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Abstract
An asymptotic approximation of Catalan’s sequence n +— ¢, := %H (27?) is given as
4TL

Cp=——+——¢€ —5-(n) +6,(n)),

" g oP (e o)
where

a _l B2z . .
; @i = Tnzi1 (Bj are the Bernoulli coefficients),

and

2exp (5= 2r
|0,(n)| < P (557 \/Z (L> , for integers n,r > 1.
v

mn(l —2-Crth) emn

Parameter r controls the error factor exp (6,(n)).

1. Introduction

>0 defined as

o = 1 2n _ 1 2n+1 :l 2n (n>0), (1)
n+1\n 2n+1 n n\n—1

was discovered around 1730 by a Chinese-Mongolian mathematician Antu Ming [3]
while he was investigating how to express series expansions of sin(ma) in terms
of powers of sin(a) for m € {2,3,4,5, 10,100, 1000, 10000}, for example sin(2a) =
2(sin(a) — Y50, 2872 ¢y sin®**!(a)). Later, around 1751 Leonhard Euler came
across the numbers ¢,, while studying the triangulations of convex polygons (Euler’s
triangulation problem 1751). These delightful numbers are named after Eugene

Catalan’s sequence (cy)
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Charles Catalan' who, during the study of well-formed parentheses, came across
these objects (Catalan’s parenthesization problem 1838). Up to this time, over 400
articles and problems have appeared on Catalan’s numbers [3]. Catalan’s sequence
is the most frequently encountered sequence present everywhere in combinatorics.
Even more, Catalan’s numbers form probably the most ubiquitous sequence of num-
bers in mathematics due to their ubiquitous nature [4]. The book [4] contains a
comprehensive collection of their properties and applications in combinatorics, al-
gebra, analysis, number theory, probability theory, geometry, topology, and other
areas of pure and applied mathematics. All these and similar facts have attracted

mathematicians to study Catalan’s sequence for a long time.
According to (1) we have ¢, € RT and
Cn+1 2n+1

=2
Cn n+2

>1, formn>1. (2)

Catalan’s sequence can also be given recursively as ¢o = 1 and ¢,41 = Z?:l CiCn_i,
for n > 0.

Due to (2), Catalan’s sequence (1, 1,2,5,14,42,132,429, 1430, 4862, 16796 . . ) is
strictly increasing from the index n = 1 onward. All its terms are positive integers
due to the identity ¢, = (2::11) - 2(3]:1), for n € N. Referring to (2), chp1/cn < 4
for n > 0 and, for big n, Catalan’s sequence grows approximately like a geometric
sequence with common ratio 4. Consequently, ¢, < 4™ and ¢, =~ 4", for big n.
Of course, this is a very rough observation. Therefore, our intention is to find
more accurate approximations of Catalan’s sequence. The solution of this problem
provides Stirling’s approximations to factorials appearing in ¢,,. Indeed, according
to (1), we have

1 (2n)
n+1 (n)?

(n=0). 3)

Cp =

2. Stirling’s factorial approximation formula

Using the Euler Gamma function, we have n! = I'(n + 1) = nI'(n). Consequently,
considering Stirling’s factorial formula of order r > 0 [2, sect. 9.5] we have, for any
integer2 n>1,

nl = (g) -V2nm - exp (s,;(n) + dr(n)) , (4)
where, for all n € N|
T B i
so(n) =0 and s.(n)= Z o= 1)(221,)”%71 for r > 1, (5)

i=1

1Belgian mathematician, 1814-1894
2in fact for any n € Rt
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and, for some 9,.(n) € (0,1),

B2r+2 (6)
(2r+1)(2r42)-n2r+1°

d-(n) =9,.(n) -

The symbols Ba, By, Bg, ... in (5)—(6) denote the Bernoulli coefficients, for example,

1 1 1 5 691
By — - By—=Bi——— Bi—e — Bi=-" By—_
2 67 4 8 30; 6 427 10 667 12 27307
7 3617 43867 174611
By = + Bjg=->2-t — 20900 =
14 6 16 5107 18 798 ) 20 330 ) (7)
854513 236364091 8553103
By, = By = — =008 hd Bag =
22 138 ' 2730 an 26 6

with the estimates |Bia| < %, |Big| < 7, Bis < 55, |Bag| < 530, Baa < 6200,
| Bay| < 87000, Bayg < 1.43 - 10°.

3. Approximating c¢,, Accurately and Asymptotically
Using (3) and (4) we have

(2”> dnm exp (5,(2n) + d.(2n))

2

{ E)n ! -exp ( — sp(n) — dy(n))

) Vo
:(niﬁ exp (s,(2n) — 2s,(n)) - exp (6,(n)), (8)
where, considering [1, 23.1.15, p. 805],
51 = Gy B B T e
o Blﬁi’z) (227(+1) ~ 20 )) 2 ©)

for some 9,.(n),?.(n) € (0,1). Hence, considering [1, 23.1.15, p. 805], we obtain,
for r > 0,

2| Bary2|

Bs,
i Bavss o
(2r 4+ 1)(2r + 2)n2r+1

(2r +1)(2r +2)(2n)?r+1°

< (=1)"-(n) <
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We estimate roughly, for r > 0, referring to [1, 23.1.15, p. 805], as

2| Bay 9|

Or 11
50| < G 2T ()
23.1.15 4 (2r 4 2)! 1
1—21=@r+2)  (27)2r+2 (27 +1)(2r + 2)n2r+1
2 2r)!
_ R L0 (12)

(1 —2-@r+1))  (27n)2r+l

According to [1, 6.1.38, p. 257], we have, for r > 1,

2r
2r 1
2r)l < 2 — — .
(2r)! < 2y/7r < . ) exp (247’)
Consequently, using (12), we obtain
2exp (51-) T ro2r
- — — 13
mn(l —2-@r+1) T (ewn) ’ (13)
valid for r > 1.

Using formulas (5) and (8), we find very accurate approximations of Catalan’s
sequence given in the next theorem.

[6-(n)] < 8r(n) :=

Theorem 1. For integers n,r > 1 the equality

cn =G (n) - exp (6,(n)) (14)
holds with n
CT(TL) - (Tl _|_ l)m exp ( - ST(”))’ (15)

and 6,(n) estimated in (10)—(13).
Corollary 1 (asymptotic expansion). For n € N,

qn (1 — 4ii)B2i
()~ (G tim) - X e s

K3

as n — Q.

M8

Immediately from Theorem 1 we obtain, using the finite increment theorem, the
next corollary.

Corollary 2. The approzimation c, ~ ¢.(n) has the relative error e,(n) := (cp —
¢(n))/cr(n) estimated, for any n,r € N, as follows (see (13)):

‘Er(n)‘ = ‘eXp (5T(n)) — 1| < &.(n):=exp (gr(n)) gr(n)
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For example, we have |51(n)‘ < 6-1073 and |52(n)| < 21073, both for n > 1,
les(n)| < 107'2, for n > 20, and |e19(n)| < 3-1073C, for all n > 30.

Considering the estimates above and Corollary 2, we obtain, for n > 20, that
c3(n)(1—10712) < ¢, < ¢3(n)(1+10712), i.e., using (5) and (7),

n

A A S
n (n+Dymn P\ 8n T 19207 64005

T N A T S
" (ntDvrn P\ 78y T 19203 640n5 )
Setting r = 1 in Theorem 1 and considering (5) and (7), yields Corollary 3.
Corollary 3. Forn € N,
4m 1 1 e < 4m 1 n 1
———exp | —— - ———— < ———————exp|——+-——=|.
n+D)vmn P\ 780 288003 ) S S nt Dvan P\ 8n T 18003
Similarly, putting » € {2,3,4} in Theorem 1, we obtain the next corollary.
Corollary 4. Forn € N,

47L 47L

CES\NGT -exp (ar(n)) < cp < CESNCT ~exp (br(n)), (17)
where

az‘(n):f$+@fmlns >—$, (17-2a)
ba(n) = _% * 19;713 * 403;0n5 < _% + ﬁ < _%’ (17-2b)
as(n) = _$ * 19;713 - 64(1)n5 - 2150140717’ (17-32)
ba(n) = _i + 19;713 - 643715 + 843717’ (17-3b)
as(n) = _8% + 19;713 N 64én5 + 1431376117 N 59111719’ (17-4a)
ba(n) = _8% + 19;713 N 64én5 + 1431376n7 + 6082156n9’ (17-4b)
as(n) = _8% + 19;13 N 64én5 + 1431376n7 N 184?;)12n9 N 1061n11’ (17-52)
bs(n) = _8% + 19;713 - 64(1)n5 + 1431376n7 N 184212119 + 2571n11' (17-5b)

Corollary 5. Forn > 1,
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Proof. According to the well-known estimate e* > 1 4 z, true for « # 0, relations
(17) and (17-2a) confirm the left inequality in (18). Furthermore, considering the
right inequality in Corollary 3, we have exp (—g- + 1503) < exp(—y) with y =

—Sin+ﬁ,where0<y<8%. Therefore, for some ¥ € (0,1), we have
—y 1 1 1 11
e
V=1- Pcl—y+-yP<l—(———— )+
‘ Yty syt gy s 8n  180n) T2 6an?
1 1 1 1
<1- 1 O

S g T ison T1esn S o

4. Bounding 7 Using Catalan’s Sequence

From Theorem 1, considering (11) and (13), we extract the following theorem (see
(16)).

Theorem 2. For any n,r € N we have

T =m(n) - exp (26,(n)), (19)
where )
m(n) == % (ﬁ) exp (— 25,(n)), (20)
and

126, (n)| < 4|Bar+2| < dexp (557) ),\/Z,(T)%. (21)

(2r +1)(2r + 2)n2+t1 " rp(1 —2-@r+1) emn
The next corollary follows directly from Theorem 2.
Corollary 6. The approzimation 7 ~ m,(n) has the relative error p.(n) := (7 —
mr(n))/m bounded, for any n € N, as follows (see (13) and Corollary 2):
[pr(n)] = [1— exp (— 26,(n))| < 25,(n) = 2exp (25,(n)) - &1 ().

For example, referring to Corollary 6 and example on page 5, we have | p1 (n)’ <
2-1072 and |p2(n)| < 41073, for all n > 1, |ps(n)| < 2-107'2, for n > 20, and
|p10(n)| < 61073, for n > 30.

From Corollary 5 we read the following consequence.

Corollary 7. Forn > 1,

.1 4n o 2 P 4n - >
mi==|—(1-= T<—|———([1-— =
" on|(n+ e, 8n n | (n+1)c, 9In "

Consequently,
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Figure 1: The graphs of the sequences 7 and «* from Corollary 7.

Figure 1, where the graphs of the sequences n +— 7} and n — 7" are plotted,
illustrates the roughness of the estimates in Corollary 7. However, directly from
Corollary 4 more accurate estimates are obtained, given in the following corollary.

Corollary 8. For everyn € N,

N 42 L1 L | 31 2
> |———| exp|—— - - -
n | (n+1)c, P\ 740 T 96n3 ~ 320m5 716807 9216n°  100n!L

and

U1 an 73 . L, L 3L, 2

T —|—| exp|—— — — .
n | (n+1)c, P\ 740 T 9603 T 32005 T 716807 921609 © 257nlL
The inequalities in Corollary 8 are quite sharp. Indeed, setting n = 100 in Corol-
lary 8, for example, we have the following bounds

3.141 592653589793 238462640 ... < 7 < 3.141 592653 589 793 238 462643 . ...
Consequently, the value of 7 is calculated to 23 decimal places:

m = 3.141 592653 589 793 238 46264 . . . .

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th edn, Dover
Publications, New York, (1974).

[2] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Read-
ing, MA, 1994.

[3] T. Koshy, Catalan Numbers With Applications, Oxford University Press, 2009, Oxford, NY.
[4] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015.

[5] S. Wolfram, Mathematica, version 9.0, Wolfram Research, Inc., 1988-2013.



