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ON THE CONGRUENCE N = A (mod ¢(NN))

William D. Banks!
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
bbanks@math.missouri.edu

Ahmet M. Giiloglu
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
ahmet@math.missouri.edu

C. Wesley Nevans
Department of Mathematics, University of Missouri, Columbia, MO 65211 USA
nevans@math.missouri.edu

Received: 4/1/08, Revised: 9/30/08, Accepted: 10/15/08, Published: 12/23/08

Abstract

D. H. Lehmer asked whether there are any composite integers for which ¢(n) | n — 1, where
@ is the Euler function. In this paper, we show that the number of such integers n < x is
o(x/?) as v — oo.

1. Introduction

Let ¢(n) be the Euler function, which is defined as usual by

o(n) = nH (1-p") (n € N).

In 1932, D. H. Lehmer [4] asked whether there are any composite numbers n for which
¢(n) | n— 1, and the answer to this question is still unknown.

In what follows, for any set S C N we put S(z) = SN [1,z] for all z > 1. In a series of
papers (see [5, 6, 7]) C. Pomerance considered the problem of bounding the cardinality of
L(x), where L is the (possibly empty) set of composite numbers n such that p(n) | n — 1.
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In his third paper, Pomerance [7] established the bound
#L(7) < /% (log 2)*/* (1.1)

and remarked:

There is still clearly a wide gap between the possibility that £ = & and (1.1), for
the latter does not even establish that the members of L are as scarce as squares!

Refinements of the underlying method of [7] led to subsequent improvements of the bound (1.1):
#L(z) < £'/*(logz)Y?(loglog z) /2 (Shan [8])
#L(z) < z'/*(loglog z)'/? (Banks and Luca [1]).

In the present note, we use similar techniques to show that the members of £ are scarcer
than squares, i.e., that #L(x) = o(z'/?) as x — oco. More precisely, we prove the following:

Theorem 1. For any fixed € > 0 the bound
2172

#EE) < ogmpe—

holds, where © = 0.129398 - - - is the least positive solution to the equation

20(log® — 1 — loglog 2) = —log 2. (1.2)

As in the earlier papers [1, 5, 6, 7, 8] where bounds on the cardinality of L(z) are given,
Theorem 1 admits a natural generalization. For an arbitrary integer a, let

Lo,={neN :n=a (modp(n))},
and put
L, ={neL, : n#paforpprime,pta}.
Since £} = LU {1}, Theorem 1 is the special case a = 1 of the following:
Theorem 2. Let a € Z and € > 0 be fived. Then,
1/2

X

#L,(r) < (log2)0 <’

where © is the least positive solution to the equation (1.2).

We remark that for a = 0 one has #L£(z) < (logz)?, which follows from the result of
Sierpinski [9, p. 232]: .
Ly={1}uU{2°3 :i>1, j>0}.

Hence, we shall assume that a # 0 in the sequel.
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2. Preliminaries

According to [7, Lemma 1] the inequality

#L! (z) < 4a® —1—2# oyalr/d)
d|a
holds, where
L) ={n e L, :n is square-free}.
Thus, to prove Theorem 2 it suffices to show that
2172

#E;’(x) < W (2'1)

The following result is due to Pomerance [7, Theorem 1]:

Lemma 1. Suppose that n > 16a*, n € L, and K = w(n). Let the prime factorization of
n be py---pg, where py > --- > pg. Then, for 1 <i < K we have

pi < (i+1) <1+Hp]>.

Jj=i+1

We also need the following lemma from [8]:

Lemma 2. Suppose thatd >0, a1 > --->a; =0, and a; < 5—}—22 i1 @ for1 <i<t—1.
Then, for any real number p such that 0 < p < S°._, a;, there is a subset T of {1,...,t} such

that p—0 <) .7 a; < p.

Our principal tool is the next lemma, which is a simplified and weakened version of |2,
Proposition 3|. For convenience, our lemma is stated in terms of log log n rather than loglog
as in [2], but this change is easily justified in view of the term (logx)°!) that we include in
our estimates.

Lemma 3. For fired 0 < \ < 1, the counting function of the set

VA—{n : )<)\loglogn}
satisfies the bound
#V(r) < (log x)1+/\:fog(/\/e)+o( ) (z — 00).
For fived A > 1, the counting function of the set
Wy ={n : w(n)> Xloglogn}
satisfies the bound

#WA( ) (log $)1+Alog(,\/e)+o(1)
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Finally, we recall the well-known inequality of Landau [3]:

I« loglogn (n > 3). (2.2)

p(n)
3. Proof of Theorem 2

We write the bound of [1] in the form:

#L(z) < #L. (z) < m1/2(10g x)o(l) (x — 00). (3.1)

Let € > 0 be a small fixed parameter. Let a and 3 be fixed real numbers such that
O—c<a/2<p<0O,
where © is defined as in Theorem 1, and put
A = (logz)”* and B = (logz)”.
Note that (3.1) implies
#L,(x/A) < 2t (logz)*#W (2 — o0),
and since «/2 > O — ¢ it follows that
#L"(2/A) < 2% (log x)~OFe, (3.2)

Now let n € L/ be fixed with 16a*> < z/A < n < x. Put K = w(n), and factor
n =py---pg where p; > ... > pg. By Lemma 1 we have

K
log p; < log(2K) + Z log p; (1<i<K).
j=it1
Applying Lemma 2 with 6 = log(2K), t = K + 1, a; = logp; for 1 < i < K, a; = 0, and
p = log(z'/?/B), we conclude that n has a positive divisor d such that p — d < logd < p; in
other words,

2172 2172
<d< —. 3.3
2w(n)B B (33)
Setting m = n/d, it is also clear that
1/2B
’ i <m < 2w(n)Bz'/?, (3.4)

First, suppose that n € Ws. Since n is square-free we have

w(d) + w(m) = w(dm) = w(n) > 20loglogn,
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hence either d € Wyy or m € Wg. Using the trivial bound w(n) < 2logz and the inequality
A < B?, we see that n has a divisor k£ € W such that

21/2

— <k <4B2'"*logu.
4B logx vosd

Note that ged(k, ¢(k)) | a since k | n and n = a (mod ¢(n)). On the other hand, if £ is
fixed with the above properties, and n is a number in £, that is divisible by k, then

n=0 (mod k) and n=a (mod ¢(k)).

By the Chinese Remainder Theorem, we see that n is uniquely determined modulo lem|k, p(k)].
Hence, the number of integers n < = with n € £/ N W,y and k | n does not exceed

x xa xloglogx
14— 1y 0 g B980T
T lemlle, o] S RplR) ST TR

where we have used (2.2) in the last step. Put y = 2'/2/(4Blogz) and z = 4Bz'/?log x.
Summing the contributions over all such integers k, we derive that

logl
#{neLiNWy : z/A<n< 2} < Z (1+w)

2
y<k<z
kEWio
1
< Z 1+ zloglogx Z w2
k<z kzy
keEWho keEW1io
z xloglogx

< (log z)14 ” y(logy)*”

Here, we have used Lemma 3, the inequality 1 + 10log(10/e) > 14, and the estimate

1 1
Z k2 < y(log y) 1+ og(Ve)+o(1) (y — o00),

kzy
keW,,

which follows from Lemma 3 by partial summation. Inserting the definitions of y, z and B
into the bound above, and noting that 7 < © < 1, we derive that

Bx'?loglog x
(log z)'3

< 22 (log )P~ 12

< 22 (logx)~°.

H#{nELINWy : z/A<n<a} <

(3.5)

Next, we consider the case that n & Wh. Since w(n) < 20loglog z, the inequalities (3.3)

and (3.4) can be replaced by

2172
————— <d< —- 3.6
40B loglog x B (36)
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and
2/2B

A

respectively. Let 7 be the collection of pairs (d,m) of natural numbers such that dm € L/
and the inequalities (3.6) and (3.7) hold. Then,

< m < 40Bz"/? log log x, (3.7)

#{neLi\ Wy : z/A<n<a} <#T. (3.8)

Lemma 4. If x is sufficiently large, then for every integer m there is at most one integer d

such that (d,m) € T.

Proof. Suppose (dy,m) and (d2,m) both lie in 7. Since dym and dym are numbers in L,
we have
e(m) | dym —a and w(m) | dom — a.

Hence it follows that
dy =dy (mod ¢(m)/pu), (3.9)

where p = ged(m, ¢(m)); note that u < 1 since p | a. By (3.6) we have the bound

1/2
max {dy,d>} < % = 2Y2(log )",

whereas by (2.2) and (3.7) we have

Qp(m) > m > I1/2(10gI)’6—a+0(1) (:L' _ OO)
1 loglogm

Since 5 > «/2, it follows that for all sufficiently large x, both d; and dy are smaller than
the modulus in (3.9), so the congruence becomes an equality d; = dy. This completes the
proof. O

From now on, we assume that x is large enough to yield the conclusion of Lemma 4. Let
M denote the set of integers m such that (d,m) € 7T for some integer d. By Lemma 4, the
map (d, m) — m provides a bijection 7 «— M; in particular, #7 = #M, and (3.8) can be
restated as

#{n e L\ Wy : z/A<n <z} <HM. (3.10)

Let ¥ = 0.373365 - - - be the unique solution in the interval (0, 1) to the equation
1 4+ Jlog(v/e) = ¥1og 2.

From (1.2) it follows that
20 =1+ ¥log(v/e) = ¥1og2. (3.11)

We now express M as a disjoint union M; U My, where

MleﬂVﬁ and MQIM\Vg.
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Using Lemma 3, (3.7) and (3.11) we derive the bound
# My < #Vy(40Bx? loglog z) = x/2(log 2)P~20+°() (x — 00).

Since < O, it follows that
# M, < 2Y*(logz) . (3.12)

Lemma 5. If x is sufficiently large, then for every integer d there is at most one integer

m € My such that (d,m) € T.

Proof. Suppose (d,m;) and (d,mz) both lie in 7, where m;,my € M. From the lower
bound of (3.7) we see that both numbers m; and m, have at least k = |9 loglog(z'/?B/A)]
distinct odd prime divisors; hence both integers ¢(m1) and ¢(my) are divisible by 2”. Since
dm; and dmy are numbers in £/, we can write

dmy = a + 2%p(d)s; and dms = a + 2%p(d)sy
for some natural numbers s, s5. Hence it follows that
mi=m,  (mod 2°(d)/n) (3.13)
where p = ged(d, 2%¢(d)); as before we have p < 1 since p | a. By (3.7) we have the bound
max {ml, m2} < 40Bz'?loglog z = '/*(log )P toW) (x — o0).

On the other hand, since k = (¥ + o(1)) loglog z as  — oo, using (2.2), (3.6) and (3.11) we
derive the lower bound

2%p(d) d -2 . 21/2(log )7 10g 2+o(1)

_ 120 20—G+o(1)
i > loglogd ~ B(log log x)? v (log )

Since f < O, it follows that 2°p(d)/u > max{mi,my} once z is sufficiently large. The
congruence (3.13) then becomes an equality m; = msy, which finishes the proof. O

We now assume that z is large enough to yield the conclusion of Lemma 5. Let D denote
the set of integers d such that (d,m) € 7 for some integer m € My. Applying Lemma 5
and using the upper bound of (3.6), we see that

1/2

4 My = #D < % = 2(log z) .

Since § > © — ¢ we obtain
# My < 2Y?(logz) 0. (3.14)

Combining (3.2), (3.5), (3.10), (3.12) and (3.14), and taking into account that #M =
#M; + #Ms, we derive the bound (2.1), and this finishes the proof of Theorem 2.
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