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ON THE CONGRUENCE N ≡ A (mod ϕ(N))
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Abstract

D. H. Lehmer asked whether there are any composite integers for which ϕ(n) | n− 1, where
ϕ is the Euler function. In this paper, we show that the number of such integers n ! x is
o(x1/2) as x→∞.

1. Introduction

Let ϕ(n) be the Euler function, which is defined as usual by

ϕ(n) = n
∏

p |n

(
1− p−1

)
(n ∈ N).

In 1932, D. H. Lehmer [4] asked whether there are any composite numbers n for which
ϕ(n) | n− 1, and the answer to this question is still unknown.

In what follows, for any set S ⊆ N we put S(x) = S ∩ [1, x] for all x " 1. In a series of
papers (see [5, 6, 7]) C. Pomerance considered the problem of bounding the cardinality of
L(x), where L is the (possibly empty) set of composite numbers n such that ϕ(n) | n − 1.
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In his third paper, Pomerance [7] established the bound

#L(x)( x1/2(log x)3/4 (1.1)

and remarked:

There is still clearly a wide gap between the possibility that L = ∅ and (1.1), for
the latter does not even establish that the members of L are as scarce as squares!

Refinements of the underlying method of [7] led to subsequent improvements of the bound (1.1):

#L(x)( x1/2(log x)1/2(log log x)−1/2 (Shan [8])

#L(x)( x1/2(log log x)1/2 (Banks and Luca [1]).

In the present note, we use similar techniques to show that the members of L are scarcer
than squares, i.e., that #L(x) = o(x1/2) as x→∞. More precisely, we prove the following:

Theorem 1. For any fixed ε > 0 the bound

#L(x)( x1/2

(log x)Θ−ε

holds, where Θ = 0.129398 · · · is the least positive solution to the equation

2Θ(log Θ− 1− log log 2) = − log 2. (1.2)

As in the earlier papers [1, 5, 6, 7, 8] where bounds on the cardinality of L(x) are given,
Theorem 1 admits a natural generalization. For an arbitrary integer a, let

La =
{
n ∈ N : n ≡ a (mod ϕ(n))

}
,

and put
L′a =

{
n ∈ La : n )= pa for p prime, p " a

}
.

Since L′1 = L ∪ {1}, Theorem 1 is the special case a = 1 of the following:

Theorem 2. Let a ∈ Z and ε > 0 be fixed. Then,

#L′a(x)( x1/2

(log x)Θ−ε
,

where Θ is the least positive solution to the equation (1.2).

We remark that for a = 0 one has #L′0(x) + (log x)2, which follows from the result of
Sierpiński [9, p. 232]:

L′0 = {1} ∪
{
2i 3j : i " 1, j " 0

}
.

Hence, we shall assume that a )= 0 in the sequel.
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2. Preliminaries

According to [7, Lemma 1] the inequality

#L′a(x) ! 4a2 +
∑

d | a

#L′′a/d(x/d)

holds, where
L′′a =

{
n ∈ L′a : n is square-free

}
.

Thus, to prove Theorem 2 it suffices to show that

#L′′a(x)( x1/2

(log x)Θ−ε
. (2.1)

The following result is due to Pomerance [7, Theorem 1]:

Lemma 1. Suppose that n " 16a2, n ∈ L′′a, and K = ω(n). Let the prime factorization of
n be p1 · · · pK, where p1 > · · · > pK. Then, for 1 ! i ! K we have

pi < (i + 1)

(
1 +

K∏

j=i+1

pj

)
.

We also need the following lemma from [8]:

Lemma 2. Suppose that δ " 0, a1 " · · · " at = 0, and ai ! δ +
∑t

j=i+1 aj for 1 ! i ! t− 1.

Then, for any real number ρ such that 0 ! ρ <
∑t

i=1 ai, there is a subset I of {1, . . . , t} such
that ρ− δ <

∑
i∈I ai ! ρ.

Our principal tool is the next lemma, which is a simplified and weakened version of [2,
Proposition 3]. For convenience, our lemma is stated in terms of log log n rather than log log x
as in [2], but this change is easily justified in view of the term (log x)o(1) that we include in
our estimates.

Lemma 3. For fixed 0 < λ < 1, the counting function of the set

Vλ =
{
n : ω(n) < λ log log n

}

satisfies the bound

#Vλ(x) ! x

(log x)1+λ log(λ/e)+o(1)
(x→∞).

For fixed λ > 1, the counting function of the set

Wλ =
{
n : ω(n) > λ log log n

}

satisfies the bound

#Wλ(x) ! x

(log x)1+λ log(λ/e)+o(1)
(x→∞).



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A59 4

Finally, we recall the well-known inequality of Landau [3]:

n

ϕ(n)
( log log n (n " 3). (2.2)

3. Proof of Theorem 2

We write the bound of [1] in the form:

#L′′a(x) ! #L′a(x) ! x1/2(log x)o(1) (x→∞). (3.1)

Let ε > 0 be a small fixed parameter. Let α and β be fixed real numbers such that

Θ− ε < α/2 < β < Θ,

where Θ is defined as in Theorem 1, and put

A = (log x)α and B = (log x)β.

Note that (3.1) implies

#L′′a(x/A) ! x1/2(log x)−α/2+o(1) (x→∞),

and since α/2 > Θ− ε it follows that

#L′′a(x/A)( x1/2(log x)−Θ+ε. (3.2)

Now let n ∈ L′′a be fixed with 16a2 ! x/A < n ! x. Put K = ω(n), and factor
n = p1 · · · pK where p1 > . . . > pK . By Lemma 1 we have

log pi < log(2K) +
K∑

j=i+1

log pj (1 ! i ! K).

Applying Lemma 2 with δ = log(2K), t = K + 1, ai = log pi for 1 ! i ! K, at = 0, and
ρ = log(x1/2/B), we conclude that n has a positive divisor d such that ρ− δ < log d ! ρ; in
other words,

x1/2

2ω(n)B
! d ! x1/2

B
. (3.3)

Setting m = n/d, it is also clear that

x1/2B

A
! m ! 2ω(n)Bx1/2. (3.4)

First, suppose that n ∈W20. Since n is square-free we have

ω(d) + ω(m) = ω(dm) = ω(n) > 20 log log n,
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hence either d ∈W10 or m ∈W10. Using the trivial bound ω(n) ! 2 log x and the inequality
A ! B2, we see that n has a divisor k ∈W10 such that

x1/2

4B log x
! k ! 4Bx1/2 log x.

Note that gcd(k,ϕ(k)) | a since k | n and n ≡ a (mod ϕ(n)). On the other hand, if k is
fixed with the above properties, and n is a number in La that is divisible by k, then

n ≡ 0 (mod k) and n ≡ a (mod ϕ(k)).

By the Chinese Remainder Theorem, we see that n is uniquely determined modulo lcm[k,ϕ(k)].
Hence, the number of integers n ! x with n ∈ L′′a ∩W20 and k | n does not exceed

1 +
x

lcm[k,ϕ(k)]
! 1 +

xa

kϕ(k)
( 1 +

x log log x

k2
,

where we have used (2.2) in the last step. Put y = x1/2/(4B log x) and z = 4Bx1/2 log x.
Summing the contributions over all such integers k, we derive that

#
{
n ∈ L′′a ∩W20 : x/A ! n ! x

}
(

∑

y!k!z
k∈W10

(
1 +

x log log x

k2

)

!
∑

k!z
k∈W10

1 + x log log x
∑

k"y
k∈W10

1

k2

( z

(log z)14
+

x log log x

y(log y)14
.

Here, we have used Lemma 3, the inequality 1 + 10 log(10/e) > 14, and the estimate

∑

k"y
k∈Wλ

1

k2
( 1

y(log y)1+λ log(λ/e)+o(1)
(y →∞),

which follows from Lemma 3 by partial summation. Inserting the definitions of y, z and B
into the bound above, and noting that β < Θ < 1, we derive that

#
{
n ∈ L′′a ∩W20 : x/A ! n ! x

}
( Bx1/2 log log x

(log x)13

( x1/2(log x)β−12

( x1/2(log x)−Θ.

(3.5)

Next, we consider the case that n )∈W20. Since ω(n) ! 20 log log x, the inequalities (3.3)
and (3.4) can be replaced by

x1/2

40B log log x
! d ! x1/2

B
(3.6)
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and
x1/2B

A
! m ! 40Bx1/2 log log x, (3.7)

respectively. Let T be the collection of pairs (d,m) of natural numbers such that dm ∈ L′′a
and the inequalities (3.6) and (3.7) hold. Then,

#
{
n ∈ L′′a \W20 : x/A ! n ! x

}
! #T . (3.8)

Lemma 4. If x is sufficiently large, then for every integer m there is at most one integer d
such that (d,m) ∈ T .

Proof. Suppose (d1,m) and (d2,m) both lie in T . Since d1m and d2m are numbers in L′′a,
we have

ϕ(m) | d1m− a and ϕ(m) | d2m− a.

Hence it follows that
d1 ≡ d2 (mod ϕ(m)/µ), (3.9)

where µ = gcd(m,ϕ(m)); note that µ( 1 since µ | a. By (3.6) we have the bound

max
{
d1, d2

}
! x1/2

B
= x1/2(log x)−β,

whereas by (2.2) and (3.7) we have

ϕ(m)

µ
, m

log log m
" x1/2(log x)β−α+o(1) (x→∞).

Since β > α/2, it follows that for all sufficiently large x, both d1 and d2 are smaller than
the modulus in (3.9), so the congruence becomes an equality d1 = d2. This completes the
proof.

From now on, we assume that x is large enough to yield the conclusion of Lemma 4. Let
M denote the set of integers m such that (d,m) ∈ T for some integer d. By Lemma 4, the
map (d,m) -→ m provides a bijection T ∼←→M; in particular, #T = #M, and (3.8) can be
restated as

#
{
n ∈ L′′a \W20 : x/A ! n ! x

}
! #M. (3.10)

Let ϑ = 0.373365 · · · be the unique solution in the interval (0, 1) to the equation

1 + ϑ log(ϑ/e) = ϑ log 2.

From (1.2) it follows that
2Θ = 1 + ϑ log(ϑ/e) = ϑ log 2. (3.11)

We now express M as a disjoint union M1 ∪M2, where

M1 = M ∩ Vϑ and M2 = M\Vϑ.



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A59 7

Using Lemma 3, (3.7) and (3.11) we derive the bound

#M1 ! #Vϑ(40Bx1/2 log log x) = x1/2(log x)β−2Θ+o(1) (x→∞).

Since β < Θ, it follows that
#M1 ( x1/2(log x)−Θ. (3.12)

Lemma 5. If x is sufficiently large, then for every integer d there is at most one integer
m ∈M2 such that (d,m) ∈ T .

Proof. Suppose (d,m1) and (d,m2) both lie in T , where m1,m2 ∈ M2. From the lower
bound of (3.7) we see that both numbers m1 and m2 have at least κ =

⌊
ϑ log log(x1/2B/A)

⌋

distinct odd prime divisors; hence both integers ϕ(m1) and ϕ(m2) are divisible by 2κ. Since
dm1 and dm2 are numbers in L′′a, we can write

dm1 = a + 2κϕ(d)s1 and dm2 = a + 2κϕ(d)s2

for some natural numbers s1, s2. Hence it follows that

m1 ≡ m2 (mod 2κϕ(d)/µ) (3.13)

where µ = gcd(d, 2κϕ(d)); as before we have µ( 1 since µ | a. By (3.7) we have the bound

max
{
m1,m2

}
! 40Bx1/2 log log x = x1/2(log x)β+o(1) (x→∞).

On the other hand, since κ = (ϑ + o(1)) log log x as x→∞, using (2.2), (3.6) and (3.11) we
derive the lower bound

2κϕ(d)

µ
, d · 2κ

log log d
" x1/2(log x)ϑ log 2+o(1)

B(log log x)2
= x1/2(log x)2Θ−β+o(1).

Since β < Θ, it follows that 2κϕ(d)/µ > max{m1,m2} once x is sufficiently large. The
congruence (3.13) then becomes an equality m1 = m2, which finishes the proof.

We now assume that x is large enough to yield the conclusion of Lemma 5. Let D denote
the set of integers d such that (d,m) ∈ T for some integer m ∈ M2. Applying Lemma 5
and using the upper bound of (3.6), we see that

#M2 = #D ! x1/2

B
= x1/2(log x)−β.

Since β > Θ− ε we obtain
#M2 ! x1/2(log x)−Θ+ε. (3.14)

Combining (3.2), (3.5), (3.10), (3.12) and (3.14), and taking into account that #M =
#M1 + #M2, we derive the bound (2.1), and this finishes the proof of Theorem 2.
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