3 · 2n−1 · (2n+1 − 1),

|fn+1(a2)|1#2 = |fn+1(a2)|2#1 = 0.

2. Let A be the five-letter ordered alphabet A = {a1 < a2 < a3 < a4 < a5}. Define the
morphism g by

g : A∗ → A∗

a1 ,→ a1a3a5a4a2

a2 ,→ a4a2a3

a3 ,→ a5a1

a4 ,→ a1a5

a5 ,→ a2a3a4.

The morphism g fulfills the conditions of Theorem 1. Here we choose p = 3, A =
A1 ∪ A2 ∪ A3 with A1 = {a1}, A2 = {a2, a4}, A3 = {a3, a5}, and m1 = m2 = m3 = 1
(thus M = 3). One has |g(a1)|1#2 = 6, |g(a2)|1#2 = |g(a4)|1#2 = 1, |g(a3)|1#2 = 0,



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A03 19

|g(a5)|1#2 = 3, |g(a1)|2#1 = 4, |g(a2)|2#1 = 2, |g(a3)|2#1 = 1, |g(a4)|2#1 = |g(a5)|2#1 =
0, |g(a1a1)|ext

1#2 = 10, |g(a2a2)|ext
1#2 = |g(a5a5)|ext

1#2 = 3, |g(a3a3)|ext
1#2 = |g(a4a4)|ext

1#2 = 1,
|g(a1a2)|ext

1#2 = |g(a1a5)|ext
1#2 = 6, |g(a1a3)|ext

1#2 = |g(a1a4)|ext
1#2 = 4, |g(a2a3)|ext

1#2 = |g(a2a4)|ext
1#2 =

|g(a2a5)|ext
1#2 = |g(a3a5)|ext

1#2 = |g(a4a5)|ext
1#2 = 3, |g(a3a4)|ext

1#2 = 1.

To end we recall that, with the second condition of Theorem 1 and property 3, one has
for all integers i, j, 1 ≤ i, j ≤ k, |g(aiaj)|ext

1#2 = |g(aiaj)|ext
2#1.

Then we have the following corollary of Theorem 1.

Corollary 7 For every positive integer n,

|gn+1(a1)|1#2 = |gn+1(a2a4)|1#2 = |gn+1(a3a5)|1#2 = 3n−1 · (5 · 3n+1 + 2),

|gn+1(a1)|2#1 = |gn+1(a2a4)|2#1 = |gn+1(a3a5)|2#1 = 3n−1 · (5 · 3n+1 − 2).

3. Let A be the three-letter ordered alphabet A = {a < b < c}. Define the morphism h by

h : A∗ → A∗

a ,→ aba cab cac bab cba cbc
b ,→ aba cab cac bca bcb abc
c ,→ aba cab cba cbc acb abc

This morphism was given to be square-free by Brandenburg in [6]. It fulfills the conditions
of Theorem 1 with p = 3, A = A1 ∪ A2 ∪ A3 with A1 = {a}, A2 = {b}, A3 = {c}, and
m1 = m2 = m3 = 6, thus M = 18. One has |h(a)|1#2 = 70, |h(b)|1#2 = |h(c)|1#2 = 66,
|h(a)|2#1 = 38, |h(b)|2#1 = |h(c)|2#1 = 42.

Moreover, due to the particular form of the morphism h (it is uniform, i.e., |h(a)| =
|h(b| = |h(c)|, and for every x, y ∈ A, |h(x)|y = 6), one has |h(xy)|ext

1#2 = |h(xy)|ext
2#1 = 108

for every x, y ∈ A.

Then we have the following corollary of Theorem 1.

Corollary 8 For every x ∈ A and for every positive integer n,

|hn+1(x)|1#2 = 6 · 18n−1 · (9 · 18n+1 + 40),

|hn+1(x)|2#1 = 6 · 18n−1 · (9 · 18n+1 − 40).

6. Ordered Patterns with No Gaps and Morphisms

In this last section we consider the problem of counting consecutive patterns in words gen-
erated by morphisms. Here the things are a little bit more complicated than in Section 3.
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Indeed the computation of external occurrences of such a pattern can be distorted by the
fact that morphisms are allowed to be erasing. For example if A = {a1 < a2 < a3} and
f(a1) = a2a1, f(a2) = ε, f(a3) = a3 then the word f(a1a2a3) contains an occurrence of the
consecutive pattern 12 while f(a1a2) and f(a2a3) do not contain such an occurrence. Thus
we have a priori to study more than only words of the form f(aiaj) which were enough in
the case of classical patterns. The result of this study is presented in Proposition 5 in which
are given recurrence formulas for rises (occurrences of the ordered pattern 12), descents (oc-
currences of 21), and squares of one letter (occurrences of 11). We end again with some
examples illustrating that our technique can provide exact formulas when the morphism is
given.

6.1. Rises, Descents, and Squares of fn

Let k be an integer (k ≥ 2) and A the k-letter ordered alphabet A = {a1 < a2 < · · · < ak}.
Let f be any morphism on A: for 1 ≤ i ≤ k, f(ai) = ai1 . . . aipi

with pi ≥ 0 (pi = 0 if and
only if f(ai) = ε).

The vector of rises of fn is the k vector whose i-th entry is the number of occurrences of
the ordered pattern 12 in the word fn(ai), i.e.,

R(fn) = (|fn(ai)|12)1≤i≤k.

The vector of descents of fn is the k vector whose i-th entry is the number of occurrences
of the ordered pattern 21 in the word fn(ai), i.e.,

D(fn) = (|fn(ai)|21)1≤i≤k.

The vector of squares of one letter of fn is the k vector whose i-th entry is the number
of occurrences of the ordered pattern 11 in the word fn(ai), i.e.,

R2(f
n) = (|fn(ai)|11)1≤i≤k.

Here again, as in Section 3, our goal is to obtain recurrence formulas giving the entries
of R(fn+1), D(fn+1), and R2(fn+1).

We define two sequences of k vectors, (F (fn))n∈IN and (L(fn))n∈IN, where F (fn)[i] is the
first letter of fn(ai) and L(fn)[i] is the last letter of fn(ai) if fn(ai) != ε, and F (fn)[i] =
L(fn)[i] = 0 if fn(ai) = ε. Of course these two sequences take their values in a finite set:
they are ultimately periodic. Thus they can be computed a priori from f.

Given a non-negative integer n, let ℵ′ be the subset of ℵ such that, for each i ∈ ℵ,
fn(ai) != ε if and only if i ∈ ℵ′. We associate with the two vectors F (fn) and L(fn) an
application C12

n : ℵ′ × ℵ′ → {0, 1} defined by

C12
n (i, j) =

{
1, if L(fn)[i] < F (fn)[j]
0, if L(fn)[i] ≥ F (fn)[j].
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Similarly we define

C21
n (i, j) =

{
1, if L(fn)[i] > F (fn)[j]
0, if L(fn)[i] ≤ F (fn)[j],

and

C11
n (i, j) =

{
1, if L(fn)[i] = F (fn)[j]
0, if L(fn)[i] != F (fn)[j].

For any morphism f on A, there exists a least integer Mf (Mf ≤ k and Mf depends
only on f) such that, for every positive integer n and every a ∈ A, fn(a) = ε if and only if
fMf (a) = ε. By convention, if f is a nonerasing morphism then Mf = 0. The integer Mf is
known in the literature about L-systems as the mortality exponent of f (see, e.g., [20]).

Now let % be an integer, 1 ≤ % ≤ k. One has f(a") = a"1 . . . a"p!
and we denote by %′1 . . . %′p′!

the subsequence of %1 . . . %p!
such that fn+1(a") = fn(a"′1

. . . a"′
p′
!

) for every n ≥ Mf . This

means that, for every n ≥ Mf , a letter a"i appears in a"1 . . . a"p!
but not in a"′1

. . . a"′
p′
!

if and

only if fn(a"i) = ε. Of course p′" ≤ p", and if Mf = 0 then p′" = p" for each 1 ≤ % ≤ k.

Here also, as in Section 3, the number of occurrences of the ordered pattern 12 in
fn+1(a") = fn(a"1 . . . a"p!

) = fn(a"′1
. . . a"′

p′
!

) (n ≥ Mf) is obtained by adding two values:

• the number of occurrences of the ordered pattern 12 in each fn(a"i), 1 ≤ i ≤ p". As in
the previous case, this number is equal to

∑k
t=1 |fn(at)|12 · m1,t,",

• the number of external occurrences of the ordered pattern 12 in fn(a"′i
a"′j

) for each
subsequence a"′i

a"′j
of f(a"), 1 ≤ i < j ≤ p′". But the only possibility for 12 to be an

external occurrence in fn(a"′i
a"′j

) is that j = i+1 and the last letter of fn(a"′i
) is smaller

than the first letter of fn(a"′j
). Thus, the number of occurrences of such patterns is only

the number of times L(fn)[i] < F (fn)[i + 1] with i + 1 ≤ p′", i.e., the number of times
C12

n (%′i, %
′
i+1) = 1 for 1 ≤ i ≤ p′" − 1.

We proceed similarly with the patterns 21 and 11. Consequently we have the following
proposition.

Proposition 5 For each letter a" ∈ A, f(a") = a"1 . . . a"p!
, and for all n ≥ Mf , let %′1 . . . %′p′!

be the subsequence of %1 . . . %p!
such that fn+1(a") = fn(a"′1

. . . a"′
p′
!

) and fn(a"′i
) != ε, 1 ≤ i ≤

p′". Then

|fn+1(a")|12 =
k∑

t=1

|fn(at)|12 · m1,t," +

p′!−1∑

i=1

C12
n (%′i, %

′
i+1), (6)
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|fn+1(a")|21 =
k∑

t=1

|fn(at)|21 · m1,t," +

p′!−1∑

i=1

C21
n (%′i, %

′
i+1), (7)

|fn+1(a")|11 =
k∑

t=1

|fn(at)|11 · m1,t," +

p′!−1∑

i=1

C11
n (%′i, %

′
i+1). (8)

6.2. About the Repetitions of One Letter with No Gaps

The case of p-repetitions of one letter is more complicated when no gaps are allowed. Indeed
we have to find blocks of p consecutive equal letters but, generally, this number p is limited
by a given value depending on the morphism itself. For example the Thue-Morse morphism
µ (see Section 3.2) is such that µn(a1) and µn(a2) do not contain a1a1a1 nor a2a2a2 as factors,
whatever be the value of n (µ generates cube-free words). This explains why in the previous
section we only provide a formula giving the number of squares of one letter (the ordered
pattern 11) in the words fn(ai), 1 ≤ i ≤ k. If we want to obtain a formula giving the number
of p-powers of one letter (the ordered pattern 1p) for some p ≥ 3 the computation of external
repetitions (corresponding to C11

n in equation (8)) will become much more complicated.

6.3. Some Examples

We only give here a little number of examples illustrating Proposition 5 because the involved
techniques are roughly the same as in the case of patterns with gaps. First we give three
particular cases of families of morphisms in which the number of external occurrences of the
ordered pattern is trivially obtained. Then we give examples of exact formulas in the well
known cases of the Thue-Morse and the Fibonacci morphisms in order to compare with the
results obtained in Section 3.2. We end by an example of a basic erasing morphism and one
in which the value of the integer Mf above is 2.

6.3.1. No External Rises

Let us suppose that the morphism f is such that, for all i and j, L(f)[i] ≥ F (f)[j]. According
to equation (6), in this case, for each letter a" ∈ A, f(a") = a"1 . . . a"p!

, and for all n ≥ Mf ,

|fn+1(a")|12 =
k∑

t=1

|fn(at)|12 · m1,t,".

Moreover, if the above inequality is strict then, according to equation (7),

|fn+1(a")|21 =
k∑

t=1

|fn(at)|21 · m1,t," + p′" − 1.
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6.3.2. No External Descents

If, conversely to the previous case, the morphism f is such that, for all i and j, L(f)[i] ≤
F (f)[j] then, according to equation (7), for each letter a" ∈ A, f(a") = a"1 . . . a"p!

, and for
all n ≥ Mf ,

|fn+1(a")|21 =
k∑

t=1

|fn(at)|21 · m1,t,".

Moreover, if the above inequality is strict then, according to equation (6),

|fn+1(a")|12 =
k∑

t=1

|fn(at)|12 · m1,t," + p′" − 1.

6.3.3. No External Squares

Now, if we suppose that the morphism f is such that, for all i and j, L(f)[i] != F (f)[j] then,
according to equation (8), for each letter a" ∈ A, f(a") = a"1 . . . a"p!

, and for all n ≥ Mf ,

|fn+1(a")|11 =
k∑

t=1

|fn(at)|11 · m1,t,".

6.3.4. The Thue-Morse Morphism

For details on this morphism see Section 3.2. Here, k = 2 and for all 1 ≤ t, % ≤ 2, m1,t," = 1.
Since µ is nonerasing, Mµ = 0. Moreover for any integer n ≥ 0,

C12
n (1, 2) = C21

n (2, 1) =

{
1, if n is even
0, if n is odd,

C12
n (2, 1) = C21

n (1, 2) = 0 and C11
n (1, 2) = C11

n (2, 1) =

{
1, if n is odd
0, if n is even.

Thus, from equations (6), (7), and (8) we obtain, for every n ≥ 0,

|µn+1(a1)|12 = |µn(a1)|12 + |µn(a2)|12 +

{
1, if n is even
0, if n is odd

|µn+1(a2)|12 = |µn(a1)|12 + |µn(a2)|12
|µn+1(a1)|21 = |µn(a1)|21 + |µn(a2)|21
|µn+1(a2)|21 = |µn(a1)|21 + |µn(a2)|21 +

{
1, if n is even
0, if n is odd

|µn+1(a1)|11 = |µn+1(a2)|11 = 2 · |µn(a1)|11 +

{
1, if n is odd
0, if n is even.
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Since R(µ) =
[

1 0
]
, D(µ) =

[
0 1

]
and R2(µ) =

[
0 0

]
we obtain again a rather

trivial result.

Corollary 9 For any integer n ≥ 0,

R(µ2n) =
[

4n−1
3

4n−1
3

]
= D(µ2n) = R2(µ2n)

R(µ2n+1) =
[

2(4n−1)
3 + 1 2(4n−1)

3

]

D(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3 + 1

]

R2(µ2n+1) =
[

2(4n−1)
3

2(4n−1)
3

]
.

6.3.5. The Fibonacci Morphism

For details on this morphism see Section 3.2. Here again k = 2 and Mϕ = 0. First we note
that for n ≥ 1, since ϕ(a2) = a1, one has |ϕn(a2)|xy = |ϕn−1(a1)|xy for xy = 12, xy = 21,
and xy = 11. Moreover we are in case 6.3.1 above thus |ϕn+1(a1)|12 = |ϕn(a1)|12 · m1,1,1 +
|ϕn(a2)|12 · m1,2,1 for every n ≥ 1.

Now m1,1,1 = m1,2,1 = 1 and, for any positive integer n, C21
n (1, 2) =

{
1, if n is odd
0, if n is even

and C11
n (1, 2) =

{
1, if n is even
0, if n is odd.

Thus, from equations (7) and (8) we obtain, for every

n ≥ 1,

|ϕn+1(a1)|21 = |ϕn(a1)|21 + |ϕn(a2)|21 +

{
1, if n is odd
0, if n is even

|ϕn+1(a1)|11 = |ϕn(a1)|11 + |ϕn(a2)|11 +

{
1, if n is even
0, if n is odd.

Since R(ϕ) =
[

1 0
]

and D(ϕ) = R2(ϕ) =
[

0 0
]

we have again a well known result.

Corollary 10 For any integer n ≥ 1,

R(ϕn) =
[

Fn−1 Fn−2

]

D(ϕ2n) =
[

F2n−1 F2n−2 − 1
]

= R2(ϕ2n+1)

R2(ϕ2n) =
[

F2n−2 − 1 F2n−3

]
= D(ϕ2n−1).
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6.3.6. Erasing Morphisms

Let A be the four-letter ordered alphabet A = {a1 < a2 < a3 < a4}.

1. Here we consider the erasing morphism f , given in Section 5.5, defined on A by

f(a1) = a1a3a2a4

f(a2) = ε
f(a3) = a1a4

f(a4) = a2a3.

We have Mf = 1.

First, we remark that, for any positive integer n, fn(a2) = ε and thus |fn(a2)|xy = 0 for
xy = 12, xy = 21, and xy = 11. Here again we are in case 6.3.1 above and thus, for n ≥ 1,

|fn+1(a1)|12 = |fn(a1)|12 + |fn(a2)|12 + |fn(a3)|12 + |fn(a4)|12
= |fn(a1)|12 + |fn(a3)|12 + |fn(a4)|12

|fn+1(a3)|12 = |fn(a1)|12 + |fn(a4)|12

|fn+1(a4)|12 = |fn(a3)|12.

Moreover, the values of the number p′" of Proposition 5 are p′1 = 3, p′3 = 2, p′4 = 1 and, since
the inequality L(f)[i] ≥ F (f)[j] is strict for all the values of i, j, one has for every n ≥ 1

|fn+1(a1)|21 = |fn(a1)|21 + |fn(a3)|21 + |fn(a4)|21 + p′1 − 1
= |fn(a1)|21 + |fn(a3)|21 + |fn(a4)|21 + 2

|fn+1(a3)|21 = |fn(a1)|21 + |fn(a4)|21 + 1

|fn+1(a4)|21 = |fn(a3)|21.

But |f(a1)|12 = 2, |f(a3)|12 = 1, |f(a4)|12 = 1 and |f(a1)|21 = 1, |f(a3)|21 = 0, |f(a4)|21 =
0. Thus, we deduce easily that |fn(ai)|21 = |fn(ai)|12 − 1 for i = 1, i = 3, and i = 4.

To end, we are also in case 6.3.3 above. Consequently, for every n ≥ 1,

|fn+1(a1)|11 = |fn(a1)|11 + |fn(a3)|11 + |fn(a4)|11

|fn+1(a3)|11 = |fn(a1)|11 + |fn(a4)|11

|fn+1(a4)|11 = |fn(a3)|11.

But, since |f(a1)|11 = |f(a3)|11 = |f(a4)|11 = 0, this implies that |fn(a1)|11 = |fn(a3)|11 =
|fn(a4)|11 = 0 for any positive integer n. So it remains to calculate the values of |fn+1(a1)|12
and |fn+1(a3)|12.
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Since f(a1) = a1a3a2a4 and f(a3a4) = a1a4a2a3, it is clear that |fn(a1)|ai = 2n−1 for each
1 ≤ i ≤ 4 and n ≥ 1. Thus, since there are no external occurrences of the ordered pattern
12 in a word fn(ai) regardless of the value of n, one has for every n ≥ 1

|fn+1(a1)|12 = 2n−1 · (|f(a1)|12 + |f(a3)|12 + |f(a4)|12)
= 2n−1 · 4
= 2n+1.

In the same manner, |fn(a3)|a1 = |fn(a3)|a4 =

{
2n−1

3 , if n is even
2n+1

3 , if n is odd
for every positive

integer n, and |fn(a3)|a2 = |fn(a3)|a3 =

{
2n+2

3 , if n is even
2n−2

3 , if n is odd.
Consequently, if n is even then

|fn+1(a3)|12 = 2n−1
3 · (|f(a1)|12 + |f(a4)|12) + 2n+2

3 · |f(a3)|12

= 3(2n−1)
3 + 2n+2

3

= 2n+2−1
3 ,

and if n is odd then |fn+1(a3)|12 = 3(2n+1)
3 + 2n−2

3 = 2n+2+1
3 .

Starting from R(f) =
[

2 0 1 1
]
, the above results are summarized in the following

result.

Corollary 11 For any integer n ≥ 1, R2(fn) =
[

0 0 0 0
]

and

if n is even

{
R(fn) =

[
2n 0 2n+1+1

3
2n−1

3

]

D(fn) =
[

2n − 1 0 2n+1−2
3

2n−4
3

]
,

if n is odd

{
R(fn) =

[
2n 0 2n+1−1

3
2n+1

3

]

D(fn) =
[

2n − 1 0 2n+1−4
3

2n−2
3

]
.

2. Now we consider the erasing morphism g defined on A by

g(a1) = a1a2a4a3

f(a2) = a3

f(a3) = ε
f(a4) = a1a2a4.

Here we have Mf = 2, i.e., we must be careful of the fact that gn(a2) = ε only for n = 2.
Thus the recurrence formulas giving the values for gn+1 from those for gn must be given for
n ≥ 2, which means that the particular cases are those for both g and g2.

Let n ≥ 2. Since gn(a2) = gn(a3) = ε one has, for xy = 12, xy = 21, and xy = 11,
|gn+1(a2)|xy = |gn+1(a3)|xy = 0 and |gn+1(a1)|xy = |gn+1(a4)|xy. We are in case 6.3.1, so
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|gn+1(a1)|12 = 2 · |gn(a1)|12. Now, C21
n (1, 4) = 1, hence |gn+1(a1)|21 = 2 · |gn(a1)|21 + 1. To

end, C11
n (1, 4) = 0 and thus |gn+1(a1)|11 = 2 · |gn(a1)|11.

Consequently, we obtain the following result.

Corollary 12 R(g) =
[

2 0 0 2
]
, D(g) =

[
1 0 0 0

]
, R2(g) =

[
0 0 0 0

]
, and,

for any integer n ≥ 2,

R(gn) =
[

2n 0 0 2n
]

D(gn) =
[

2n−1 + 2n−2 − 1 0 0 2n−1 + 2n−2 − 1
]

R2(gn) =
[

2n−2 0 0 2n−2
]
.
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