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Abstract

A set of integers is S-recognizable in an abstract numeration system S if the language
made up of the representations of its elements is accepted by a finite automaton. For
abstract numeration systems built over bounded languages with at least three letters, we
show that multiplication by an integer λ ≥ 2 does not preserve S-recognizability, meaning
that there always exists a S-recognizable set X such that λX is not S-recognizable. The
main tool is a bijection between the representation of an integer over a bounded language
and its decomposition as a sum of binomial coefficients with certain properties, the so-called
combinatorial numeration system.

1. Introduction

An alphabet is a finite set whose elements are called letters. For a given alphabet Σ, a word
of length n ≥ 0 over Σ is a map w : {1, . . . , n} → Σ. The length of a word w is denoted
by |w|. The only word of length 0 is the empty word denoted by ε. The set of all words
over Σ is Σ∗. The concatenation of the words u and v respectively of length m and n is
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the word w = uv of length m + n where w(i) = u(i) for 1 ≤ i ≤ m and w(i) = v(i −m)
for m + 1 ≤ i ≤ m + n. Endowed with the concatenation product, Σ∗ is a monoid with ε
as identity element. For a word u and j ∈ N, uj is the concatenation of j copies of u. In
particular, we set u0 = ε. We write Σ+ = Σ∗ \ {ε}. A language over Σ is a subset of Σ∗.
Since we use | · | to denote the length of a word, we have chosen to denote the cardinality of
the set A by #A to avoid any misunderstanding.

Denote the bounded language over the alphabet Σ! = {a1, a2, . . . , a!} of size # ≥ 1 by

B! = a∗1a
∗
2 · · · a∗! := {aj1

1 aj2
2 · · · aj!

! | j1, j2, . . . , j! ≥ 0}.

We always assume that (Σ!, <) is totally ordered by a1 < a2 < · · · < a!. Let x, y ∈ Σ∗
! be

two words. Recall that x is genealogically less than y either if |x| < |y| or if they have the
same length and x is lexicographically smaller than y, i.e., there exist p, x′, y′ ∈ Σ∗

! such that
x = paix′, y = pajy′ and i < j. We can enumerate the words of B! using the increasing
genealogical ordering (also called radix order or shortlex order) induced by the ordering <
of Σ!. For an integer n ≥ 0, the (n+1)-st word of B! is said to be the B!-representation of n
and is denoted by rep!(n). The reciprocal map rep−1

! =: val! maps the n-th word of B! onto
its numerical value n− 1. Notice that this map val! is a special case of a diagonal function
as considered for instance in [9]. A set X ⊆ N is said to be B!-recognizable if rep!(X) is a
regular language over the alphabet Σ!, i.e., accepted by a finite automaton. This one-to-one
correspondence between the words of B! and the integers can be extended to any infinite
regular language L over a totally ordered alphabet (Σ, <). This leads to the general notion
of abstract numeration system.

Definition 1. An abstract numeration system is a triple S = (L,Σ, <) where L is an infinite
regular language over the totally ordered alphabet (Σ, <). We denote by repS(n) the (n+1)-
st word in the genealogically ordered language L. A set X of integers is S-recognizable if
repS(X) is a regular language.

For an abstract numeration system S = (L,Σ, <) where L = B! and Σ = Σ!, the map
repS is exactly rep!. Thus B!-recognizability is a special case of S-recognizability.

Note that the language B! is recognized by the following automaton: the set of states
is {q1, . . . , q!}, each state is final, q1 is initial, and for 1 ≤ i ≤ j ≤ n we have a transition

qi
aj−→ qj. The case # = 4 is depicted in Figure 1.

Example 1. Let Σ2 = {a, b} with a < b. The first words of B2 = a∗b∗ enumerated by
genealogical order are

ε, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, . . .

For instance, rep2(5) = bb and val2(a∗) = {0, 1, 3, 6, 10, . . .} is a B2-recognizable subset of N
(formed of all triangular numbers).
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Figure 1: Automaton recognizing B4.

For details on bounded languages, see for instance [5] and for a reference on automata
and formal languages theory, see [3].

In the framework of positional numeration systems, recognizable sets of integers have been
extensively studied since the seminal work of A. Cobham in the late sixties (see for instance
[3, Chap. V]). Since then, the notion of recognizability has been studied from various points
of view (logical characterization, automatic sequences, . . . ). In particular, recognizability
for generalized number systems like the Fibonacci system has been considered [2, 12]. Here
we shall consider recognizable sets of integers in the general setting of abstract numeration
systems. It is well-known that the class of regular languages L splits into two parts with
respect to the behavior of the function n '→ #(L ∩ Σn) [13]. This latter function is either
bounded from above by nk for some k or, infinitely often bounded from below by θn for some
θ > 1. In these cases, we speak respectively of polynomial and exponential languages.

Notice that usual positional numeration systems like integer base systems or the Fibonacci
system are special cases of abstract numeration systems built on an exponential language.
On the other hand, bounded languages are polynomial and this leads to new phenomena.

The question addressed in the present paper deals with the preservation of the recog-
nizability with respect to the operation of multiplication by a constant. Let S = (L,Σ, <)
be an abstract numeration system, X be a S-recognizable set of integers and λ be a positive
integer. What can be said about the S-recognizability of λX ? This question is a first step
before handling more complex operations such as addition of two arbitrary recognizable sets.

This question is rather difficult. For exponential languages, partial answers are known
(see for instance [2]). The case of polynomial languages has not been considered yet (except
for a∗b∗ in [7]). Bounded languages are good candidates to start with. Indeed, an arbitrary
polynomial language is a finite union of languages of the form u1v∗1u2v∗2 · · · v∗kuk+1 where the
ui’s and vi’s are words [13], and the automata accepting these languages share the same
properties as those accepting bounded languages. Therefore we hope that our results give
the flavor of what could be expected for any polynomial languages.

Since rep! is a one-to-one correspondence between N and B!, the multiplication by a
constant λ ∈ N can be viewed as a transformation fλ : B! → B! acting on the language B!,
the question being then to study the preservation of the regularity of the subsets of B! under
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this transformation.

Example 2. Let # = 2, Σ2 = {a, b} and λ = 25. We have the following diagram.

8
×25−−→ 200

rep2 ↓ ↓ rep2

a b2 ×25−−→ a9 b10

N ×λ−→ N
rep2 ↓ ↓ rep2

B!
fλ−→ B!

Thus the multiplication by λ = 25 induces a mapping fλ onto B2 such that for w,w′ ∈ B2,
fλ(w) = w′ if and only if val2(w′) = 25 val2(w).

This paper is organized as follows. In Section 2, we recall a few results related to our
main question. In particular, we characterize the recognizable sets of integers for abstract
numeration systems whose language is slender, i.e., has at most d words of each length for
some constant d. We easily get that in this situation, the multiplication by a constant always
preserves recognizability.

In Section 3, we compute val!(a
n1
1 · · · an!

! ) and derive an easy bijective proof of the fact
that any nonnegative integer can be written in a unique way as

n =

(
z!

#

)
+

(
z!−1

#− 1

)
+ · · ·+

(
z1

1

)

with z! > z!−1 > · · · > z1 ≥ 0. Fraenkel [4] called this system combinatorial numeration
system and referred to Lehmer [8]. Even if this seems to be a folklore result, the only proof
that we were able to trace out goes back to Katona [6] who developed different arguments
to obtain the same decomposition.

In Section 4, we make explicit the regular subsets of B! in terms of semi-linear sets of N!

and give an application to the B!-recognizability of arithmetic progressions.

In Section 5, we answer our main question about bounded languages and recognizability
after multiplication by a constant. We get a formula which can be used to obtain estimates on
the B!-representation of λn from the one of n. Therefore, thanks to a counting argument and
to the results from Section 4, we show that for any constant λ, there exists a B!-recognizable
set X such that λX is no more B!-recognizable, with # ≥ 3. Consequently, our main result
can be summarized as follows. Let #, λ be positive integers. For the abstract numeration
system S = (a∗1 · · · a∗! , {a1 < · · · < a!}), multiplication by λ ≥ 2 preserves S-recognizability
if and only if either # = 1 or # = 2 and λ is an odd square.

We put in the last section some structural results concerning the effect of multiplication
by a constant in the abstract numeration system built on B!.

2. First Results About S-recognizability

In this section we collect a few results directly connected with our problem.
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Theorem 1. [7] Let S = (L,Σ, <) be an abstract numeration system. Any arithmetic
progression is S-recognizable.

Let us denote by uL(n) (resp. vL(n)) the number of words of length n (resp. at most n)
belonging to L. The following result states that only some constants λ are good candidates
for multiplication within B!.

Theorem 2. [11] Let L ⊆ Σ∗ be a regular language such that uL(n) = Θ(nk) for some k ∈ N
and S = (L,Σ, <). Preservation of S-recognizability after multiplication by λ holds only if
λ = βk+1 for some β ∈ N.

We write f = Θ(g) if there exist N and C > 0 such that for all n ≥ N , f(n) ≤ C g(n)
(i.e., f = O(g)) and also if there exist D > 0 and an infinite sequence (ni)i∈N such that
f(ni) ≥ D g(ni) for all i ≥ 0.

As we shall see in the next section that uB!
(n) = Θ(n!−1), we have to focus only on

multipliers of the form β!. The particular case of uL(n) = O(1) (i.e., L is slender) is
interesting in itself and is settled as follows. Let us first recall the definition from [1] and
the characterization from [10, 12] of such languages.

Definition 2. The language L is said to be d-slender if uL(n) ≤ d for all n ≥ 0. The
language L is said to be slender if it is d-slender for some d > 0.

A regular language L is slender if and only if it is a union of single loops, i.e., if for some
k ≥ 1 and words xi, yi, zi, 1 ≤ i ≤ k,

L =
k⋃

i=1

xi y
∗
i zi.

Moreover, we can assume that the sets xi y∗i zi are pairwise disjoint. Notice that the regular
expression xi y∗i zi is a shorthand to denote the language {xiyn

i zi | n ≥ 0}, again xiyn
i zi has

to be understood as the concatenation of xi, n copies of yi and then followed by zi.

Theorem 3. Let L ⊆ Σ∗ be a slender regular language and S = (L,Σ, <). A set X ⊆ N is
S-recognizable if and only if X is a finite union of arithmetic progressions.

Proof. By the characterization of slender languages, we have

L =
k⋃

i=1

xi y
∗
i zi ∪ F, xi, zi ∈ Σ∗, yi ∈ Σ+

where the sets xi y∗i zi are pairwise disjoint and F is a finite set. The sequence (uL(n))n∈N is
ultimately periodic of period C = lcmi|yi|. Moreover, for n large enough, if xi yn

i zi is the m-

th word of length |xi zi|+n |yi| then xi y
n+C/|yi|
i zi is the m-th word of length |xi zi|+n |yi|+C.
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Roughly speaking, for sufficiently large n, the structures of the ordered sets of words of length
n and n + C are the same.

The regular subsets of L are of the form
⋃

j∈J

xij (y
αj

ij
)∗zij ∪ F ′ (1)

where J is a finite set, ij ∈ {1, . . . , k}, αj ∈ N and F ′ is a finite subset of L.

We can now conclude. If X is S-recognizable, then repS(X) is a regular subset of L of
the form (1). In view of the first part of the proof, it is clear that X is ultimately periodic
with period length lcm(C, lcmj|y

αj

ij
|). The converse is immediate by Theorem 1.

Example 3. Consider the language L = ab∗c ∪ b(aa)∗c. It contains exactly two words of
each positive even length: ab2ic < ba2ic and one word for each odd length larger than 2:
ab2i+1c. The sequence uL(n) is ultimately periodic of period two: 0, 0, 2, 1, 2, 1, . . ..

Corollary 1. Let S be a numeration system built on a slender language. If X ⊆ N is
S-recognizable, then λX is S-recognizable for all λ ∈ N.

Finally, for a bounded language over a binary alphabet, the case is completely settled
too, the aim of this paper being primarily to extend the following result.

Theorem 4. [7] Let β be a positive integer. For the abstract numeration system S =
(a∗b∗, {a < b}), multiplication by β2 preserves S-recognizability if and only if β is odd.

3. B!-representation of Integers: Combinatorial Expansion

In this section we determine the number of words of a given length in B! and we obtain an
algorithm for computing rep!(n). Interestingly, this algorithm is related to the decomposition
of n as a sum of binomial coefficients of a specified form. Since we shall be mainly interested
by the language B!, we use the following notation.

Definition 3. We set

u!(n) := uB!
(n) = #(B! ∩ Σn

! ) and v!(n) := #(B! ∩ Σ≤n
! ) =

n∑

i=0

u!(i).

Let us also recall that the binomial coefficient
(

i
j

)
vanishes for integers i < j.

Lemma 1. For all # ≥ 1 and n ≥ 0, we have

u!+1(n) = v!(n) (2)
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and

u!(n) =

(
n + #− 1

#− 1

)
. (3)

Proof. Relation (2) follows from the fact that the set of words of length n belonging to B!+1

is partitioned according to
n⋃

i=0

(
a∗1 · · · a∗! ∩ Σi

!

)
an−i

!+1.

To obtain (3), we proceed by induction on # ≥ 1. Indeed, for # = 1, it is clear that u1(n) = 1
for all n ≥ 0. Assume that (3) holds for # and let us verify it still holds for # + 1. Thanks to
(2), we have

u!+1(n) =
n∑

i=0

u!(i) =
n∑

i=0

(
i + #− 1

#− 1

)
=

n∑

i=0

(
i + #− 1

i

)
=

(
n + #

#

)
.

Lemma 2. Let S = (a∗1 · · · a∗! , {a1 < · · · < a!}). We have

val!(a
n1
1 · · · an!

! ) =
!∑

i=1

(
ni + · · ·+ n! + #− i

#− i + 1

)
. (4)

Consequently, for any n ∈ N,

|rep!(n)| = k ⇔
(

k + #− 1

#

)

︸ ︷︷ ︸
val!(ak

1)

≤ n ≤
!∑

i=1

(
k + i− 1

i

)

︸ ︷︷ ︸
val!(ak

! )

.

Proof. From the structure of the ordered language B!, one can show that

val!(a
n1
1 · · · an!

! ) = val!(a
n1+···+n!
1 ) + val{a2,...,a!}(a

n2
2 · · · an!

! ) (5)

where notation like val{a2,...,a!}(w) specifies not only the size but the alphabet of the bounded
language on which the numeration system is built. To understand this formula, an example
is given below in the case # = 3. Notice that val{a2,...,a!}(a

n2
2 · · · an!

! ) = val!−1(a
n2
1 · · · an!

!−1).
Using this latter observation and iterating the decomposition (5), we obtain

val!(a
n1
1 · · · an!

! ) =
!∑

i=1

val!−i+1(a
ni+···+n!
1 ).

Moreover, it is well known that val!(an
1 ) = v!(n − 1). Hence the conclusion follows using

relations (2) and (3).
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Example 4. Consider the words of length 3 in the language a∗b∗c∗,

aaa < aab < aac < abb < abc < acc < bbb < bbc < bcc < ccc.

We have val3(aaa) =
(
5
3

)
= 10 and val3(acc) = 15. If we apply the erasing morphism

ϕ : {a, b, c} → {a, b, c}∗ defined by ϕ(a) = ε, ϕ(b) = b and ϕ(c) = c on the words of length
3, we get

ε < b < c < bb < bc < cc < bbb < bbc < bcc < ccc.

So the ordered list of words of length 3 in a∗b∗c∗ contains an ordered copy of the words
of length at most 2 in the language b∗c∗ and to obtain val3(acc), we just add to val3(aaa)
the position of the word cc in the ordered language b∗c∗. In other words, val3(acc) =
val3(aaa) + val2(cc) where val2 is considered as a map defined on the language b∗c∗.

The following result is given in [6]. Here we obtain a bijective proof relying only on the
use of abstract numeration systems on a bounded language.

Corollary 2 (Combinatorial numeration system). Let # be a positive integer. Any
integer n ≥ 0 can be uniquely written as

n =

(
z!

#

)
+

(
z!−1

#− 1

)
+ · · ·+

(
z1

1

)
(6)

with z! > z!−1 > · · · > z1 ≥ 0.

Proof. The map rep! : N → a∗1 · · · a∗! is a one-to-one correspondence. So any integer n has a
unique representation of the form an1

1 · · · an!
! and the conclusion follows from Lemma 2.

The general method given in [7, Algorithm 1] has a special form in the case of the
language B!. We derive an algorithm computing the decomposition (6) or equivalently the
B!-representation of any integer.

Algorithm 1. Let n be an integer and l be a positive integer. The following algorithm
produces integers z(l),. . . ,z(1) corresponding to the zi’s appearing in the decomposition
(6) of n given in Corollary 2.

For i=l,l-1,...,1 do

if n>0,

find t such that
(
t
i

)
≤ n <

(
t+1
i

)

z(i)←t

n←n-
(
t
i

)

otherwise, z(i)←i-1
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Consider now the triangular system having n1, . . . , n! as unknowns

ni + · · ·+ n! = z(#− i + 1)− # + i, i = 1, . . . , #.

One has rep!(n) = an1
1 · · · an!

! .

Remark 1. To speed up the computation of t in the above algorithm, one can benefit from
methods of numerical analysis. Indeed, for given i and n,

(
t
i

)
− n is a polynomial in t of

degree i and we are looking for the largest root z of this polynomial. Therefore, t = -z..

Example 5. For # = 3, one gets for instance

12345678901234567890 =

(
4199737

3

)
+

(
3803913

2

)
+

(
1580642

1

)

and solving the system

n1 + n2 + n3 = 4199737− 2
n2 + n3 = 3803913− 1

n3 = 1580642




 ⇔ (n1, n2, n3) = (395823, 2223270, 1580642),

we have rep3(12345678901234567890) = a395823b2223270c1580642.

4. Regular Subsets of B!

To study preservation of recognizability after multiplication by a constant, one has to consider
an arbitrary recognizable subset X ⊆ N and show that β!X is still recognizable.

Definition 4. If w is a word over Σ!, |w|aj counts the number of letters aj in w. The Parikh
mapping Ψ maps a word w ∈ Σ∗

! onto the vector Ψ(w) := (|w|a1 , . . . , |w|a!
).

Remark 2. In this setting of bounded languages, rep! and Ψ are both one-to-one corre-
spondences. Therefore, in what follows we shall make no distinction between an integer
n, its B!-representation rep!(n) = an1

1 · · · an!
! ∈ B! and the corresponding Parikh vector

Ψ(rep!(n)) = (n1, . . . , n!) ∈ N!. In examples, when considering cases # = 2 or 3, we shall use
convenient alphabets like {a < b} or {a < b < c}.

Definition 5. A set Z ⊆ N! is linear if there exist p0,p1, . . . ,pk ∈ N! such that

Z = p0 + Np1 + · · ·+ Npk = {p0 + λ1p1 + · · ·+ λkpk | λ1, . . . ,λk ∈ N}.

The vectors p1, . . . ,pk are said to be the periods of Z. The set Z is k-dimensional if it has
exactly k linearly independent periods over Q. A set is semi-linear if it is a finite union of
linear sets. The set of periods of a semi-linear set is the union of the sets of periods of the
corresponding linear sets. Let ei ∈ N!, 1 ≤ i ≤ #, denote the vector having 1 in the i-th
component and 0 in the other components.
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Lemma 3. A set X ⊆ N is B!-recognizable if and only if Ψ(rep!(X)) is a semi-linear set
whose periods are integer multiples of canonical vectors ei.

Proof. Observe that the regular subsets of B! are exactly the finite unions of sets of the form
as1

1 (at1
1 )∗ · · · as!

! (at!
! )∗ with si, ti ∈ N.

With such a characterization, we obtain an alternative proof of Theorem 1.

Proposition 1. Let p, q ∈ N. The set Ψ(rep!(q + N p)) ⊆ N! is a finite union of linear sets
of the form

x + N P e1 + · · ·+ N P e! for some P ∈ N.

Proof. We use equation (4). For a given i, 1 ≤ i ≤ #, the sequence (
(

n
!−i+1

)
mod p)n∈N is

periodic (see e.g. [14]). Denote the period lengths by πi and set P = lcmi πi. Then

val!(a
x1
1 · · · axi

i · · · ax!
! ) ≡ val!(a

x1
1 · · · axi+P

i · · · ax!
! ) (mod p) for all i, 1 ≤ i ≤ #.

We have just shown that x = (x1, . . . , x!) ∈ N! belongs to Ψ(rep!(q + N p)) if and only if
x + n1 P e1 + · · ·+ n! P e! belongs to the same set for all n1, . . . , n! ∈ N. Therefore

Ψ(rep!(q+N p)) =
⋃

val!(a
x1
1 ···ax!

! )∈q+N p
0≤supxi<q+P

(x+N P e1+· · ·+N P e!).

Example 6. In Figure 2, the x-axis (resp. y-axis) counts the number of a1’s (resp. a2’s) in
a word. The empty word corresponds to the lower-left corner. A point in N2 of coordinates
(i, j) has its color determined by the value of val2(ai

1 aj
2) modulo p (with p = 3, 5, 6 and 8

respectively). There are therefore p possible colors. In this figure, we represent words ai
1 aj

2

for 0 ≤ i, j ≤ 19.

Figure 2: Ψ(rep2(q + N p)) for p = 3, 5, 6, 8.

5. Multiplication by λ = β!

In the case of a bounded language on # letters, if multiplication by some constant preserves
recognizability, then, by Theorem 2 and Lemma 1, this constant must be a #-th power.
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The next result gives a relationship between the length of the B!-representations of n and
β!n, roughly by a factor β.

Lemma 4. For sufficiently large n ∈ N, we have

|rep!(β
!n)| = β |rep!(n)|+

⌈
(β − 1)(# + 1)

2

⌉
− i

for some i ∈ {0, 1, . . . ,β}.

Proof. Consider first n = val!(a
q
!) for some sufficiently large q ∈ N, and let

β!

((
q + #− 1

#

)
+

(
q + #− 2

#− 1

)
+ · · ·+

(
q

1

))

=

(
z! + #− 1

#

)
+

(
z!−1 + #− 2

#− 1

)
+ · · ·+

(
z1

1

)

for some integers z! ≥ z!−1 ≥ · · · ≥ z1 ≥ 0 (depending on q). Then we have

β!

(
q!

#!
+

(# + 1) q!−1

2 (#− 1)!
+O(q!−2)

)
=

z!
!

#!
+

(#− 1) z!−1
!

2 (#− 1)!
+

z!−1
!−1

(#− 1)!
+O(z!−2

! ),

thus z! = βq + O(1). Since z! ≥ z!−1, we have z!−1 = dβq + o(q) with 0 ≤ d ≤ 1 and we
obtain

β!(# + 1)

2 (#− 1)!
q!−1 =

β!−1

(#− 1)!

(
(z! − βq) +

#− 1

2
+ d!−1

)
q!−1 +O(q!−2),

z! = βq +
(β − 1)(# + 1)

2
+ 1− d!−1.

Set c = (β − 1)(# + 1)/2 and assume first c 0∈ Z. Then we have d!−1 = 1/2, hence

|fβ!(aq
!))| = z! = βq + 1c2.

Since val!(a
q
1) = val!(a

q−1
! ) + 1, we have

|rep!(β
!val!(a

q
1))| ≥ β(q − 1) + 1c2 = βq + 1c2 − β.

If |rep!(n)| = q, then |rep!(β
!n)| is clearly between these two values.

Assume now c ∈ Z. Then we have d ∈ {0, 1}. Similarly to the computation of c!−2 achieved
in Remark 3 below, we obtain that

(
βq + c + #

#

)
− β!

(
q + #

#

)

=

(
c2

2
+

(# + 1)c

2
+

(1− β2)(3# + 2)(# + 1)

24

)
(βq)!−2

(#− 2)!
+O(q!−3)

=
c(β + 1)

12

(βq)!−2

(#− 2)!
+O(q!−3).
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This means that the numerical value of the first word of length βq + c + 1 is larger than
β!val!(a

q+1
1 ) for large enough q. We infer that d = 1 since

z! = |rep!(β
!val!(a

q
!))| ≤ |rep!(β

!val!(a
q+1
1 ))| < βq + c + 1.

As above, we have |rep!(β
!val!(a

q
1))| ≥ βq + c− β, and the lemma is proved.

In certain cases, we can give a formula for the entire expansion of β!val!(a
q
!).

Lemma 5. Define c!−1, c!−2, . . . , c0 recursively by

ck = k! (β!−k − 1)
!∑

i=k

S1(i, k)

i!
−

!∑

i=k+2

i∑

j=k+1

S1(i, j) j!

i! (j − k)!
cj−k
i−1

where S1(i, j) are the unsigned Stirling numbers of the first kind. Then we have

β!

((
q + #− 1

#

)
+

(
q + #− 2

#− 1

)
+ · · ·+

(
q

1

))

=

(
βq + c!−1 + #− 1

#

)
+

(
βq + c!−2 + #− 2

#− 1

)
+ · · ·+

(
βq + c0

1

)
. (7)

Moreover, if all ck’s, 0 ≤ k < #, are integers and c!−1 ≥ c!−2 ≥ · · · ≥ c0, then

rep!(β
!val!(a

q
!)) = ac!−1−c!−2

1 ac!−2−c!−3
2 · · · ac1−c0

!−1 aβq+c0
!

for all q ≥ −c0/β, hence rep!(β
!val!(a∗!)) is regular.

Proof. The second part of the lemma is obvious. Thus we only have to show (7). Recall
that the unsigned Stirling numbers of the first kind are defined by

i!

(
x + i− 1

i

)
= x(x + 1) · · · (x + i− 1) =

i∑

j=1

S1(i, j)x
j

and satisfy the recursion

S1(i + 1, j) = S1(i, j − 1) + i S1(i, j) for 1 ≤ j ≤ i

with S1(i, j) = 0 if i < j or j = 0. Therefore we can write (7) as

β!

(
!∑

k=1

S1(#, k)

#!
qk +

!−1∑

k=1

S1(#− 1, k)

(#− 1)!
qk + · · ·+ q

)

=
!∑

j=1

S1(#, j)

#!
(βq + c!−1)

j +
!−1∑

j=1

S1(#− 1, j)

(#− 1)!
(βq + c!−2)

j + · · ·+ βq + c0,

β!
!∑

i=1

i∑

k=1

S1(i, k)

i!
qk =

!∑

i=1

i∑

j=1

S1(i, j)

i!

j∑

k=0

(
j

k

)
cj−k
i−1 βkqk,

β!−k
!∑

i=k

S1(i, k)

i!
=

!∑

i=k

i∑

j=k

S1(i, j) j!

i! (j − k)! k!
cj−k
i−1 for 0 ≤ k ≤ #.
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Since the last equation holds for k = # and

β!−k
!∑

i=k

S1(i, k)

i!
=

!∑

i=k

S1(i, k)

i!
+

ck

k!
+

!∑

i=k+2

i∑

j=k+1

S1(i, j) j!

i! (j − k)! k!
cj−k
i−1

for 0 ≤ k < # by the definition of ck, the lemma is proved.

Remark 3. The formula for ck can be simplified using

!∑

i=k

S1(i, k)

i!
=

{
S1(# + 1, k + 1)/#! for k ≥ 1,

0 for k = 0.

Note that c!−1 is the constant c in the proof of Lemma 4,

c!−1 = (β − 1)
S1(# + 1, #)

#
=

(β − 1)(# + 1)

2
for # ≥ 2.

Since S1(# + 1, #− 1) = S1(#, #− 2) + # !(!−1)
2 = (3!+2)(!+1)!(!−1)

24 , we have

c!−2 = (β2 − 1)
(3# + 2)(# + 1)

24
− #− 1

2
c!−1 −

1

2
c2
!−1

= c!−1

(
1− β + 1

12

)
=

(β − 1)(# + 1)

2
− (β2 − 1)(# + 1)

24
for # ≥ 3.

We now turn to our main counting argument that will be used to obtain that recogniz-
ability is not preserved through multiplication by a constant λ. Recall that fλ : B! → B! is
defined by fλ(w) = rep!(λ val!(w)).

Lemma 6. Let A be a k-dimensional linear subset of N! for some integer k < # and B =
Ψ−1(A) ∩ B! be the corresponding subset of B!. If Ψ(fβ!(B)) contains a sequence x(n) =

(x(n)
1 , . . . , x(n)

! ) such that min(x(n)
j1 , x(n)

j2 , . . . , x(n)
jk+1

) →∞ as n →∞ for some j1 < j2 < · · · <
jk+1, then fβ!(B) is not regular.

Proof. Since A is a k-dimensional linear subset of N!, we clearly have

#{w ∈ B : |w| ≤ n} = #{x ∈ A : x1 + · · ·+ x! ≤ n} = Θ(nk)

and, by Lemma 4, #{w ∈ fβ!(B) : |w| ≤ n} = Θ(nk). Thus fβ!(B) is regular if and only if
Ψ(fβ!(B)) is a finite union of at most k-dimensional sets as in Lemma 3. Since the sequence
x(n) cannot occur in such a finite union, fβ!(B) is not regular.

The coefficients c!−1 and c!−2 (explicitely given in Remark 3) are rational numbers. In
the next two propositions, we discuss the fact that these coefficients could be integers and
we rule out all the possible cases.
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Proposition 2. If (β−1)(!+1)
2 0∈ Z or (β2−1)(!+1)

24 0∈ Z (and # ≥ 3, β ≥ 2), then fβ!(a∗!) is not
regular.

Proof. We use notation of the proof of Lemma 4.

First case: c!−1 = (β−1)(!+1)
2 0∈ Z

We have z! = βq + c!−1 + 1/2, z!−1 = 2−1/(!−1)βq + o(q), hence

|fβ!(aq
!)|a1 = (1− 2−1/(!−1))βq + o(q),

!∑

j=2

|fβ!(aq
!)|aj = 2−1/(!−1)βq + o(q),

and fβ!(a∗!) is not regular by Lemma 6.

Second case: c!−1 = (β−1)(!+1)
2 ∈ Z

We have z! = βq + c!−1, z!−1 = βq + O(1) and z!−2 = dβq + o(q) with 0 ≤ d ≤ 1. By
comparing the coefficients of q!−2, we obtain

z!−1 = βq + c!−2 + 1− d!−2

Since in this case c!−2 = (β−1)(!+1)
2 − (β2−1)(!+1)

24 0∈ Z, we have 0 < d < 1, hence

|fβ!(aq
!)|a2 = (1− d)βq + o(q),

!∑

j=3

|fβ!(aq
!)|aj = dβq + o(q),

and fβ!(a∗!) is not regular by Lemma 6.

Proposition 3. If (β−1)(!+1)
2 ∈ Z and (β2−1)(!+1)

24 ∈ Z (and # ≥ 3, β ≥ 2), then fβ!(a∗1a
∗
!) is

not regular.

Proof. If we choose q large enough with respect to p, e.g. q = p3, then we have

β!

((
p + q + #− 1

#

)
+

(
q + #− 2

#− 1

)
+

(
q + #− 3

#− 2

)
+ · · ·+

(
q

1

))

=

(
β(p + q) + c!−1 + #− 1

#

)
+

(
βq − (β − 1)βp + c!−2 + #− 2

#− 1

)

+

(
βq − (β−1)β

2 (βp)2 +O(p)

#− 2

)
+O

(
q!−3

)
.

Indeed, this equation holds for p = 0 by Lemma 5. Therefore the coefficients of q!p0, q!−1p0

and q!−2p0 on the left-hand side are equal to those on the right-hand side. It is easy to
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see that the same holds for q!−1p1, q!−2p2 and q!−3p3. For q!−2p1 and q!−3p2, consider the
following equations:

(#− 2)!β1−!
[
q!−2p1

]
: β

#− 1

2
= c!−1 +

#− 1

2
− (β − 1),

(#− 3)!β1−!
[
q!−3p2

]
: β

#− 1

4
=

c!−1

2
+

#− 1

4
+

(β − 1)2

2
− (β − 1)β

2
.

If the O(p) term is chosen properly, then the coefficient of q!−3p1 vanishes as well and O
(
q!−3

)

remains. Since c!, c!−1 ∈ Z, we have thus

|fβ!(ap
1a

q
!)|a1 = β2p +O(1),

|fβ!(ap
1a

q
!)|a2 =

(β − 1)β3

2
p2 +O(p),

!∑

j=3

|fβ!(ap
1a

q
!)|aj = βq +O(p2),

and fβ!(a∗1a
∗
!)) is not regular by Lemma 6.

Example 7. We just illustrate some of the above computations. If # = 3, then we have
c2 = 2(β − 1), c1 = 2(β − 1)− (β2 − 1)/6 and

c0 = −c1

2
− c2

1

2
− c2

3
− c2

2

2
− c3

2

6
= −(β2 − 1)2

72
− (β3 − 1)− β2 − 1

4
+ 2(β − 1).

If β ≡ ±1 (mod 6), then this gives

fβ3(aq
3) = a

β2−1
6

1 a
(β2−1)2

72 +β3−1+β2−1
12

2 a
βq− (β2−1)2

72 −(β3−1)−β2−1
4 +2(β−1)

3 .

In particular, this latter formula shows that a∗3 cannot be used to prove that multiplication
by β3 does not preserve recognizability when β ≡ ±1 (mod 6). Thanks to Proposition 2,
fβ3(aq

3) is regular if and only if β ≡ ±1 (mod 6).

Otherwise, i.e., if 1 − β2 ≡ j (mod 6) with j ∈ {1, 3, 4}, then z3 = βq + c2, z2 =
βq + c1 + 1− j/6 and

z1 =
j

6
βq + c0 −

(1− j/6)2

2
− (1− j/6)c1 −

1− j/6

2
.

If we collect results from Theorems 2, 3, 4 and Propositions 2 and 3, we obtain the main
result about multiplication by a constant.

Theorem 5. Let #, λ be positive integers. For the abstract numeration system

S = (a∗1 · · · a∗! , {a1 < · · · < a!}),

multiplication by λ ≥ 2 preserves S-recognizability if and only if one of the following condition
is satisfied:
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• # = 1

• # = 2 and λ is an odd square.

Proof. The case # = 1 is ruled out by Theorem 3, the case # = 2 is given by Theorem 4.
Consider # ≥ 3. Thanks to Theorem 2, it suffices to consider λ of the β! and the conclusion
follows from Propositions 2 and 3.

6. Structural Properties of B! Seen Through fβ!

In this independent section, we inspect closely how a word is transformed when applying
fβ! . To that end, B! (or equivalently N) is partitioned into regions where fβ! acts differently.
Thanks to our discussion, we are able to detect some kind of pattern occurring periodically
within these regions. To have a flavor of the computations involved in this section, the reader
could first have a look at Example 8. According to Lemma 4, we define a partition of N.

Definition 6. For all i ∈ {0, 1, . . . ,β} and k ∈ N large enough, we define

Ri,k :=

{
n ∈ N : |rep!(n)| = k and |rep!(β

!n)| = β k +

⌈
(β − 1)(# + 1)

2

⌉
− i

}
.

Lemma 7. If β =
∏k

i=1 pθi
i where p1, . . . , pk are prime numbers greater than # and the θi’s

are positive integers, then for any u ≥ #, we have

(
u

#

)
≡

(
u + β!

#

)
(mod β!).

Proof. Let u, v ≥ #. One has
(

v

#

)
−

(
u

#

)
=

v(v − 1) · · · (v − # + 1)− u(u− 1) · · · (u− # + 1)

#!
.

The numerator on the r.h.s. is an integer divisible by #!. Moreover, this numerator is also
clearly divisible by v − u (indeed, it is of the form P (v) − P (u) for some polynomial P ).
Notice that for v = u + β!, the corresponding numerator is divisible by #! and also by β!.
But since any prime factor of β is larger than #, #! and β! are relatively prime. Consequently,
the corresponding numerator is divisible by β!#!.

An inspection of multiplication by β! using the partition induced by Lemma 4 provides
us with the following observation.
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Proposition 4. Let mi,k = minRi,k for k ≥ 0 and i ∈ {0, . . . ,β}. If β satisfies the condition
of Lemma 7, then

|rep!(β
!mi,k)|aj = |rep!(β

!mi,k+β!−1)|aj

for all k large enough and j ∈ {2, . . . , #}. Furthermore,

|rep!(β
!mi,k+β!−1)|a1 = |rep!(β

!mi,k)|a1 + β!.

If i < β, then mi,k = 1Ci(k)/β!2 with

Ci(k) = val!

(
a

β k+ (β−1)(!+1)
2 −i

1

)
=

(
β k + (β−1)(!+1)

2 − i + #− 1

#

)
.

Proof. For i = β, we clearly have mβ,k = val!(ak
1) if Rβ,k is non-empty, and it is easily

verified that Rβ,k is non-empty if k is large enough (and # ≥ 2). For i < β, note first that
(β − 1)(# + 1) is even since β satisfies the condition of Lemma 7. Thus we have

Ci(k) ≤ β!mi,k < Ci−1(k)

Since mi,k − 1 ∈ Ri+1,k, we also obtain

Ci+1(k) + β! ≤ β!mi,k < Ci(k) + β!.

Therefore mi,k = 1Ci(k)/β!2 and there exists a unique integer µi(k) such that

β!mi,k = Ci(k) + µi(k) and 0 ≤ µi(k) < β!.

In particular, there exists also a unique integer µi(k + β!−1) such that

β!mi,k+β!−1 = Ci(k + β!−1) + µi(k + β!−1) and 0 ≤ µi(k + β!−1) < β!.

From Lemma 7, we deduce that Ci(k) ≡ Ci(k + β!−1) (mod β!) and consequently, µi(k) =
µi(k + β!−1). From Lemma 2, we deduce that

rep!(β
!mi,k) = at

1 rep{a2,...,a!}(µi(k)),

where t is such that |rep!(β
!mi,k)| = β k + (β−1)(!+1)

2 − i, and

rep!(β
!mi,k+β!−1) = at+β!

1 rep{a2,...,a!}(µi(k)).

Remark 4. In the previous proposition, we were interested in the first word in Ri,k but we
can even describe how multiplication by β! affects representations inside Ri,k. With notation
of the previous proof, for any n ∈ Ri,k (and k large enough), we have

rep!(β
!n) = at

1 rep{a2,...,a!}(µi(k) + β!(n−mi,k))

with t such that |rep!(β
!n)| = β k + (β−1)(!+1)

2 − i.
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Example 8. Let # = 3 and β = 5. The number 171717 (resp. 172739) is the first element
belonging to R4,100 (resp. R3,100). We have

rep3(171717) = a95b3c2 and rep3(5
3 171717) = a490b14c0,

rep3(172739) = a55b41c4 and rep3(5
3 172739) = a493b0c12.

Therefore µ4(100) = val{b,c}(b14) = 105 (resp. µ3(100) = val{b,c}(c12) = 90). The number
333396 (resp. 334986) is the smallest element in R4,125 (resp. R3,125),

rep3(333396) = a119b6c0 and rep3(5
3 333396) = a615b14c0,

rep3(334986) = a69b41c15 and rep3(5
3 334986) = a618b0c12.

We have #R4,100 = 1022, #R4,125 = 1590 and get the following table.

j Ψ(rep3(5
3(m4,100 + j))) Ψ(rep3(5

3(m4,125 + j))) Ψ(rep{b,c}(µ4(100) + 53j))
0 (490, 14, 0) (615, 14, 0) (14, 0)
1 (484, 0, 20) (609, 0, 20) (0, 20)
2 (478, 22, 4) (603, 22, 4) (22, 4)
...

...
...

...
1021 (0, 34, 470) (125, 34, 470) (34, 470)
1022 × (124, 415, 90) (415, 90)

...
...

...
...

1589 × (0, 34, 595) (34, 595)
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