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Abstract
In a 2011 paper by Beeler and Hoilman, the traditional game of peg solitaire is gen-
eralized to graphs in the combinatorial sense. One of the important open problems
was to classify solvable trees. In this paper, we extend this classification to several
infinite classes of caterpillars. We also give the maximum number of pegs that can
be left on such caterpillars under the restriction that we jump whenever possible.

1. Introduction

Peg solitaire is a table game which traditionally begins with “pegs” in every space
except for one which is left empty (in other words, a “hole”). If in some row or
column two adjacent pegs are next to a hole (as in Figure 1), then the peg in x
can jump over the peg in y into the hole in z. In [2], peg solitaire is generalized to
graphs.

A graph, G = (V,E), is a set of vertices, V , and a set of edges, E. If there are
pegs in vertices x and y and a hole in z, then we allow x to jump over y into z,
provided that xy, yz ∈ E. Such a jump will be denoted x·−→

y ·z. All other notation
and terminology will be consistent with Chartrand [10].

If S is a starting state of pegs, then a terminal state T is associated with S if
T can be obtained from S via a sequence of peg solitaire moves. A graph G is
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Figure 1: A typical jump in peg solitaire, x·−→
y ·z

solvable if there exists some vertex s so that, starting with a hole in s, there exists
an associated terminal state consisting of a single peg. A graph G is freely solvable
if for all vertices s there exists a terminal state consisting of a single peg associated
with starting state {s}. A graph G is k-solvable if there exists some vertex s so
that, starting with a hole in s, there exists an associated minimum terminal state
consisting of k nonadjacent pegs. In particular, a graph is distance 2-solvable if there
exists some vertex s so that, starting with a hole in s, there exists an associated
terminal state consisting of two pegs that are distance 2 apart [2]. The dual of a
peg configuration S is obtained from S by reversing the roles of pegs and holes.
For additional variations of peg solitaire on graphs, refer to [9, 11, 12]. For more
information on traditional peg solitaire, refer to [1, 8].

In [2, 3, 7], the solvability of several families of graphs was determined. One
of the more important open problems in [2] was to classify the solvability of trees.
Progress in this area has been difficult, proceeding one family of trees at a time.
So far, the solvability of stars [2], paths [2], double stars [3], and trees of diameter
four [7] has been determined. It is likely that determining necessary and sufficient
conditions for the solvability of all trees is a difficult problem. It is for this reason
that results about specific classes of trees are interesting.

We are motivated by the above comments to consider the solvability of cater-
pillars. A caterpillar can be obtained from the path on n vertices by appending
pendant vertices to the existing vertices of the path. The vertices of the original
path, which are called the spine of the caterpillar, are labeled x1,...,xn in the nat-
ural way. We append ai pendant vertices to xi. The pendant vertices adjacent to
xi are denoted xi,1,...,xi,ai . The caterpillar with parameters n, a1,...,an will be de-
noted Pn(a1, ..., an) (see Figure 2). For convenience of exposition, the set of vertices
{xi,1, ..., xi,ai} will be denoted Xi. Such a set is called a cluster. Without loss of
generality, we may assume that a1 ≥ 1 and an ≥ 1. When listing our conditions on
solvability, we only consider one caterpillar from each isomorphism class. Our rep-
resentative from each class will satisfy a1 ≥ an. If a1 = an, then our representative
will satisfy a2 ≥ an−1 and so on. At various points during our proofs, the resulting
caterpillar will not satisfy this condition. However, in such cases we can reverse
the order of parameters so that the resulting caterpillar does satisfy this condition.
Further, we may assume that n ≥ 4 as the solvability of caterpillars of shorter spine
length was determined in [2, 3, 7].

When dealing with clusters, it is useful to generalize our jump notation for these
clusters. In this case, Xi·−→

xi ·xj indicates a jump from a vertex in Xi over xi into
xj . This notation is dependent on there being at least one peg in Xi, a peg in xi,
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Figure 2: The caterpillar P4(6, 1, 4, 3)

and a hole in xj . The notations xj ·−→xi ·Xi and Xi·−→xi ·Xi are defined analogously.
We will also make heavy use of the double star purge from [7]. Using our notation,

the double star can be represented as P2(a1, a2). Beginning with the hole in x2, we
can remove d pegs from both clusters by using the jumps X1·−→

x1 ·x2 and X2·−→x2 ·x1 d
times. This can be generalized between any two adjacent clusters on the spine. The
notation DS(Xi, Xj, d) will be used to denote a double star purge where Xi is the
cluster with a peg in xi, Xj is the cluster with a hole in xj , and d is the number of
pegs that will be removed from each cluster in the process. Additional information
on packages and purges can be found in [6]. Other useful results that we will use
are given in the following proposition.

Proposition 1. [2, 3, 5]

(i) (Inheritance Principle) If G is a k-solvable spanning subgraph of H, then H
is (at worst) k-solvable.

(ii) (Duality Principle) Suppose that S is a starting state of G with associated
terminal state T . These have associated duals S′ and T ′, respectively. It
follows that T ′ is a starting state of G with associated terminal state S′.

(iii) The path on n vertices is freely solvable if and only if n = 2. The path of n
vertices is solvable if and only if n is even or n = 3. The path on n vertices
is distance 2-solvable when n is odd and n ≥ 5.

(iv) The double star P2(a1, a2) is freely solvable if and only if a1 = a2 and a1 ̸= 1.
The double star P2(a1, a2) is solvable if and only if a1 ≤ a2 + 1. The double
star P2(a1, a2) is distance 2-solvable if and only if a1 = a2 + 2. The double
star P2(a1, a2) is (a1 − a2)-solvable in all other cases.

In particular, the even path is solvable with the initial hole in the second vertex.
In this case, the final peg is in the next to the last vertex [2].

2. The Solvability of Certain Caterpillars

In this section, we determine the solvability of certain infinite classes of caterpillars.
The first class of caterpillars that we consider will be caterpillars in which only the



INTEGERS: 17 (2017) 4

end vertices of the spine have pendants.

Theorem 1. (i) The graph G = Pn(a1, . . . , an), where n ≥ 4, a2 = a3 = · · · =
an−1 = 0, and an = 1 is solvable if and only if a1 ≤ 2 and n is an even
number or a1 ≤ 3 and n = 4.

(ii) Graphs of the form Pn(a1, 0, ..., 0, an) are solvable if and only if a1 = 2, an ≥ 1,
and n is even.

Proof. (i) First we will show that P2n(2, 0, ..., 0, 1) is a solvable graph. Let the initial
hole be in x2. The jump X1·−→x1 ·x2 will result in an even path with a hole in the sec-
ond vertex. Therefore, this graph is solvable by [2]. For the graph P4(3, 0, 0, 1), be-
gin with the initial hole in x2. The required jumps to solve the graph are X1·−→

x1 ·x2,
x3·−→

x2 ·x1, X1·−→
x1 ·x2, X4·−→

x4 ·x3, x3·−→x2 ·x1, and X1·−→
x1 ·x2. Notice that these graphs

are not freely solvable for the same reasons as the path.
We claim that the graph is not solvable in all other cases. First, consider G =

P2n+1(2, 0, ..., 0, 1). Any attempt to clear the cluster first will result in an odd path
on the remaining vertices. Hence, it is not solvable. Thus, we need to consider
the case where we remove the pegs from the spine first. Since the spine forms a
path, we must solve it as if it were a path. For this reason, it is optimal to begin
with the initial hole in xn and proceed to solve the graph as an even path on the
vertices x1,...,xn, xn,1 using the methods outlined in [2]. This will result in one
peg remaining in x2 and both pegs remaining in X1. Therefore, G is not solvable.
Finally, we will consider the case where n ≥ 5 and a1 ≥ 3. In order to solve the
graph, we must remove all pegs from X1 and from the path (including xn,1). A peg
in X1 can be removed only if there is first a peg in x1. However, to place a peg in
x1, we must jump x3·−→x2 ·x1. Likewise, this requires a peg in x3. In order to place
a peg in x3, we must jump x5·−→x4 ·x3. This results in holes three adjacent vertices
on the spine, namely x3, x4, and x5. Hence, it is impossible to reach X1 and x2.
Including an initial jump out of X1, this means that we can remove at most three
pegs from X1. This is accomplished by having the initial hole in x2. The required
jumps are X1·−→

x1 ·x2, x3·−→
x2 ·x1, X1·−→x1 ·x2, x5·−→x4 ·x3, x3·−→

x2 ·x1, and X1·−→
x1 ·x2. This

leaves a1 − 3 pegs in X1 and a peg in x2. It follows that a1 ≤ 3 is necessary for
solvability. Furthermore, this shows that if n ≥ 5, our attempts to remove pegs
from X1 will make it impossible to remove all pegs on the spine.

(ii) Consider the graph G = Pn(a1, 0, ..., 0, an) where a1 = an = 2 and n is even.
By (i), the graph obtained by removing the vertex xn,2 is solvable when the initial
hole is in x2. In this solution, the final peg is in xn. Thus, we can solve G with
the initial hole in x2 leaving pegs in xn and xn,2. We can then make the jump
xn,2·−→xn ·xn−1 to solve the graph. The unsolvable cases follow for the same reasons
as in (i).

Making statements regarding the solvability of more general caterpillars may be
difficult. One such statement is given in the following theorem.

Theorem 2. (i) The graph Pn(a1, ..., an) is not solvable if a1 ≥ a2 + n or an ≥
an−1 + n.
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(ii) For 2 ≤ i ≤ n−1, the graph Pn(a1, ..., an) is not solvable if ai ≥ ai−1+ai+1+
n− 2.

(iii) The graph Pn(a1, ..., an) is not freely solvable if a1 ≥ a2 + n − 1 or an ≥
an−1 + n− 1.

(iv) For 2 ≤ i ≤ n − 1, the graph Pn(a1, ..., an) is not freely solvable if ai ≥
ai−1 + ai+1 + n− 3.

Proof. (i) For the first claim, it suffices to show that we can remove at most a2+n−1
pegs fromX1. Using a double star purge with X2, it is possible to remove at most a2
pegs from X1. Consequently, the removal of any additional peg from X1 will require
the removal of a peg from the spine. If the initial hole is in one of the clusters, say
Xi, then the first jump must be xi±1·−→

xi ·Xi. Thus, we have n− 2 pegs on the spine
when the initial hole is on the spine and n− 1 pegs on the spine when the hole is on
the spine. Hence, we can remove at most a2+n− 1 pegs from X1, leaving a peg on
the spine. Thus the graph is not solvable when a1 ≥ a2+n. To achieve this bound,
begin with the initial hole in x2. We perform a sequence of jumps n − 2 times.
The jth iteration (j = 1, ..., n− 2) begins with the moves X1·−→

x1 ·x2 and x3·−→
x2 ·x1.

The next n − j + 1 jumps are Xℓ·−→
xℓ ·xℓ−1 for ℓ = 4, ..., n− j + 1. Notice that this

leaves holes in x2 and xn−j+1. After completing this sequence of jumps, we will
have removed a total of a2 + n− 2 pegs from X1, and n− j + 2 pegs from Xj for
i = 4, ..., n. After this series of jumps, the only peg left on the spine will be in x1.
This will allow a final jump X1·−→

x1 ·X1. We now have a1 − a2 − n + 2 pegs in X1

and no further moves are possible. The case where an ≥ an−1 + n is analogous.
(ii) For 2 ≤ i ≤ n−1, there are only three ways to remove pegs fromXi. Namely,

ai−1 pegs in Xi can be removed using a double star purge with Xi−1, ai+1 pegs
can be removed using a double star purge with Xi+1, or pegs can be removed using
those in the spine. As in (i), we can remove at most n− i − 1 pegs from Xi using
the pegs in xi, xi+1,...,xn. Similarly, we can remove at most i − 1 pegs from Xi

using the pegs in x1,...,xi−1. However, to do this we must reposition the hole to
make the required jumps. To do so, we must jump out of one the adjacent clusters
or along the spine. In either case, we can remove at most ai−1 + ai+1 + n − 3
pegs from Xi, leaving a peg on the spine. Hence, this graph is not solvable if
ai ≥ ai−1 + ai+1 + n− 2. To achieve this bound, begin with the initial hole in xi+1

and perform DS(Xi, Xi+1, ai+1). Then we use a series of jumps along the spine as
in the first part of the theorem. This removes an additional n− i− 1 pegs from Xi.
We then perform Xi−1· −→

xi−1·xi and DS(Xi, Xi−1, ai−1 − 1). Apply a series of jumps
along the spine as in the first part of the theorem. This removes an additional i− 1
pegs from Xi.

(iii) Note that the methods given above are optimal for removing pegs from a
large cluster. In these methods, we place the initial hole on a spine vertex that is
adjacent to the support vertex of the large cluster. This allows for an initial jump
out of the large cluster. Hence, the placement of the initial hole allows us to remove
one additional peg from the large cluster than we could otherwise. For this reason,
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our methods given above are dependent on this placement of the initial hole. This
observation will be crucial in determining that certain cases are not freely solvable.

To show that a graph is not freely solvable, it suffices to show that it can not be
solved if the initial hole is in a specific vertex. Suppose that a1 ≥ a2 + n − 1 and
that the initial hole is in x1. The first jump must be either X2·−→

x2 ·x1 or x3·−→
x2 ·x1.

If the first jump is X2·−→
x2 ·x1, then we ignore the hole in X2. Thus, we are trying

to solve Pn(a1, a2 − 1, a3, ..., an) with a hole in x2. Since a1 ≥ a2 + n − 1, this is
impossible by (i).

In the second case, the initial jump is x3·−→x2 ·x1. At this point, we can assume
without lose of generality that the double star purge DS(X1, X2, a2) has been per-
formed. Hence, this reduces to (i) after the first two moves and the double star
purge have been completed. The remaining moves in (i) remove n − 2 additional
pegs from X1. Since a1 ≥ a2 + n − 1, the graph is not solvable. The case where
an ≥ an−1 + n− 1 is analogous.

(iv) Follows in a similar manner to (ii) and (iii).

Note that if a1 = n− 1, a2 = a3 = 0, and aj = n− j +1 for j = 4, ..., n, then the
graph Pn(a1, ..., an) is solvable using the algorithm given above. Thus, the bound
in Theorem 2 (i) is sharp. Likewise, if ai = n− 3, ai−2 = ai−1 = ai+1 = ai+2 = 0,
aj = j for j = 1, ..., i− 3, and aℓ = n− ℓ + 1 for ℓ = i+ 3, ..., n, then Pn(a1, ..., an)
is solvable using the algorithm above. Therefore, the bound in (ii) is also sharp. To
what extent the bounds given in (iii) and (iv) are sharp is unknown.

We end this section by providing two theorems which involve reducing a cater-
pillar to one of smaller order. These theorems can be used to obtain a solution
of certain caterpillars. However, they do not answer the more difficult question of
which caterpillars are unsolvable.

Theorem 3. Suppose that Pn(a1, ..., an) is k-solvable. If there exists non-negative
integers k1,...,kn−1 such that b1 = a1 + k1, bn = an + kn−1, and bi = ai + ki−1 + ki
for i = 2,...,n − 1, then Pn(b1, ...., bn) is (at worst) k-solvable.

Proof. Suppose that we have a solution of Pn(a1, ..., an) that results in k nonadja-
cent pegs. We modify this solution for use on Pn(b1, ...., bn) by including additional
double star purges within the solution.

Any solution of the caterpillar involves a combination of moves of the form
xi· −→

xi±1·Xi±1, Xj·−→
xj ·xj±1, and xi−1·−→xi ·xi+1. A jump of the form xi−1·−→

xi ·xi+1

will eventually be followed by xi+2· −→
xi+1·xi in order to either remove pegs from Xi

or to solve the spine. For this reason, if xi and xi+1 are two adjacent vertices on
the spine, then there is an intermediate state of the solution in which exactly one
of xi and xi+1 has a peg. At this point, we perform either DS(Xi, Xi+1, ki) or
DS(Xi+1, Xi, ki), depending on the location of the peg on the spine. After com-
pleting the original solution and the additional purges, we now have a solution of
Pn(b1, ...., bn) with k nonadjacent pegs.

As an example of Theorem 3, consider P4(1, 1, 1, 1). This graph is freely solvable
as confirmed by an exhaustive computer search [4]. We claim that if a, b, and c
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are positive integers, then P4(a, a + b, b + c, c) is also freely solvable. Here, we let
k1 = a− 1, k2 = b, k3 = c− 1 and apply Theorem 3. Hence, the resulting graph is
freely solvable.

Theorem 4. Suppose that Pn(a1, ..., an) is k-solvable with the initial hole in x2. If
there exists a non-negative integer m such that c1 = m+1, c2 = a1+m, c3 = a2+1,
and ci = ai−1 for i = 4, ..., n + 1, then Pn+1(c1, ..., cn+1) is (at worst) k-solvable
with the initial hole in x2.

Proof. Consider Pn+1(c1, ..., cn+1) with the initial hole in x2. Perform the double
star purge DS(X1, X2,m). Now jump X1·−→x1 ·x2, X2·−→x2 ·X2, and X3·−→x3 ·x2. This
removes m+1 pegs from X1, m pegs from X2, and one peg from X3. On the spine,
there are holes in x1 and x3 and pegs elsewhere. Ignoring the holes in X1, x1, X2,
and X3, the resulting graph is Pn(a1, ..., an) with a hole in x2. Hence, the graph is
(at worst) k-solvable.

3. Caterpillars With a Spine of Length Four

We now consider general caterpillars where the spine length is four. In order to
facilitate showing that some of these caterpillars are not freely solvable, we present
a lemma that considers the case where at least one of a2 or a3 is zero. To what extent
this lemma can be generalized to caterpillars of longer spine length is unknown at
this time.

Lemma 1. If a2 = 0 or a3 = 0, then the graph P4(a1, a2, a3, a4) is not freely
solvable.

Proof. Without loss of generality, assume that a2 = 0. If a3 ≥ a4 + 1, then this
graph is not freely solvable by Theorem 2. For this reason, we only consider the
case where a3 ≤ a4. It is sufficient to show that we cannot solve the graph given a
specific initial hole. Suppose that the initial hole is in x1. Since a2 = 0, the only
available move is x3·−→

x2 ·x1. In order to remove pegs from X4, we must eventually
make the jump X4·−→x4 ·x3. So, we can assume that this jump has been made. If we
jump X3·−→x3 ·x2, then x1·−→

x2 ·x3 is forced. If there are pegs available in X3 and X4,
then we may perform a double star purge between these clusters. However, this
leaves at least one peg in X1 and a peg in either X3 or X4. As no further moves
are possible, the graph is not solvable.

For this reason, we must instead follow X4·−→
x4 ·x3 with the jump X1·−→

x1 ·x2. At
this point, we can remove at most one additional peg from X1 by using the jumps
x3·−→

x2 ·x1 and X1·−→x1 ·x2. For this reason, the graph will not be solvable from this
state when a1 ≥ 3. Hence, we need only consider the case where a1 ∈ {1, 2}.

If a1 = 1, then we begin with the initial hole in x4. In some order, we must
perform a double star purge on X3 and X4 and jump x2·−→x3 ·x4. In either case, it
reduces to a double star. Hence, if a4 ≥ a3 + 3, then the graph cannot be solved
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from this state. Thus the only remaining cases when a1 = 1 are a4 = a3 ≥ 1,
a4 = a3 + 1, and a4 = a3 + 2.

If a1 = 2, then begin with the initial hole in x1. Without loss of generality, we
assume that the first two jumps are x3·−→x2 ·x1 and X1·−→x1 ·x2. To remove the pegs in
X4, we must perform a double star purge on X3 and X4. So if a3 ̸= a4−1, then the
graph is not solvable from this state. Thus the only remaining case when a1 = 2 is
a4 = a3 + 1 ≥ 2.

For the remaining cases, we reverse the order of the parameters. Hence, we
need only consider caterpillars of the form P4(a1, a1 − 2, 0, 1), P4(a1, a1 − 1, 0, 2),
P4(a1, a1 − 1, 0, 1), and P4(a1, a1, 0, 1).

First, consider the caterpillar P4(a1, a1 − 2, 0, 1), where a1 ≥ 2. Suppose that
the initial hole is in X4. Our first jump must be x3·−→

x4 ·X4. Similarly, our second
jump must either be x1·−→

x2 ·x3 or X2·−→
x2 ·x3. If our second jump is x1·−→x2 ·x3, then

we have a1 pegs in X1, a1 − 2 pegs in X2, a peg in x3, and a peg in X4. Hence, no
further moves are possible. If instead our second jump is X2·−→

x2 ·x3, then without
loss of generality we may perform the double star purge between X1 and X2. This
results in three pegs in X1, a peg in x3, and a peg in X4. After the jump X1·−→

x1 ·x2,
we can either remove a peg in X1 or the peg in X4. In either case, there will be
three pegs on the graph and no available moves. In either case, the graph cannot
be solved with the initial hole in X4.

Now, consider the caterpillar P4(a1, a1 − 1, 0, a4), where a1, a4 ∈ {1, 2}. Suppose
that the initial hole is in X1. Our first jump must be either x2·−→x1 ·X1 or X1·−→

x1 ·X1.
If we jump x2·−→x1 ·X1, then x4·−→

x3 ·x2 is forced. At this point, we only have one peg
on the spine (in x2). Thus, any jump into x3 will result in no available moves. So,
after performing a double star purge on X1 and X2, we will have a peg in X1, a peg
in x2, and at least one peg in X4. Hence, the graph is not solvable from this state.

If instead our initial jump is X1·−→
x1 ·X1, then our second jump must be either

X2·−→x2 ·x1 or x3·−→x2 ·x1. In the first case, we must eventually jump X1·−→x1 ·x2 in order
to remove the remaining peg from X1. Without loss of generality, assume that
this jump has been made. The jumps X3·−→

x2 ·x1 and X4·−→x4 ·x3 are then forced. At
this point, we have two nonadjacent pegs on the spine and no further moves are
possible. Hence, the graph is not solvable from this state. In the second case, we
must eventually jump X4·−→x4 ·x3. We are then forced to jump X1·−→

x1 ·x2. Regardless
of the next move, we will have at least two nonadjacent pegs on the graph and no
available moves. Hence, it is not solvable from this state.

Finally, consider the caterpillar P4(a1, a1, 0, 1). Suppose the initial hole is in x4.
Note that the initial jump x2·−→x3 ·x4 is forced. The only way to remove pegs from
X2 is a double star purge with X1. However, this leaves a peg in x1. We now have
one available jump, X4·−→x4 ·x3. We now have pegs in x1 and x3 and holes elsewhere.
Thus, the graph cannot be solved from this state.

With this lemma in mind, we are ready to proceed with our main result. Namely,
we will find necessary and sufficient conditions for the solvability of P4(a1, a2, a3, a4).
For ease of presentation, we do not include conditions for such graphs to be k-
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solvable, distance 2-solvable, and freely solvable in the statement of Theorem 5.
However, these conditions are made explicit throughout the proof.

Theorem 5. (I) The caterpillar P4(a1, a2, a3, a4) with a1 ≥ a2 + 1 is solvable if
and only if one of the following is true: (i) a1 = a2+1 and either a3− a4 ≤ 1
or a4 − a3 ≤ 3; (ii) a1 = a2 + 2 and a4 − a3 ≤ 2; (iii) a1 = a2 + 2, a2 ≥ 1,
and a3 = a4; (iv) a1 = a2 + 3 and a3 = a4 − 1.

(II) The caterpillar P4(a1, a2, a3, a4) with a2 = a1 + m, where m ≥ 0 is solvable
if and only if one of the following is true: (i) a3 = a4 + k, where k ≥ 0 and
−2 ≤ m− k ≤ 2; (ii) a4 = a3 + k, where k ≥ 1 and m+ k ≤ 2.

Proof. (I) Let a1 ≥ a2 + 1. By Theorem 2, a1 ≤ a2 + 3 is a necessary condition for
solvability. Likewise, a1 ≤ a2 + 2 is necessary for the graph to be freely solvable.
For each of the cases where a2 + 1 ≤ a1 ≤ a2 + 3, we determine the additional
necessary conditions below. We also prove that these conditions are also sufficient.

(i) Suppose that a1 = a2 + 1 and a3 = a4. If a1 ≥ 2, then we apply Theorem 3
with k1 = a1 − 2, k2 = 0, and k3 = a3 − 1. This reduces the graph to P4(2, 1, 1, 1).
An exhaustive computer search [4] confirms that P4(2, 1, 1, 1) is freely solvable.
Hence, the original graph is also freely solvable. If a1 = 1, then we reverse the
parameters to obtain a caterpillar of the form P4(a3, a3, 0, 1). This graph reduces
to P4(1, 1, 0, 1), which is solvable, but not freely solvable. Note that graphs of the
form P4(a1, a2, 0, a4) are not freely solvable by Lemma 1.

Suppose that a1 = a2 + 1 and a3 = a4 + k, where k is a positive integer. In
an optimal solution, the pegs in X2 must be used to remove those in X1. Using a
similar argument as in the proof of Theorem 2, at most a4 pegs can be removed from
X3. Hence, such graphs are at best k-solvable and cannot be freely solvable. This
can be achieved by placing the initial hole in x2. PerformDS(X1, X2, a2), X3·−→

x3 ·x2,
X4·−→x4 ·x3, DS(X3, X4, a4 − 1), x3·−→

x2 ·X2, X1·−→x1 ·x2, X2·−→x2 ·x3, and X3·−→x3 ·x4. At
this point no further moves are possible and a peg remains in x4 while k − 1 pegs
remain in X3. Consequently, the graph is solvable if k = 1. The graph is k-solvable
for k ≥ 2. In particular, the graph is distance 2-solvable when k = 2.

Suppose that a1 = a2 + 1 and a4 = a3 + k, where k ≥ 1. If a1 ≥ 2, a3 ≥ 1,
and k = 1, then we apply Theorem 3 with k1 = a1 − 2, k2 = 0, and k3 = a4 − 2
to reduce the graph to P4(2, 1, 1, 2). An exhaustive computer search confirms that
P4(2, 1, 1, 2) is freely solvable. If a3 = 0 or a2 = 0, then such graphs cannot be
freely solvable by Lemma 1. If k = 2, a2 ≥ 1, and a3 ≥ 1, then we apply Theorem 3
with k1 = a2−1, k2 = 0, and k3 = a4−3 to reduce the graph to P4(3, 1, 1, 2), which
is freely solvable. For other cases when k = 2, after reversing the parameters the
graph reduces to P4(2, 0, 0, 1) which is solvable, but not freely solvable. Similarly,
if k = 3, then we apply Theorem 3 with k1 = a2, k2 = 0, and k3 = a4 − 3 to
reduce the graph to P4(3, 0, 0, 1), which is solvable. Note that if k ≥ 3, then the
graph cannot be freely solvable by Theorem 2. Using the same argument as was
used to prove Theorem 2, we can remove at most a3 + 3 pegs from X4. Thus, such
graphs are at best (k−2)-solvable. To achieve this, begin with the initial hole in x3.
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Perform DS(X4, X3, a3), X4·−→
x4 ·x3, x2·−→x3 ·x4, DS(X1, X2, a2), X4·−→x4 ·x3, X1·−→

x1 ·x2,
x2·−→

x3 ·x4, and X4·−→
x4 ·x3. This leaves k − 3 pegs in X4 and a peg in x3. Thus, the

graph is (k− 2)-solvable when k ≥ 4. In particular, the graph is distance 2-solvable
when k = 4.

(ii) Suppose that a1 = a2+2 and a4 = a3+k, where k ≥ 1. If a1 ≥ 3, a3 ≥ 1, and
k = 1, then we apply Theorem 3 with k1 = a1−3, k2 = 0, and k3 = a4−2 to reduce
the graph to P4(3, 1, 1, 2), which is freely solvable. Note that if a2 = 0 or a3 = 0,
then the graph is not freely solvable by Lemma 1. Using a similar argument as in
the proof of Theorem 2, at most a3 + 2 can be removed from X4, leaving a peg in
the spine. Hence, this graph is at best (k − 1)-solvable when k ≥ 2. To accomplish
this, begin with the hole in x2. The solution is DS(X1, X2, a2), X1·−→

x1 ·x2, x3·−→
x2 ·x1,

DS(X4, X3, a3), X1·−→x1 ·x2, X4·−→
x4 ·x3, and x2·−→x3 ·x4. If k = 1, then the graph is

solved. If k ≥ 2, then X4·−→
x4 ·x3. This results in a peg in x3 and k − 2 pegs in

X4. Hence, the graph is solved if k = 2. Likewise, if k ≥ 3, then the graph is
(k − 1)-solvable. In particular, the graph is distance 2-solvable for k = 3.

(iii) We now consider the case where a1 = a2+2 and a3 = a4+k, where k ≥ 0. If
a2 = 0 and k = 0, then after applying Theorem 3 the only admissible graph under
our parametrization is P4(2, 0, 1, 1). This graph has been found to be distance 2-
solvable using an exhaustive computer search [4]. Thus we assume that k ≥ 1 and
a2 = 0. Note that we can remove at most a4+1 pegs from X3. Begin with the hole
in x2 and X3·−→

x3 ·x2, DS(X4, X3, a4 − 1), x1·−→
x2 ·x3, X3·−→x3 ·x2, X4·−→

x4 ·x3, x3·−→
x2 ·x1,

and X1·−→x1 ·x2. This leaves a peg in X1, a peg in x2, and k−1 pegs in X3. Hence the
graph is (k+1)-solvable when k ≥ 1. In particular, the graph is distance 2-solvable
when k = 0 or k = 1.

Assume that a1 = a2 + 2, a2 ≥ 1, and a3 = a4 + k, where k ≥ 0. In an
optimal solution, the pegs in X2 will be used to remove those in X1. Similarly,
we can remove at most a4 pegs from X3. To do this begin with the hole in x2.
The solution is DS(X1, X2, a2), X3·−→x3 ·x2, X4·−→x4 ·x3, DS(X3, X4, a4− 1), x3·−→

x2 ·X2,
X1·−→x1 ·x2, X2·−→

x2 ·x1, and X1·−→
x1 ·x2. At this point no further jumps are possible but

k pegs remain in X3 and one peg is in x2. Therefore, the graph is solvable only
if k = 0. Otherwise, the graph is (k + 1)-solvable for k ≥ 1. In particular, k = 1
implies that the graph is distance 2-solvable. Using a similar argument, we can
show that the remaining caterpillars of this type are not freely solvable.

(iv) Suppose a1 = a2+m and a4 = a3+k, wherem ≥ 3 and k ≥ 1. Using a similar
argument as in the proof of Theorem 2, we can remove at most a2+3 pegs from X1

and at most a3+1 pegs fromX4. As this method will result in a peg in x2, at best the
graph is (m+k−3)-solvable. Begin with the hole in x2 and performDS(X1, X2, a2),
X1·−→x1 ·x2, x3·−→x2 ·x1, DS(X4, X3, a3), X1·−→

x1 ·x2, X4·−→x4 ·x3, x3·−→x2 ·x1, and X1·−→
x1 ·x2.

This will leave m − 3 pegs in X1, k − 1 pegs in X4, and a peg in x2. If m = 3
and k = 1, then the graph is solved. Otherwise, the graph is (m+ k − 3)-solvable.
Using an exhaustive computer search [4], P4(3, 0, 0, 2) and P4(4, 0, 0, 1) were found
to be distance 2-solvable. Any such caterpillar with m+ k = 5 will reduce to either
P4(3, 0, 0, 2) or P4(4, 0, 0, 1) via Theorem 3. Therefore, these caterpillars are also
distance 2-solvable.



INTEGERS: 17 (2017) 11

Suppose a1 = a2 +m and a3 = a4 + k, where m ≥ 3 and k ≥ 0. Using a similar
argument as that used in the proof of Theorem 2, we can remove at most a2+3 pegs
from X1 and at most a4−1 pegs from X3. As this method will result in a peg in x2,
at best the graph is (m+k−1)-solvable. We solve the graph in the same method as
in the previous case, however we replace DS(X4, X3, a3) with DS(X4, X3, a4 − 1).
This will leave m − 3 pegs in X1, k + 1 pegs in X3, and a peg in x2. Thus, the
graph is (m+k− 1)-solvable. In particular, if m+k = 3, then the graph is distance
2-solvable.

(II) (i) Suppose that a2 = a1+m and a3 = a4+k, wherem ≥ 0 and k ≥ 0. Ifm ∈
{k−1, k, k+1}, then we apply Theorem 3 with k1 = a1−1, k2 = min(a2−a1, a3−a4),
and k3 = a4 − 1 to reduce the graph to P4(1, 1, 1, 1) or P4(1, 2, 1, 1). An exhaustive
computer search [4] confirms that P4(1, 1, 1, 1) and P4(1, 2, 1, 1) are freely solvable.
Thus, the original graph is freely solvable.

Suppose that a2 = a1 + m and a3 = a4 + k, where m ≥ k + 2 and k ≥ 0.
By Theorem 2, we can remove at most a1 + a3 + 1 pegs from X2. However, the
pegs in X3 must also be used to remove those in X4. Hence, we can remove at
most a1 + a3 − a4 + 2 pegs from X2, leaving one peg left on the spine. This can
be achieved with the initial hole in x1. Perform DS(X2, X1, a1 − 1), X2·−→

x2 ·x1,
X3·−→x3 ·x2, DS(X4, X3, a4− 1), DS(X2, X3, a3− a4), X2·−→

x2 ·x3, X1·−→x1 ·x2, x2·−→
x3 ·X3,

X4·−→x4 ·x3, X3·−→
x3 ·x2, and X2·−→x2 ·x3. This leaves m− k − 2 = a2 − a1 − a3 + a4 − 2

pegs in X2 and a peg in x3. If m = k + 2, then the graph is solved. If m ≥ k + 3,
then the graph is (m− k − 1)-solvable. In particular, if m = k + 3, then the graph
is distance 2-solvable. In the case where m ≤ k − 2, we reverse the order of the
parameters to show that the graph is (k −m− 1)-solvable. To show that this case
is not freely solvable, note that we can commit at most k of the pegs from X3 to
remove those in X2. Hence this case is not freely solvable for the same reasons as
in Theorem 2.

(ii) Suppose that a2 = a1 +m and a4 = a3 + k, where m ≥ 0 and k ≥ 1. Note
that if m = 0, k = 1, and a3 ≥ 1, then the graph reduces to P4(2, 1, 1, 1), which
is freely solvable. Note that if m ≥ 1, k ≥ 3, or a3 = 0, then the graph cannot be
freely solvable by Theorem 2 and Lemma 1. If m = 0, k = 2, and a3 ≥ 1, then the
graph is not freely solvable using a similar argument to Theorem 2. Hence we can
assume that m ≥ 1 for the remainder of the proof. Using a similar argument to
above, we can remove at most a1 pegs from X2 using X1 and at most a3 pegs from
X2 and X4 using those in X3. We can remove at most two additional pegs from X2

or X4 using the vertices on the spine. As this will leave a peg on the spine, such a
graph is at best (m+ k− 1)-solvable. To achieve this, we begin with the initial hole
in x1. Perform DS(X2, X1, a1 − 1), X2·−→

x2 ·x1, x4·−→
x3 ·x2, X2·−→x2 ·x3, DS(X3, X4, a3),

X1·−→x1 ·x2, x2·−→
x3 ·x4, X4·−→x4 ·x3. This leaves m− 1 pegs in X2, k− 1 pegs in X4, and

a peg in x3. Hence, if m = k = 1, then the graph is solved. Otherwise, the graph
is (m + k − 1)-solvable. Note that if m + k = 3, then we can apply Theorem 3 to
reduce the graph to either P4(1, 2, 0, 2) or P4(1, 3, 0, 1). An exhaustive computer
search [4] confirms that both P4(1, 2, 0, 2) and P4(1, 3, 0, 1) are distance 2-solvable.
Thus, the graph is distance 2-solvable when m+ k = 3.
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4. Fool’s Solitaire

So far we have dealt with solving the graph and leaving the minimum number of
pegs. Now, we determine the maximum number of pegs we leave if we follow the
stipulation that we jump whenever possible. This is the fool’s solitaire problem.
The fool’s solitaire number of a graph G, denoted Fs(G), is the cardinality of the
largest terminal state associated with a starting state with only one hole. Note
that the independence number of G gives a sharp upper bound on Fs(G). For
more information on the fool’s solitaire problem, refer to [5, 13]. In this section,
we find the fool’s solitaire number for caterpillars of the form P4(a1, a2, a3, a4) and
Pn(a1, 0, ..., 0, an).

Theorem 6. Let G = P4(a1, a2, a3, a4). (i) If a2 ≥ 1 and a3 ≥ 1, then Fs(G) =
a1 + a2 + a3 + a4. (ii) If a2 = 0 or a3 = 0, then Fs(G) = a1 + a2 + a3 + a4 + 1.

Proof. (i) If a2 ≥ 1 and a3 ≥ 1, then the maximum independent set is X1 ∪X2 ∪
X3 ∪ X4. The dual of this configuration has pegs in x1, x2, x3, and x4 and holes
elsewhere. We can solve this configuration by making the jumps x1·−→x2 ·X2, x4·−→

x3 ·x2,
and X2·−→

x2 ·x1. It follows from the Duality Principle that Fs(P4(a1, a2, a3, a4)) =
a1 + a2 + a3 + a4.

(ii) Without loss of generality, suppose that a2 = 0. A maximum independent
set is X1 ∪ {x2} ∪X3 ∪X4. The dual of this configuration has pegs in x1, x3, and
x4 and holes elsewhere. We can solve this configuration with the jumps x4·−→x3 ·x2

and x1·−→x2 ·x3. It follows from the Duality Principle that Fs(P4(a1, a2, a3, a4)) =
a1 + a2 + a3 + a4 + 1.

We now consider caterpillars with longer spine length.

Theorem 7. Let G = Pn(a1, 0, ..., 0, 1), where a1 ≥ 2. The fool’s solitaire number
of G is Fs(G) = a1 + ⌊n/2⌋.

Proof. Suppose that n is even, say n = 2t. A maximum independent set is X1 ∪
{x2, x4, ...x2t−2, x2t,1}. The dual of this set is {x1, x3, ..., x2t−1, x2t}. This can be
solved by jumping x2t−i+1· −→

x2t−i·x2t−i−1 for i = 1, ..., t− 1 followed by x1·−→x2 ·x3. By
the Duality Principle, Fs(G) = a1 + t.

Suppose that n is odd, say n = 2t+ 1. The maximum independent set is X1 ∪
{x2, x4, ..., x2t, x2t+1,1}. The associated dual is {x1, x3, , ..., x2t+1}. This is not
solvable. Thus, at least one peg must be added to the dual. We add x1,1 to the dual.
This configuration can be solved by jumping x1,1·−→x1 ·x2 and then x2i· −→

x2i+1·x2i+2 for
i = 1, ..., t − 1. Finally, we jump x2t+1·−→

x2t·x2t−1. Hence, by the Duality Principle,
Fs(G) = a1 + t when n = 2t+ 1.

Theorem 8. If G = Pn(a1, 0, ..., 0, an) and a1 ≥ an ≥ 2, then Fs(G) = a1 + an +
⌊n/2⌋ − 1.
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Proof. Suppose that n is even, say n = 2t. The maximum independent set is
X1∪X2t∪{x2, x4, ..., x2t−2}. The associated dual, {x1, x3, ..., x2t−1, x2t}, is solvable
by the same argument as in the proof of Theorem 7. So Fs(G) = a1 + an + t− 1.

Suppose that n is odd, say n = 2t+ 1. The maximum independent set is X1 ∪
X2t+1 ∪ {x2, x4, ..., x2t}. The associated dual is {x1, x3, ..., x2t+1}. This is not
solvable. So we must add at least one peg to the dual. We choose to add x1,1 to
the dual. The resulting configuration is solvable by the same argument as the proof
of Theorem 7. So Fs(G) = a1 + an + t− 1.

5. Open Problems

Naturally, an important problem remains the classification of solvable trees. Thus, a
logical continuation of the work of this paper would be to finish the classification of
all solvable caterpillars. While we were not able to accomplish this, we have reason
to believe that the results (and techniques involved) will be similar to those pre-
sented in this paper. As evidence, faculty.etsu.edu/beelerr/cat-catalog.pdf
lists the solvability of all caterpillars that have twelve vertices or less and a spine
length of at least five.

Another possible avenue of research would be to determine necessary and suf-
ficient conditions for the solvability of all trees of diameter five. Note that the
caterpillars in Section 3 are a special case of this type of tree. This would also serve
to extend the work in [7].
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