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Abstract

It will be shown via a new method that in the Ring of Gaussian Integers Z[i] the solutions
of the Diophantine equation x3 + y3 = z3 are trivial, namely, x y z = 0. The result is
achieved by showing that the existence of nontrivial Gaussian Integer solutions implies
the existence of rational points on the elliptic curve y2 = x3 + 432, which is already
known to have none.

1. Introduction

In this paper we present a new method that addresses the question of the existence of
nontrivial solutions to the Fermat type Diophantine equation

x3 + y3 = z3 (1)

with x, y, z in the ring of Gaussian integers Z[i]. By nontrivial we mean solutions x, y, z
in Z[i] for which x y z != 0.

In L.E. Dickson’s History of the Theory of Numbers [1, p. 550], one can find that
this question has already been answered by R. Feuter [2] within the frame of algebraic
number theory. Namely, he has proven that if ξ3 +η3 +ζ3 = 0 is solvable by numbers != 0
of an imaginary quadratic domain k(

√
m), where m < 0, m ≡ 2 (mod 3), then the class

number of k is divisible by 3. Now k = Z, m = −1 and Z is a Principal Ideal Domain
having class number 1 not divisible by 3.

Our method is new since it transfers, via elementary polynomial theory, the question
of the existence of a nontrivial solution of (1) in Z[i], to the question of the existence of
a rational point on the elliptic curve

y2 = x3 + 432, (2)
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which is already known [1] to have none. Equation (2) is curve 432A3 in Cremona’s
tables with rank 0 and order of torsion subgroup 1; namely, its torsion subgroup contains
only the point at infinity. Thus (2) has no rational points of infinite or finite order.

So far various extensions of Fermat’s Last Theorem (FLT) have been treated in a vast
number of publications. Many references may be found in [5]. Some concern the nature
of the exponents, others, the nature of the solution’s underlying ring. We mention, for
example, [3] for rational exponents and [4] for exponents in Z[i]. On the other hand, in [5,
6] one can find the solution of the cubic exponent case of FLT in Z[ω], ω3 = 1, ω != 1; in
[5, 7, 8] the solution of the fourth exponent case in Z[i]; and in [9] the solution of the nth

exponent case in the ring of polynomials of an algebraically closed field with characteristic
0. There are also mixed cases as in [10] where the exponents are not necessarily equal,
the equation may have coefficients other than 1 but the solutions are in Z, or in [11] with
two exponents equal to 4, one exponent equal to 2, not all coefficients equal to 1, and
underlying ring of solutions Z[i]. The latter is a generalization of the fourth exponent
case in [5, 7, 8].

2. The Equation x3 + y3 = z3 in Z[i]

In order for us to demonstrate the above-mentioned connection between the nontrivial
solutions of (1) in Z[i] and the rational points on (2), we introduce the following notations
and assumptions. Let (x0, y0, z0) = (a1 + b1 i , a2 + b2 i , a3 + b3 i) be a nontrivial solution
of (1) in Z[i]. Also let I = {1, 2, 3}. If am = 0 or bm = 0 for all m in I, (1) implies
either b3

1 + b3
2 = b3

3 or a3
1 + a3

2 = a3
3, respectively. Since am, bm are in Z, the latter holds

only when at least one of the bm’s or the am’s, respectively, is 0. Then at least one of
the am + bm i is 0, a contradiction. Thus |a1| + |a2| + |a3| != 0 and |b1| + |b2| + |b3| != 0.
Additionally, let pm(x) = am + bm x, f(x) = p3

1(x)+p3
2(x)−p3

3(x) be polynomials in Z[x].
Finally, set

km =

{
−1 , m = 1, 2

1 , m = 3.

Our first partial result about (1), Theorem 1, is based upon the kind of roots that f(x)
possesses. For this piece of information we need the following lemma that determines the
degree of f(x) and its behavior at 0. Notice the catalytic appearance of (2) in the proof.

Lemma 1 If (1) has a nontrivial solution (x0, y0, z0) in Z[i], then f(x) has degree 3 and
f(0) != 0.

Proof. The coefficient of x3 in f(x) is t3 = b3
1 + b3

2 − b3
3, whereas the constant term is

t0 = a3
1 + a3

2 − a3
3. Assume t3 = 0. Then (b1, b2, b3) = (0, b, b) or (b, 0, b) or (b,−b, 0) or
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(−b, b, 0) for some b, and (1) implies, respectively,
[
a3

1 + a3
2 − a3

3 + 3 b2 (a3 − a2)
]
−

[
3 b

(
a2

3 − a2
2

)]
i = 0 (3)

[
a3

1 + a3
2 − a3

3 + 3 b2 (a3 − a1)
]
−

[
3 b

(
a2

3 − a2
1

)]
i = 0 (4)

[
a3

1 + a3
2 − a3

3 − 3 b2 (a2 + a1)
]
−

[
3 b

(
a2

2 − a2
1

)]
i = 0 (5)

[
a3

1 + a3
2 − a3

3 − 3 b2 (a2 + a1)
]
+

[
3 b

(
a2

2 − a2
1

)]
i = 0. (6)

The imaginary part in all four cases is 0. If b = 0, then b1 = b2 = b3 = 0 in (x0, y0, z0),
which contradicts |b1|+ |b2|+ |b3| != 0. Thus b != 0 and am = ±aj, m != j, m, j in I. Now
we treat case (3) in detail. All other cases follow along the same reasoning. If a2 = a3,
then a1 = 0 and a1 + b1 i = 0, a contradiction. If a2 = −a3, then

6 b2 a3 = (−a1)
3 + 2 a3

3 ⇒ 3 (2 b)2 (2 a3) = 4 (−a1)
3 + (2 a3)

3

⇒ 42 34 (2 b)2 (2 a3) = 43 33 (−a1)
3 + 42 33 (2 a3)

3

⇒ (72 b)2 (2 a3) = (−12 a1)
3 + 432 (2 a3)

3. (7)

If a3 = 0, then a1 = 0 and a1 + b1 i = 0, a contradiction. Thus a3 != 0 and dividing both
sides of (7) by (2 a3)3 we conclude that (x, y) = (−6 a1/a3 , 36 b/a3) is a rational point
on (2), a contradiction. Finally, t3 != 0 and f(x) has degree 3. The case when t0 = 0 can
be discarded using the same reasoning as above. Thus f(0) != 0. !

The following theorem establishes the relation that must be satisfied by the real and
imaginary parts of the nonzero Gaussian integers that solve (1).

Theorem 1 If (1) has a nontrivial solution (x0, y0, z0) in Z[i] then λ in Q − {0} and
exactly one value of m in I exist such that for m != & != j, &, j in I,

am = λ (a! + km aj) , bm = λ (b! + km bj)

Proof. (1) implies that f(i) = 0 and f(i) = f(−i) = 0. Thus f(x) = (c + d x) (x2 + 1),
c, d in Z− {0} since the degree of f(x) is 3 and f(0) != 0. We have the following cases,

a. pm(−c/d) != 0 for all m in I. Then am d−bm c != 0 for all m in I. f(−c/d) = 0 implies
(a1 d− b1 c)3 + (a2 d− b2 c)3 = (a3 d− b3 c)3 contradiction.

b. pm(−c/d) = 0 for all m in I. Then am d = bm c for all m in I. Note that bm = 0
implies that am = 0 and vice versa. In that case, am + bm i = 0, a contradiction. Thus
am != 0, bm != 0 for all m in I. Now am = (c/d) bm, c+d i != 0 and (1) implies b3

1 +b3
2 = b3

3,
a contradiction.

c. pm(−c/d) = 0 for exactly two values of m in I. Then f(−c/d) = 0 implies pm(−c/d) =
0 for the third value of m in I, contradicting case (b).

d. pm(−c/d) = 0 for exactly one value of m in I. Let &, j be the other two elements of
I. am d = bm c and am != 0 , bm != 0, since c, d in Z− {0}. And f(−c/d) = 0 implies

(a! d− b! c)3 + km (aj d− bj c)3 = 0⇒ (a! d− b! c) = −km (aj d− bj c)
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or
(a! + km aj) d− (b! + km bj) c = 0.

Since d = (bm/am) c, we take

(a! + km aj) bm − (b! + km bj) am = 0⇒
∣∣∣∣

a! + km aj am

b! + km bj bm

∣∣∣∣ = 0.

The vectors (a! + km aj , b! + km bj) and (am , bm) are linearly dependent in Q. For
the unique value of m ∈ I, there exist λ ∈ Q − {0} such that am = λ (a! + km aj),
bm = λ (b! + km bj). !

Remark 1 If (1) has nontrivial solutions in Z[i] so do the equations

y3 + x3 = z3 (8)

(−z)3 + y3 = (−x)3 (9)

and vice versa. Thus, without loss of generality, we may assume in Theorem 1 that the
exact value of m ∈ I is 1. If m is 2 or 3 we substitute (8) or (9) in (1) , denoting by
(y0, x0, z0) or (−z0, y0,−x0) the nontrivial solution (a1 + b1 i , a2 + b2 i , a3 + b3 i) of each
one in Z[i], respectively.

Our next result establishes the connection between the existence of nontrivial solutions
of a type (1) equation in Z[i] and the existence of rational points on (2).

Theorem 2 If (1) has a nontrivial solution (x0, y0, z0) in Z[i] then (2) has a rational
point.

Proof. Theorem 1 and Remark 1 imply a1 = λ (a! − aj), b1 = λ (b! − bj), & != j in {2, 3},
λ in Q− {0}. Since we can write a1 = −λ (aj − a!), b1 = −λ (bj − b!), it is obvious that,
without loss of generality, we may assume & = 2, j = 3. Set w = (a2 + b2 i)/(a3 + b3 i) in
Q(i)− {0}. We have w != 1, else (1) implies a1 + b1 i = 0, a contradiction. On the other
hand, dividing both sides of (1) by (a3 + b3 i)3, we take

[
a1 + b1 i

a3 + b3 i

]3

+

[
a2 + b2 i

a3 + b3 i

]3

= 1 ⇒ λ3 (w − 1)3 + w3 = 1

⇒
[
(λ3 + 1)w2 + (−2λ3 + 1)w + (λ3 + 1)

]
= 0.

We have λ != −1, else the latter would imply w = 0, a2 + b2 i = 0, a contradiction. The
discriminant of the latter is −12λ3 − 3, and

w =
2λ3 − 1

2 (λ3 + 1)
±
√

12λ3 + 3

2 (λ3 + 1)

√
−1 =

2λ3 − 1

2 (λ3 + 1)
±
√

12λ3 + 3

2 (λ3 + 1)
i.
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Since w is in Q(i)− {0}, there exists µ ∈ Q such that

µ =
√

12λ3 + 3 ⇔ 9
(µ

3

)2
= 12λ3 + 3⇔ 3

(µ

3

)2
= 4λ3 + 1

⇔ 42 34
(µ

3

)2
= 43 33 λ3 + 42 33 ⇔ (12µ)2 = (12λ)3 + 432,

implying that (2) has the rational solution (x, y) = (12λ , 12µ). !

Now we state our main result about the solutions of (1) in Z[i].

Theorem 3 If (x, y, z) is a solution of (1) in Z[i], then x y z = 0.

Proof. Let (x, y, z) be a solution of (1) in Z[i] with x y z != 0. Theorem 2 implies that
(2) has a rational point. We have already mentioned that (2) has no rational points [1].
Thus x y z = 0. !
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