
#A39 INTEGERS 10 (2010), 465-476

ON RELATIVELY PRIME SETS COUNTING FUNCTIONS

Temba Shonhiwa
The John Knopfmacher Centre for Applicable Analysis and Number Theory,

School of Mathematics, University of the Witwatersrand, South Africa

Received: 5/11/09, Revised: 4/14/10, Accepted: 4/26/10, Published: 9/15/10

Abstract
This work is motivated by Nathanson’s recent paper on relatively prime sets and a
phi function for subsets of {1, 2, 3, . . . , n}. We establish enumeration formulas for
the number of relatively prime subsets and the number of relatively prime subsets
of cardinality k of {1, 2, 3, . . . , n} under various constraints. Further, we show how
this work links up with the study of multicompositions.

1. Background

Our paper is motivated by a recent paper of Nathanson [8] who defined a nonempty
subset A of {1, 2, . . . , n} to be relatively prime if gcd(A) = 1. He defined f(n) to be
the number of relatively prime subsets of {1, 2, . . . , n} and, for k ≥ 1, fk(n) to be
the number of relatively prime subsets of {1, 2, . . . , n} of cardinality k. Further, he
defined Φ(n) to be the number of nonempty subsets A of the set {1, 2, . . . , n} such
that gcd(A) is relatively prime to n and, for integer k ≥ 1, Φk(n) to be the number
of subsets A of the set {1, 2, . . . , n} such that gcd(A) is relatively prime to n and
card(A) = k. He obtained explicit formulas for these functions and deduced asymp-
totic estimates. These functions were subsequently generalized by El Bachraoui [5]
to subsets A ∈ {m + 1,m + 2, . . . , n} where m is any nonnegative integer, and then
by Ayad and Kihel [3] to subsets of the set {a, a + b, . . . , a + (n− 1)b} where a and
b are any integers.

El Bachraoui [4] defined for any given positive integers l ≤ m ≤ n, Φ([l,m], n) to
be the number of nonempty subsets of {l, l + 1, . . . ,m} which are relatively prime
to n and Φk(l,m], n) to be the number of such subsets of cardinality k. He found
formulas for these functions when l = 1 [4].
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2. Introduction

It turns out that some of Nathanson’s results are special cases of number theoretic
functions investigated by Shonhiwa. In [10], Shonhiwa defined and investigated the
following functions and established the following result.

Theorem 1 Let

Sm
k (n) =

∑

1≤a1,a2,...,ak≤n
(a1,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1, m ≥ 1 (1)

Gk(n) =
∑

1≤a1,a2,...,ak≤n
(a1,a2,...,ak)=1

1; ∀n ≥ k ≥ 1, (2)

Lm
k (n) =

∑

1≤a1≤a2≤···≤ak≤n
(11,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1, m ≥ 1 (3)

and

Tm
k (n) =

∑

1≤a1<a2<···<ak≤n
(a1,a2,...,ak,m)=1

1; ∀n ≥ k ≥ 1, m ≥ 1. (4)

Then

Sm
k (n) =

∑

d|m

µ(d)
⌊n

d

⌋k
,

Lm
k (n) =

∑

d|m

µ(d)L1
k

(⌊n

d

⌋)
=

∑

d|m

µ(d)
(⌊

n
d

⌋
+ k − 1
k

)
,

and

Tm
k (n) =

∑

d|m

µ(d)T 1
k

(⌊n

d

⌋)
=

∑

d|m

µ(d)
(⌊

n
d

⌋

k

)
.

From above, it follows that

Φk(n) = Tn
k =

∑

d|m

µ
(n

d

)(
d

k

)
(5)
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and

Φ(n) =
n∑

k=1

Tn
k (n) =

∑

d|m

µ(d)2
n
d , (6)

as shown therein and as proved in [8].

3. Main Results

The result obtained concerning the function Gk(n) in [10] is incorrect and we provide
the correction below. The corrected result makes use of the following theorem [1].

Theorem 2 (Generalized Möbius inversion formula) If α is completely multiplica-
tive we have

G(x) =
∑

n≤x

α(n)F
(x

n

)
⇐⇒ F (x) =

∑

n≤x

µ(n)α(n)G
(x

n

)
.

We may now prove our first result as follows.

Theorem 3 We have

Gk(n) =
∑

j≤n

µ(j)
⌊

n

j

⌋k

.

Proof. Since

Gk(n) = nk −
∑

j=2

∑

1≤a1,a2,...,ak≤n
(a1,a2,...,ak)=j

1 = nk −
n∑

j=2

∑

1≤b1,b2,...,bk≤(n
j )

(b1,b2,...,bk)=1

1

= nk −
n∑

j=2

Gk

(⌊
n

j

⌋)
,

we have
n∑

j=1

Gk

(⌊n

d

⌋)
= nk.
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Hence, by Theorem 2, it follows that

G(n) =
n∑

k=1

Gk(n) =
n∑

k=1

n∑

j=1

µ(j)
⌊

n

j

⌋k

=
n∑

j=1

µ(j)
j∑

k=1

⌊
n

j

⌋k

=
n∑

j=1

µ(j)
⌊

n
j

⌋(
1−

⌊
n
j

⌋j
)

(
1−

⌊
n
j

⌋) . !

Using our definition, results from [10], Nathanson’s notation and arguing as
above, it also follows that

fk(n) =
∑

1≤a1<a2<···<ak≤n
(a1,a2,...,ak)=1

1 =
(

n

k

)
−

n∑

j=2

fk

(⌊
n

j

⌋)
,

which gives

n∑

j=1

fk

(⌊
n

j

⌋)
=

(
n

k

)
.

Thus,

fk(n) =
n∑

j=1

µ(j)
(⌊

n
j

⌋

k

)
.

From this it follows that

f(n) =
n∑

k=1

fk(n) =
n∑

k=1

n∑

j=1

µ(j)
(⌊

n
j

⌋

k

)

=
n∑

j=1

µ(j)
j∑

k=1

(⌊
n
j

⌋

k

)
=

n∑

j=1

µ(j)
(
2(

n
j ) − 1

)
.

We now prove our next theorem.

Theorem 4 Let
Hk(n) =

∑

1≤a1≤a2≤···≤ak≤n
(a1,a2,...,ak)=1

1.
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Then

Hk(n) =
∑

j≤n

µ(j)
(⌊

n
j

⌋
+ k − 1

k

)
.

Proof. Arguing as above it follows that

Hk(n) =
(

n + k − 1
k

)
−

n∑

j=2

Hk

(⌊
n

j

⌋)

which implies

n∑

j=1

Hk

(⌊
n

j

⌋)
=

(
n + k − 1

k

)
,

and hence, by Theorem 2, we obtain the result

H(n) =
n∑

k=1

Hk(n) =
n∑

j=1

µ(j)
j∑

k=1

(⌊
n
j

⌋
+ k − 1

k

)

=
n∑

j=1

µ(j)
(⌊

n
j

⌋
+ j

j

)
−

n∑

j=1

µ(j).

!

We now define the corresponding totient function as

Ψk(n) = Ln
k (n) =

∑

d|n

µ

(
n

d

)(
d + k − 1

k

)
.

Then

Ψ(n) =
n∑

k=1

Ψk(n) =
n∑

k=1

Ln
k (n) =

∑

d|n

(
n

d

) n∑

k=1

(
d + j − 1

j

)
=

∑

d|n

(
n

d

)(
d + n

n

)
,

or equivalently,

(
2n
n

)
=

∑

d|n

Ψ(d) ⇐⇒
∞∑

n=1

(
2n
n

)
xn =

∞∑

n=1

Ψ(n)
xn

1− xn
=

1√
1− 4x

− 1.



INTEGERS: 10 (2010) 470

It turns out the function Tm
k (n) relates to other functions connected with the

study of compositions of n into relatively prime summands as follows.
Gould [6] investigated the function

Rk(n) =
∑

1≤a1+a2+···+ak=n
(a1,a2,...,ak)=1

1 =
∑

d|n

Ck(d)µ
(

n

d

)
=

∑

d|n

µ
(n

d

)(
d− 1
k − 1

)
,

where Ck(n) =
(n−1

k−1

)
and obtained many other significant results concerning this

function. Consequently,

Tn
k (n) =

∑

1≤a1<a2<···<ak≤n
(a1,a2,...,ak,n)=1

1

=
∑

d|n

µ
(n

d

)(
d

k

)

=
∑

d|n

µ
(n

d

){(
d− 1
k − 1

)
+

(
d− 1

k

)}

= Rk(n) + Rk+1(n).

Therefore, we may obtain results concerning either function by using known prop-
erties of the other. In particular, we may obtain the Lambert series for Tn

k (n) as
follows:

∞∑

n=1

Tn
k

xn

1− xn
=

∞∑

n=1

Rn
k

xn

1− xn
+
∞∑

n=1

Rn
k+1

xn

1− xn

=
xk

(1− x)k+1

=
∞∑

n=0

xn
∞∑

n=0

Ck(n)xn

=
∞∑

n=1

xn
n∑

j=0

Ck(n− j),

which is equivalent to

∑

d|n

T d
k (d) =

n∑

j=0

Ck(n− j) =
(

n

k

)
,

as expected.
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The inverse function of Rk(n) is

Ak(n) =
n∑

j=k

(−1)n−j

(
n

j

)⌊
j

k

⌋
(7)

and it is shown in [6] that these two satisfy the orthogonality relations.

Theorem 5 We have
n∑

j=k

Rk(j)Aj(n) = δn
k

and
n∑

j=k

Rj(n)Ak(j) = δn
k .

In [10], it is shown that the inverse of Tn
k (n) is

Kk(n) =
n∑

j=k

(−1)n−j

(
n + 1
j + 1

)⌊
j

k

⌋
,

and that:

Theorem 6 We have
n∑

j=k

T j
k (j)Kj(n) = δn

k and
n∑

j=k

Kk(j)T j
j (n) = δn

k .

It follows that

Kk(n) =
n∑

j=k

(−1)n−j

{(
n

j + 1

)
+

(
n

j

)}

=
n∑

j=k

(−1)n−j

(
n

j + 1

)
+ Ak(n),

so that

Ak(n) = Kk(n) + Kk(n− 1). (8)

Whilst we have a closed form expression for Ak(n) it does not reveal enough regard-
ing the structure of Ak(n). Our next result responds to this concern for a special
case of Ak(n).
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Theorem 7 For n ≥ 1, we have

Ak(k + n) = (−1)n

(
n + k − 1

k − 1

)
; ∀ k ≥ n + 1.

Proof. From Tn
k (n) = Rk(n) + Rk+1(n) and Theorem 3.4 above, it follows that

n∑

j=k

Aj(n)T j
k (j) = δn

k + δn
k+1. (9)

So that for n = k,

Ak(k)T k
k (k) = 1 implies Ak(k) = T k

k = 1; ∀ k ≥ 1.

And for n = k + 1,

Ak(k + 1)T k
k (k) + Ak+1(k + 1)T k+1

k+1 (k + 1) = 1 =⇒ Ak(k + 1) = −k; ∀ k ≥ 1.

For n ≥ k + 2 we may rewrite equation (9) above as

Ak(n) + Tn
k (n) = −

n−1∑

j=k+1

Aj(n)T j
k (j),

then for n = k + 2,

Ak(k + 2) + T k+2
k (k + 2) = −Ak+1(k + 2)T k+1

k (k + 1)

= (k + 1)T k+1
k (k + 1)

= (k + 1)2,

since Ak(k + 1) = −k. Hence

Ak(k + 2) = (k + 1)2 −
∑

d|k+2

µ(d)
(k+2

d

k

)

= (k + 1)2 − (k + 1)(k + 2)
2

=
(−1)2k(k + 1)

2
provided k ≥ 3.
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Now assume the result holds for k + 1, k + 2, . . . , k + n− 1 and consider

Ak(k + n) + T k+n
k (k + n) = −

n+k−1∑

j=k+1

Aj(n + k)T j
k (j)

=
n−1∑

i=1

(−1)n−iT k+i
k (k + i)

n−1∏
j=i

(k + j)

(n− i)!

=
n−1∏

j=1

(k + j)

{
n−1∑

i=1

(−1)n+1−i(k + i)
(n− i)!i!

}
.

Then

Ak(k + n) =

n−1∏
j=1

(k + j)

n!






n∑

j=1

(−1)n−j−1

(
n

j

)
(k + j)






= (−1)n

(
n + k − 1

k − 1

)
,

where we have used the inductive hypothesis as well as assumed that k ≥ n + 1. !

We note in passing that

Rk(k + n) = (−1)nAk(k + n) for all k ≥ n + 1.

Following up on Gould’s paper, Andrews [2] introduced the function gm(n), which
gives the number of m-compositions of n with relatively prime positive summands
so that

T (n) =
n∑

k=1

Rk(n) = g1(n).

It is shown in [2] that the total number of m-compositions of n is (m + 1)n−1 and
hence,

(m + 1)n−1 =
∑

d|n

gm(d).

In a follow-up paper, Shonhiwa [11] provided an alternative investigation of the
function gm(n).
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From the equation

Tn
j =

∑

d|n

µ
(n

d

)(
d

j

)

it follows that
n∑

j=1

Tn
j (n)xj =

∑

d|n

(n

d

)
(x + 1)d for all n ≥ 2.

Therefore

gm(n) =
∑

d|n

µ

(
n

d

)
(m + 1)d−1

= (m + 1)−1
∑

d|n

µ

(
n

d

)
(m + 1)d

= (m + 1)−1
n∑

j=1

Tn
j (n)M j for all n ≥ 1.

In particular, for m = 1, we obtain

g1(n) = T (n) =
∑

d|n

µ

(
n

d

)
2d−1 =

∑

d|n

µ

(
n

d

)
(3− 1)d−1

=
∑

d|n

µ

(
n

d

) d−1∑

j=0

(
d− 1

j

)
3j(−1)d−1−j

≡ 0 (mod 3) for all n ≥ 3

(see [7]).

Further, from

gm(i) = (m + 1)−1
i∑

j=1

T i
j (i)m

j ,

it follows that

Ki(n)gm(i) = (m + 1)−1
i∑

j=1

T i
j (i)Ki(n)mj ;
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which implies that

n∑

i=1

Ki(n)gm(i) = (m + 1)−1
n∑

i=1

i∑

j=1

T i
j (i)Ki(n)mj

= (m + 1)−1
n∑

j=1

mjδn
j

= (m + 1)−1mn,

from above.
Hence

gm(n) =
mn

m + 1
−

n−1∑

i=1

Ki(n)gm(i)

=
mn

m + 1
+

n−1∑

i=1

Ki(n− 1)gm(i)−
n−1∑

i=1

Ai(n)gm(i)

=
mn

m + 1
+

mn−1

m + 1
−

n−1∑

i=1

Ai(n)gm(i)

= mn−1 −
n−1∑

i=1

Ai(n)gm(i),

as expected; see [11].
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