
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A57

LAGRANGE INVERSION AND STIRLING NUMBER CONVOLUTIONS

Robin Chapman
Mathematics Research Institute, University of Exeter, Exeter, EX4 4QF, UK

rjc@maths.ex.ac.uk

Received: 6/18/08, Accepted: 11/25/08, Published: 12/15/08

Abstract

Recently Agoh and Dilcher proved a convolution identity involving Stirling numbers S(n, r)
of the second kind. We prove an identity where S(n, r) is replaced by a more general doubly-
indexed family A(n, r). Another admissible choice for A(n, r) is the family of Stirling numbers
of the first kind.

1. Introduction

Let S(n, r) denote a Stirling number of the second kind, the number of unordered partitions
of an n-element set into r nonempty subsets. Recently Agoh and Dilcher [2, Theorem 1]
proved the following identity holds

(r − 1)!

(n− 1)!
S(n, r) =

∑

r1+···+rk=r
r1,...,rk≥1

k∏

j=1

(rj − 1)!

(nj − 1)!
S(nj, rj) (1)

where n = n1 + · · · + nk and r > maxj(n− nj).

We give a simpler proof of a more general identity. In particular our identity specializes
not only to (1) but also to its analogue with the S(n, r) replaced by Stirling numbers of the
first kind. The key to our approach is the use of the Lagrange inversion theorem.

2. The Main Theorem

The Stirling numbers of the second kind have the exponential generating function

∞∑

n=r

S(n, r)
xn

n!
=

(ex − 1)r

r!

[4, Chapter 1 (24b)]. Our generalization concerns any doubly-indexed family of numbers
with exponential generating functions of this form. Let f(x) =

∑∞
n=1 ckxk be a formal power
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series over a field of characteristic zero and with c1 "= 0. Define A(n, r) for n ≥ r ≥ 1 by

f(x)r

r!
=

∞∑

n=r

A(n, r)
xn

n!
.

Thus when f(x) = ex − 1, A(n, r) = S(n, r). Define

B(n, r) =
(r − 1)!

(n− 1)!
A(n, r).

We can now state and prove our main theorem.

Theorem 1 With the above notation, let n1, . . . , nk be positive integers, n = n1 + · · · + nk

and s be an integer with 0 ≤ s < minj nj. Then

B(n, n− s) =
∑

s1+···+sk=s
s1,...,sk≥0

k∏

j=1

B(nj, nj − sj). (2)

Proof. The power series f has a compositional inverse F , also a power series with constant
term zero, satisfying F (f(x)) = f(F (x)) = x. The Lagrange inversion theorem [5, Theo-
rem 5.4.2] states that n[xn](f(x)r) = r[x−r](F (x)−n) where [xm](φ(x)) denotes the coefficient
of xm in the formal Laurent series φ(x). As

f(x)r

r
=

∞∑

n=r

B(n, r)
xn

n

then B(n, r) = n
r [xn](f(x)r) = [x−r](F (x)−n). Define for n ≥ 1, gn(x) =

∑n−1
s=0 B(n, n− s)xs.

Then gn(x) consists of the terms up to that in xn−1 in the power series (x/F (x))n. It is
convenient to write this as a congruence

gn(x) ≡
(

x

F (x)

)n

(mod xn)

in the ring of formal power series. If n = n1 + · · · + nk then

k∏

j=1

gnj(x) ≡
k∏

j=1

(
x

F (x)

)nj

=

(
x

F (x)

)n

≡ gn(x) (mod xminj nj).

Comparing the coefficient of xs when 0 ≤ s < minj nj gives

B(n, n− s) =
∑

s1+···+sk=s
s1,...,sk≥0

k∏

j=1

B(nj, nj − sj).

!

Taking f(x) = ex − 1 and setting r = n− s and rj = nj − sj, identity (2) reduces to (1).
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Let c(n, r) denote the (unsigned) Stirling number of the first kind, the number of permu-
tations of {1, . . . , n} with r cycles. Then

∞∑

n=r

c(n, r)
xn

n!
=

1

r!

(
log

1

1− x

)r

[3, §1.2.9 (26)]. By taking f(x) = log(1/(1− x)) Theorem 1 gives

(r − 1)!

(n− 1)!
c(n, r) =

∑

r1+···+rk=r
r1,...,rk≥1

k∏

j=1

(rj − 1)!

(nj − 1)!
c(nj, rj)

whenever n = n1 + · · · + nk and r > maxj(n− nj).

3. Another Identity of Agoh and Dilcher

We now give an alternative proof of Proposition 5.1 in [1].

Theorem 2 For integers m, n ≥ 1 and 1 ≤ r ≤ m + n the following identity holds:

(m− 1)!(n− 1)!

(m + n− 1)!
S(m + n, r) =

r−1∑

i=1

(i− 1)!(r − i− 1)!

(r − 1)!
S(m, i)S(n, r − i)

+ (−1)m
n−r∑

j=0

Bj+m

j + m

(
n− 1

j

)

S(n− j, r)

+ (−1)n
m−r∑

j=0

Bj+n

j + n

(
m− 1

j

)

S(m− j, r),

where the Bs are the Bernoulli numbers.

Proof. Note that this is the same as [1, Proposition 5.1] on replacing their k and m by m
and n, their d by r − 1 and performing some rearrangement.

Let f(x) = ex − 1. Then f has compositional inverse F (x) = log(1 + x). Define T (n, r)
for integers 1 ≤ r ≤ n by

T (n, r) =
(r − 1)!

(n− 1)!
S(n, r).

Then
(ex − 1)r

r!
=

∞∑

n=r

S(n, r)
xn

n!
=

1

(r − 1)!

∞∑

n=r

T (n, r)
xn

n
.

Differentiating gives

ex(ex − 1)r−1 =
∞∑

n=r

T (n, r)xn−1.

Thus
T (n, r) = [xn−1]ex(ex − 1)r−1.
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Now use this formula to define T (n, r) for all integers n and r, noting that T (n, r) = 0 if
n < r.

By the Lagrange inversion formula T (n, r) = [x−r](log(1 + x))−n. Let m, n ≥ 1 and
1 ≤ r ≤ m + n. Then

T (m + n, r) = [x−r](log(1 + x))−m(log(1 + x))−n =
m∑

i=r−n

T (m, i)T (n, r − i).

We split this sum as follows: T (m + n, r) = Σ1 + Σ2 − Σ3, where

Σ1 =
m∑

i=1

T (m, i)T (n, r−i), Σ2 =
r−1∑

i=r−n

T (m, i)T (n, r−i), and Σ3 =
r−1∑

i=1

T (m, i)T (n, r−i).

The first sum is

Σ1 =
m∑

i=1

T (m, i)T (n, r − i)

=
1

(m− 1)!

m∑

i=1

(i− 1)!S(m, i)T (n, r − i)

=
1

(m− 1)!
[xn−1]

m∑

i=1

(i− 1)!S(m, i)ex(ex − 1)r−i−1

=
1

(m− 1)!
[xn−1]ex(ex − 1)r−1

m∑

i=1

(i− 1)!S(m, i)
1

(ex − 1)i
.

By [1, Lemma 3.1],

m∑

i=1

(i− 1)!S(m, i)
1

(ex − 1)i
= (−1)m−1 dm−1

dxm−1

1

ex − 1
.

By the definition of the Bernoulli numbers

1

ex − 1
=

1

x
+

∞∑

j=0

Bj+1

j + 1

xj

j!
.

Differentiating m− 1 times gives

(−1)m−1 dm−1

dxm−1

1

ex − 1
=

(m− 1)!

xm
− (−1)m

∞∑

j=0

Bj+m

j + m

xj

j!
.

Thus

Σ1 = [xm+n−1]ex(ex − 1)r−1

− (−1)m

(m− 1)!

n−r∑

j=0

Bj+m

(j + m)j!
[xn−j−1]ex(ex − 1)r−1

= T (m + n, r)− (−1)m

(m− 1)!

n−r∑

j=0

Bj+m

(j + m)j!
T (n− j, r).
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Similarly

Σ2 =
n∑

i=1

T (m, r − i)T (n, i) = T (m + n, r)− (−1)n

(n− 1)!

m−r∑

j=0

Bj+n

(j + n)j!
T (m− j, r).

It follows that

T (m + n, r) = 2T (m + n, r)− Σ3 −
(−1)m

(m− 1)!

n−r∑

j=0

Bj+m

(j + m)j!
T (n− j, r)

− (−1)n

(n− 1)!

m−r∑

j=0

Bj+n

(j + n)j!
T (m− j, r).

Rearranging gives

T (m + n, r) =
r−1∑

i=1

T (m, i)T (n, r − i) +
(−1)m

(m− 1)!

n−r∑

j=0

Bj+m

(j + m)j!
T (n− j, r)

+
(−1)n

(n− 1)!

m−r∑

j=0

Bj+n

(j + n)j!
T (m− j, r).

Using the definition of T a further rearrangement yields

(m− 1)!(n− 1)!

(m + n− 1)!
S(m + n, r) =

r−1∑

i=1

(i− 1)!(r − i− 1)!

(r − 1)!
S(m, i)S(n, r − i)

+ (−1)m
n−r∑

j=0

Bj+m

j + m

(
n− 1

j

)

S(n− j, r)

+ (−1)n
m−r∑

j=0

Bj+n

j + n

(
m− 1

j

)

S(m− j, r)

as required. !
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