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Abstract
This work is motivated by Nathanson’s recent paper on relatively prime sets and a
phi function for subsets of {1,2,3,...,n}. We establish enumeration formulas for
the number of relatively prime subsets and the number of relatively prime subsets
of cardinality k of {1,2,3,...,n} under various constraints. Further, we show how
this work links up with the study of multicompositions.

1. Background

Our paper is motivated by a recent paper of Nathanson [8] who defined a nonempty
subset A of {1,2,...,n} to be relatively prime if gcd(A) = 1. He defined f(n) to be
the number of relatively prime subsets of {1,2,...,n} and, for £ > 1, fix(n) to be
the number of relatively prime subsets of {1,2,...,n} of cardinality k. Further, he
defined ®(n) to be the number of nonempty subsets A of the set {1,2,...,n} such
that ged(A) is relatively prime to n and, for integer k > 1, ®(n) to be the number
of subsets A of the set {1,2,...,n} such that ged(A) is relatively prime to n and
card(A) = k. He obtained explicit formulas for these functions and deduced asymp-
totic estimates. These functions were subsequently generalized by El Bachraoui [5]
to subsets A € {m+1,m+2,...,n} where m is any nonnegative integer, and then
by Ayad and Kihel [3] to subsets of the set {a,a+b,...,a+ (n—1)b} where a and
b are any integers.

El Bachraoui [4] defined for any given positive integers | < m < n, ®([l, m],n) to
be the number of nonempty subsets of {I,{ + 1,...,m} which are relatively prime
to n and P (I, m],n) to be the number of such subsets of cardinality k. He found
formulas for these functions when [ = 1 [4].
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2. Introduction

It turns out that some of Nathanson’s results are special cases of number theoretic
functions investigated by Shonhiwa. In [10], Shonhiwa defined and investigated the
following functions and established the following result.

Theorem 1 Let

S (n) = > LYn>k>1 m>1 (1)

1<ai,az,...,ap<n
(ay,a2,..., ap,m)=1

Gr(n) = Z L, Vn>k>1, @
1<ai,az,...,ap<n
(a17a27~.,ak):1

m(p) = > LYn>k>1, m>1 (3)

1<a;<az<--<ar<n
(11,a2,...,ax,m)=1

and
T (n) = > LVYn>k>1, m>1. (4)
1<ai<az<--<ap<n
(a1,a2,...,ar,m)=1
Then
k
Sim) =Y uld) | 5]
d|m
mpm = S wark (|5]) = S (),
d|m d|m
and

o= St ([3]) = S ().

dlm dlm

From above, it follows that

o n\ (d
win =17 = (3) (3) )
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and

—~
D
=

o(n) = 3 Tp(n) = 3 (@2
k=1 dlm

as shown therein and as proved in [8].

3. Main Results

The result obtained concerning the function G (n) in [10] is incorrect and we provide
the correction below. The corrected result makes use of the following theorem [1].

Theorem 2 (Generalized Mébius inversion formula) If « is completely multiplica-

tive we have
G(z) =Y an)F (%) s F(z) =Y p(n)a(n)G (f) .

n
n<lx n<lx

We may now prove our first result as follows.

Theorem 3 We have

Gutm = 2]

i<n

Proof.  Since

I
-
(]

Gk(n)znk—z Z 1

J=2 1<ay,az,...,ap<n J=2 1<by,ba,. be <[ 2]
(a1,a2,.-a1)=] (b1,ba,...,by) =1

we have
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Hence, by Theorem 2, it follows that

n non nl* n J nl*
G(n) = ;ka) =3 uli) M Z:MJ)Z { J

k=1 j=1

Using our definition, results from [10], Nathanson’s notation and arguing as
above, it also follows that

= 3 1= (Z) ‘if’“ (H) ’

(a1,a2,...,ar)=1

which gives

2 ([5)- ()

Thus,

We now prove our next theorem.

Theorem 4 Let

Hy(n) = Z 1.

1<a;<azx<-<ar<n
(a1,a2,...,a)=1
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Then

k

Hk<n>—zu<j>(m *’“‘1).

Jj<n

Proof.  Arguing as above it follows that

o () S (1)

which implies

2 ([3])- ()

and hence, by Theorem 2, we obtain the result

i LI Zl+k-1
H(n)—;m(m:;um;d J )
= j M(J)(mjﬂ) —iu(J)

We now define the corresponding totient function as

Wy (n) = LE(n) = zu(g) (‘”’,j 1>.

d|n

Then

oo-goo-Fo- 2R )-E0)

dln

or equivalently,

(2:) _ dz;qf(d) — i (2:>x" - i\p(n)l f;n — \/i_% 1

n=1 n=1
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It turns out the function 77"(n) relates to other functions connected with the
study of compositions of n into relatively prime summands as follows.
Gould [6] investigated the function

mo= 3 =Y an()) - Zu()( )

1<aj+as+-+ar=n d|n
(a1,a2,...,a)=1

where Ci(n) = (7~ 1) and obtained many other significant results concerning this
function. Consequently,

¢ (n) = > 1

1<a;<az<---<ap<n
(a1,a2,...,ax,n)=1

- S ()
- DU{( ) ()]

= Rp(n) + Rpq1(n).
Therefore, we may obtain results concerning either function by using known prop-

erties of the other. In particular, we may obtain the Lambert series for 17'(n) as
follows:

o0 :L’n o0
;T’?l—xn - ZRzl

n=1

-t ZRk+11

zk

o0

= Z " Z Cr(n)z"

n=0 n=0

= ) a"> Crln—j),
— =0

n=1

which is equivalent to
" n
S =3 cn-0) = (}),
din §j=0

as expected.
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The inverse function of Ry(n) is

and it is shown in [6] that these two satisfy the orthogonality relations.

Theorem 5 We have

and
> R;(n)Ar(j) = o3

i=k

In [10], it is shown that the inverse of T}'(n) is

wt =30 (T 2]

j=k
and that:

Theorem 6 We have

> TI()Kj(n) = 6 and Y Kp(j)T! (n) = 6}.
j=k j=k

It follows that

NIE

{3+ ()

() + At

<.
I

Il

<
Il
o

so that
Whilst we have a closed form expression for Ay(n) it does not reveal enough regard-

ing the structure of Ag(n). Our next result responds to this concern for a special
case of Ag(n).
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Theorem 7 Forn > 1, we have

n+k—1

Ak(k—i—n):(—l)”( o ); Vk>n+1.

Proof.  From T}'(n) = Ri(n) + Ri+1(n) and Theorem 3.4 above, it follows that

S AT G) = 57 + 6 0
j=k
So that for n = k,
Ap(k)TE(k) =1 implies Ap(k)=TF =1; VEk> 1.
And for n =k + 1,
Ap(k + 1)TEK) + Apr(k + DTEH (k+1) =1 = Ap(k +1) = —k; Vk > 1.

For n > k + 2 we may rewrite equation (9) above as

M) + TP = — 3 AT (),

j=k+1

then for n = k + 2,

Ak +2) +TEP(k+2) = —Appa(k+ 2T (k+1)

= (k+1DT/ M (k+1)

= (k+1)
since Ag(k+ 1) = —k. Hence
, k+2
— _ d
Ap(k+2) = (k+1)°- ) u(d)( : )
dJk+2
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Now assume the result holds for K+ 1,k 4+ 2,...,k+ n — 1 and consider

n+k—1
Ae(k+n) + Tk +n) = — Y Aj(n+k)TL()
Jj=k+1
n—1

(=0T (k +4) TT (k +5)

j=i
- (n—1)!

|
—

n

-
Il

n—1 n—1 ,n+1 Z(k—'—’[,)
H k+7) {Z = .
J

=1

Then

Alktn) = = Z(—l)"jl(j)(km

Il
—_
S—
Y
3
>+
(——
=
—_
N———

where we have used the inductive hypothesis as well as assumed that k >n+1. O
We note in passing that

Ri(k+n)=(—1)"Ag(k +n) for all k > n+ 1.

Following up on Gould’s paper, Andrews [2] introduced the function g,,(n), which
gives the number of m-compositions of n with relatively prime positive summands

so that
Z Ri(n) = g1(n).

It is shown in [2] that the total number of m-compositions of n is (m + 1)"~1 and
hence,
(m4+1)" Z gm(d

In a follow-up paper, Shonhiwa [11] prov1ded an alternative investigation of the
function g,,(n).
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From the equation

it follows that

=20 (3)

d|n

()

Xn:Tj”(n)xj = Z (%) (z +1)% for all n > 2.
j=1

Therefore

dln

zu()mﬂ

7n+11§: ()7n+1

(m+1) 1ZT”

In particular, for m = 1, we obtain

gi(n)=T(n)=3"p

(see [7]).

Further, from

gm (i) = (m + 1)_1 Z
Jj=1

it follows that )
Kim)gn(@) = (m+1)7 Y

(e -

- Y

dln

d|n

> m

MJ for all n > 1.

(-

(5 (e

0 (mod 3) for all m >3

474
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which implies that

n

Yo Kin)gm() = (m+1)71Y N T K(n)m?

i=1 i=1 j=1
= (m—&—l)_lijé?
=1
= (m+1)"tm",
from above.
Hence
mn n—1
gm(n) m1 ; (1) gm (1)
mn n—1 n—1
T 2 D@~ T A )
m" mn—l n—1

= +——— = Ai(n)gm(i)

m—+1 m+1_,
n—1
= = Y Ai)gn (),
i=1

as expected; see [11].
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