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ON WEAKLY DARBOUX FUNCTIONS AND
SOME PROBLEM CONNECTED WITH THE
MORREY MONOTONICITY

H. PAWLAK AND R.J. PAWLAK

Abstract. In this paper we investigate relationships between the families
of weakly Darboux, quasi-Darboux and Darboux functions which are quasi-
continuous, and analyse the problem connected with the Morrey monotonic-
ity of the restriction of a weakly Darboux function with the property (P)
to the closure of the union of levels which are continua.

In analysis, a very important role is played by Darboux functions as well
as monotone ones. This has caused that generalizations of these functions
are also considered. The problems of monotone transformations defined on
spaces other than the real line have for many years now been intensively
investigated by a large circle of mathematicians (e.g. [2], [3], [6], [4], [8],
[13]). In a lot of papers, these investigations are connected with additional
assumption concerning the transformations considered. In particular, there
were analysed functions mapping some connected sets into connected sets
with reference to the weak or Morrey monotonicity of the restriction of a
function to the union of some of its levels. The results of papers [2], [3]
together with those of paper [12] show how difficult it is to replace the as-
sumption of the connectedness of the mappings under consideration by, for
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instance, the Darboux property. However, it turns out (Theorem 2) that,
confining oneself to Morrey monotonicity instead of connected mappings,
one may consider weakly Darboux functions possessing the property (P).
At the same time, Theorem 1 shows that the class of weakly Darboux func-
tions is (in the topological sense) a class intermediate between the family of
Darboux functions and the class of quasi-Darboux transformations.

A function f : X — R is a Darboux function if the image of an
arbitrary arc L C X is a connected set ([10]). We say ([11]) that f: X — R
(X is an arcwise connected space) is a quasi-Darboux function if, for any
xz,y € X (z # y), there exists an arc L with endpoints at z and y, such
that f|;, is a Darboux function. Now, we introduce the notion of a weakly
Darboux function. We say that f : X — R is a weakly Darboux function
if, for any open and arcwise connected set V and z,y € V (z # y), there
exists an arc L C V' with endpoints at z,y, such that f|; is a Darboux
function.

The family (as well as the metric space with the metric ¢* of uniform
convergence) of all bounded Darboux (quasi-Darboux, weakly Darboux)
functions f : R — R will be denoted by the symbol D (D,, D,).

Of course:

D C Dy C D,

Our investigation (which leads to Theorem 1) intends a stronger inclu-
sion even if we restricted the considerations to the case of quasi-continuous
functions.

We shall use the standard notions and notations. By R (respectively,
I) we denote the set of all real numbers (the unit interval). The bilateral
closed (bilateral open, etc.) segment with endpoints a and b in R or R?
is denoted by [a,b] ((a,b), etc.). A subset L C X is called an arc if there

exists a homeomorphism A : [0, 1] ™ I,. The elements h(0) and h(1) will be
called endpoints of L. An arc with endpoints z and y is denoted by L(z,y).
If L is an arc and a,b € L, then the symbol Ly (a,b) denotes the arc with
endpoints at a and b, contained in L.

The open ball with centre at z and radius » > 0 will be denoted by
B(z,r). The symbols A and Int(A) stand for the closure and the interior
of A, respectively.

A function f : X — Y is said to be quasi-continuous ([5]) at z if,
for each neighbourhood W of f(z) and each neighbourhood U of z, the set
Int(UN f~1(W)) is nonempty. The function f is said to be quasi-continuous
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if it is quasi-continuous at each point of its domain. The set of all bounded
quasi-continuous functions f : R? — R will be denoted by Q.

To simplify the notation, we shall write DQ (D, Q, D,,Q) instead of DNQ
(DyNQ, DyN Q).

Let f: X — R. The inverse image of the singleton (i.e. the set f (a))
will be called the level of f. According to the notation in [2], we write
Y.(f) = {a € f(X): fla)is a connected set} (Yon(f) = {a € f(X) :
f~H(a) is a continuum}) and S.(f) = f7H(Ye(f)) (Sen(f) = FHYer(f)))-
If Se(f) = X (Sen(f) = X) then we say that f is weakly monotone
(Morrey monotone) [8], [2], [3].

A function f : X — R possesses the property (P) if, for any a, each com-
ponent of f~1((—oo,a]) is a closed set and each component of f*([a, +00))
is a closed set.

The notions and symbols we use, dealing with porosity, come from papers
[14] and [15]. Let X be a metric space. Let M C X, z € X and S > 0.
Then we denote by ~(z,S, M) the supremum of the set of all » > 0 for
which there exists z € X such that B(z,r) C B(z,S)\ M. If p(M,z) =
2. limsupg_>0+w > (), then we say that M is porous at .

Obviously, every porous set is nowhere dense. If X = R, every porous
set is of Lebesgue measure zero.

If AC B C X (where X is a metric space) and A is porous at any point
b € B (B is understood as a subspace of X), then we shall write A C B.

It is evident that DQ C D,,Q C D,Q and there exist functions f, g such
that f € D,Q\ D,Q and g € D,Q \ DQ. In the theorem below we shall
prove that (in the topological sense) this is a ”frequent event” in the space
of bounded function with the metric of uniform convergence.

Theorem 1. DQ C D, Q C D,Q.

Proof. First, we shall show that D,Q C D,Q. Let f € D,Q and let € > 0.
There exist 2, = (z1,22) € R? and § > 0 such that

—_— £ £

J(Ba ) € (a0~ a0+ 5) (1)
where «a, is some real number. Denote K, = DB(z,,0). Let
Ky = B, 8) and put K7 = {(z,9) € K1 = @ < o1}, KI* = {(2,1) €
Ky : z > z1}. By C we denote the Cantor set for the segment [%,5]
(i.e. minC = %,maxC =0). Let {(pn,qn)}22y (pn < qn for n =1,2,...)

be the sequence of all components of the complement of C. Moreover let

é = (g 5) \ U;.Lozl[pn: Qn]'
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Let F; be a family of power continuum which consists of dense subsets of
C such that UAE]:é A=Candif A,B e Fsand A # B, then ANB = (). Let

§:Fs onto [o— 5, ap+ 5] be an arbitrary bijection. Moreover, let h, denote
some homeomorphism mapping [pn, ¢,] onto [a, — §,a, + 5] (n = 1,2...)
such that hy,(pn) = @, — § and hy,(gn) = a0 + 5.

Now, we shall define a function g : R? — R in the following way:

f(zx) if z¢ Ky
Qo — § if e K
g(z) =9 a,+5 if xe K%
ho(o(z,20)) if  o(x,20) € [Pn,qnl for some n;
5(505) if Q(IIT,.TO) €y € F@;

where ¢ denotes the Euclidean metric on the plane.
Of course, g ¢ D,,. Now, we shall show that

g € D,. (2)
First, we prove:

if L is an arc such that there exist z1,20 € L

~

for which o(xo,21) # 0(wo, 22) and o(xo, 21), 0(0,22) € T, (3)

then [a, — %,ao + %] C g(L).

In fact, let 8 € [, — §, ap+5]. Then there exists a set Ag € F5 such that
£(Ag) = . Since Ag is a dense set in ¢ and o(zo, 21) # 0(x0, 22) We may
infer that there exists z, € L such that o(z,, 2z,) € Ag. Then g(z,) = .

For the proof of (2), we consider the following cases:

1) v = (z1,72) € Ko, y = (y1,¥2) € Ko. Let 2" € ({z1} x (R\ {z2})) N
(K, \ Ki) and y* € ({y1} x (R\ {y2})) N (K, \ K1) and let L = L(z*, y*)
be an arc such that L C (K, \ K1) and LN ([z,2*) U (y*,y]) = 0. Then
we put L* = [z,z*] U L U [y,y*]. Let L, be a subarc of L*. If L, C K}
or L, C Ki* or L, C (B(z,r) \ B(z,r)) for some r € (,8) then 9L, 18
constant. If L, C {e : o(xg,€) € [pn,,qn,]} (for some n; € {1,2...}), then,
of course, g1, is a Darboux function. In the opposite case, according to the
definition of g, g(L,) C [a, — 5, 0+ 5] and, by (3), [ao — 5, 20+ 5] C g(Lo)-
This means that, in this case, g(L,) = [ — 5,0 + 5]

2)x ¢ K,ory ¢ K,. Let L =L(x,y) C R? be an arc such that firis a
Darboux function. If LN K, = @, then gz = fiz 1s also a Darboux function.

If LN K, # () then we consider the subcases:

2a) z,y ¢ K, Then let L, = Ly (z, z,) (if ¢ € K, then we put L, = {z}),
Ly, = Li(y,2,) (ify € K, then we put L, = {y}) be arcs (or singletons) such
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that L, N K, = {2}, LyNK, = {z,}. If z; = 2, then let L* = L, UL,. In
the opposite case let Ly = L(2;, zy) C K, be an arc such that LyyNKy =10
and Lz, N (Ko \ K,) = {2, zy}. Put L* = L, ULg,UL,. Let L, be a subarc
of L*. 1f L, C Ly U Ly then it is obvious that gz, is a Darboux function.
In the opposite case, according to (1), f(L, N K,) C (ap — 5,00 + £);
and by (3), [, — 5,00 + 5] = g(Lo N K,). So, we have that g((L,) =
9(Lo M Lz) Ul — 5,00 + 5] Ug(L, N Ly) is a connected set.

2b) z € K, (if y € K,, the proof is similar). Let z* € ({z1} x (R\
{z2})) N (K, \ K1) and L1 = [x,2*]. Let Ly = Lr(y, z,) be an arc such
that Lo N K, = {z,}. Moreover, let L3 = L(z*,2,) C K, U {z,} be an arc
such that Lz N (L1 U L) = {z*, 2,}. It is not hard to verify that g|,- is a
Darboux function if L* = L1 U Lo U Ls.

This ends the proof of (2).

Now, we shall show that

geQ. (4)

Let t = (t,,t°) € R%. For the proof, we consider the following cases:

(a) t ¢ K,; then the quasi-continuity of g at t follows from the quasi-
continuity of f at t.

(b) t € Kj; then the quasi-continuity of g at ¢ follows from the fact that
9|k 9|K;+ are constant.

(c¢) olxo,t) € [pn,sqn,] for some mn,.  From the continuity of
9I{=: 0(20,2)Elpnyan,]} WE may deduce that g is quasi-continuous at ¢.

(d) o(zy,t) € C or o(x,,t) = 5. Thus g(t) € [a, — $,a0 + 5] Put
o(z,,t) = p and let n,¢ be arbitrary positive real numbers. Choose a
positive integer n, such that [p,,,¢n.] is a segment for which the inclusion
[Pr.s @n.] C (10— C, p+ C) takes place. Finally, let A be an arbitrary element
from (g(t) —n,g(t) +n) N (s — 5,2+ 35). By the definition of g there exists
a point d € [z,,t]N{y : o(zo,y) € (Pn.,qn,)} such that g(d) = A. It is easy
to check that o(t,d) < ¢ and d is a continuity point of g, which ends the
proof of (4).

From (2) and (4) we conclude that g € D,Q.

Now, we shall show that

€
3 Z)

Indeed, let h € B(g, §). Then h(KY) C (—00, a,) and h(K7*) C (a, +00),
which means that h ¢ D,,.

It is clear that B(g,§) C B(f,e). By the above, p(D,, Q. f) > % > 0.
This completes, according to the arbitrariness of the choise of f € D,Q, the
proof of the fact: D,Q C D,Q.

B(g,=)ND, = 0.
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In the next step of this proof we shall show that DQ C D, Q.

Let p € D, Q and let € > 0. Then there exist xg(p) € R? and 6¢%) > 0 such
that f(B(m((;p),é(‘P))) C (ag@ 3,0490) + §) where a$?) is some real number.
Let K = [k, k2] be a closed segment with middle-point at :E((fo) such that
K C B(x((;p), @) Denote A, = {z € R?: o(z,K) = a}.

Let C(¥) denote the Cantor set for the interval [0, @] (i.e. minC¥) =
0, maxC¥) = ) and let {(pn ,qf{p)) o°_, be the sequence of all component
of the Complement of C(¥). Moreover, put clo) = (0, %) \ Uz 1[p,(f), q( )]
Let ’7:6(’?3) be a family of power continuum consisting of the dense subsets

of C®) such that UAef(“‘i) A =C® and if A B e ‘7:((;23) are distinct sets,

c(®)
then they are disjoint. Let &) : .7-"(“3) onto [a(()@) -5, al? + 5] be an
(%) () (w)]

arbitrary bijection. Moreover, let h;’ denote a homeomorphism [p,”’, ¢
onto [ 2 3,04((;'0) + 5] (forn =1,2...).
Now, we shall define a function ¢(¥) : R2 — R in the following way:

o(z) if z¢U

O<er <5(w)
((790)_% if xclk'x,l;
99 (z) = ) 4 S if € (zo,k?;
W) if z€ Ayandac [p¥,d¥);
g(w)(E ) if x€ A, CLTLdOéE»—wGJ:C(((p))

It follows immediately that g(¥ g_f D. The method of proof analogous to
the method from the first part leads to the conclusion: g( ¢) ¢ D, 9. More-
over, easy ” computations” show that B(g(¥), )NDQ = () and B(g<“’), 7)) C
B(¢p,¢), which proves that DQ  D,,Q. O

In many papers the authors investigate the problem connected with the
monotonicity of the restriction of connected functions® to the closure of the
union of all connected levels ([2], [3], [9]). In paper [12] it was shown that
there exists a Darboux function f : 1> — R such that the restriction of it to
the closure of the union of all connected levels is not weakly monotone. In
the theorem below we investigate the analogous problem for the modification
of assumptions (the Darboux property is replaced by the weakly Darboux
property and the property (P), and the connected levels by levels which are
continua).

!i.e. functions mapping connected sets onto connected sets.
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Theorem 2. Let X be a metrizable locally connected continuum and let
f:X — R be a weakly Darbouz function which possesses the property (P).

Then ]ﬂm 18 Morrey monotone.

Proof. Denote, for simplicity, S = S¢,(f), Y = Yoo (f) and g = f|§. First,
we prove that

if a €Y, then f (o, +0)) and f~((—oc,a]) are continua
and (5)
if a,B €Y, then f[a, 8]) is a continuum.

In fact, first, we shall demonstrate that f~!([a, +00)) is a closed set. It
suffices to show that f~!((—o0,)) is an open set. Let z € f~1((—o0,a)).
Then there exists an open and connected set K, such that z € K, and
K. N f(a) = 0. Since? f(K.) is a connected set, therefore f(K.) C
(—o0, @), which ends the proof of the closedness of f~1([a,+00)). In a
similar way we can prove that f 1((—oo,a]) is a closed set. Observe that
fH(=00,a)) U f7H([a, +00)) = R and f=H((—00,a]) N f~H([o, +00)) =
f (). According to the fact that f!(a) is a continuum, we infer (see [7])
that f1((—o0,al), f (o, +o0)) are continua.

The proof of the fact that f~1([a, 8]) is a continuum is analogous.

Now, we shall prove that

g is a continuous function. (6)

So, let x, € S, a, = g(x,) and let € > 0. If (o, — €,0,) NY # (), then
let a, be an arbitrary point of this intersection. In the opposite case, let
a, = sup{a < a, —e: a €Y} (of course, it is possible that {a < a, — & :
a € Y} = 0, then a, = —o0). In a similar way we can define a point
bo € (ag,+00).

Now, we shall show that

if ap # —o0, then f~1((—00,a,)) C f~ (=00, a,)). (7)

Of course, if a, € Y, then (according to (5)) f~!((—o0,a,]) is a closed
set, and so, in this case, inclusion (7) takes place.

In the opposite case (a, ¢ Y), there exists a sequence {a,}32; C Y
such that a, /" a,. By (5), f1((—00,a,)) = U2, f~H(—o0,a,]) is a
connected set contained in f~1((—o0,a,]). Since f possesses the property
(P), therefore f=1((—o0,a,)) is included in some closed component C of
f~ (=00, a,)), which ends the proof of (7).

2Mazurkiewicz-Moor theorem.
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If ¢, # 400, then similarly as (7) we can prove

FH((co,+00)) € f7H ([0, +00)). (8)
Now, we shall show that

there exists an open set K, containing xg
such that g(K, NS) C (ap — &, +00). 9)

To prove this fact we consider the following cases:

1) a, = —oo. Then (9) is true for K, = X.

2) a, € (o — €,05). Then (9) follows from (5).

3)a, ¢ (ap—¢e,0a,). Let ¢, =inf{a>a,: a €Y}

If ag € Y, then by (5), f1((ag,+0o0)) is an open set. Simultaneously,
f((ap,0)) NS = 0. Then S C f~((—o0,a0]) U f~1([co, +00)). If
co €Y, then by (5), § C f~1((—o0,a0]) U f~1([co,+0)). If c, ¢ Y,
then S C f'((~00,a0]) U f=*((c,, +00)) and by (8), S C f *((—00,a0]) U
fﬁl([cm +OO)) COHSunentlYa fﬁl((a()a ao)) ns = 0. SO: gil((GJOa +OO)) =
f((ag, +0)) NS = g 1 ([ay, +00)) is an open set in S.

Now, we assume that ay ¢ Y. According to (7), we may infer that
)N f~1((—oc,a,)) = 0. So, let K, be an open set containing zq such
that

Kamfil((_ooaaa)) = (). (10)
Now, we shall show that
SNK, N f(a,) = 0. (11)

Suppose to the contrary that there exists w such that w € SN K, N
f~Ha,). Of course, w ¢ S and so there exists a sequence {w,}>2; such
that lim,_cow, = w (we may assume that w,, € K, for n =1,2,...). Then
(according to (10)), f(x,) > c,, but this fact, according to (5), (8) and the
obvious inequality ¢, > a, means that w ¢ f~!(a,), which is impossible.

By (10) and (11), (K, N S) C (a,, +00). One can prove that (a,,a,) N
g(S) = ), which leads to the conclusion that (9) takes place.

When we replace ag by by, the considerations analogous to the above ones
lead to the conclusion:

there exists an open set K containing xg
such that g(K, N'S) C (—00,a, +¢)

’

which, according to (9), ends the proof of (6).
Now, we consider monotonicity.
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Let v € R be an arbitrary number such that g —*(y) # (). It is obvious that
if v € Y then g~ 1(y) = f1(v) is a continuum. Similarly, if v is a bilateral
accumulation point of Y, then, according to (5), g~'(7) is a continuum.

Finally, we suppose that « is a unilateral accumulation point of Y and
denote by {1,}°2; C Y a monotone sequence which tends to . Let, for
instance, v, /" 7.

According to (6), g71(v) is compact.

Suppose that g~!(y) is not a connected set, which means that g~ '(y) =
AU B where A, B are nonempty separated sets. Let z4 € A and xp € B.
Of course, 4,25 € S\ S. Since R? is hereditarily normal, then there exist
([1]) open sets U and V such that A C U, B C V and UNV = (). Let
{KAY22 ,({KB12 ,) be a local base at x4 (zp) such that K2 (KZ) is an
open and connected set, for n = 1,2,.... Without loss of generality we may
assume that K2 c U and K2 C V for any positive integer n.

Let n, be a fixed positive integer. Then f(K7), f(KP) are connected sets
containing . From v ¢ Y we conclude that f(K2), f(KEP) are nondegener-
ate intervals containing some elements of Y. According to the continuity of g
and our assumption that v is not a limit of a decreasing sequence of elements
of Y, we may infer that there exists ky, such that v, € f(KZ) N f(KD)
and | Y, — 7 < =.

Continuing this procedure we obtain a sequence {7, }>2; C Y such that

From)NU #0# f )NV (forn=1,2..) and Jim oy, = 1.

So, let s, € f (k) \ (UUV) (for n =1,2...) and let s, be an accumu-
lation point of {s,}>2 ;. This means that s, € S. According to (6), we infer
that g(s,) = =y, which contradicts our assumption (of course, s, ¢ U U V)
that g 1(y) = AU B.

The contradiction obtained ends the proof of Theorem 2. O

It can be demonstrated that, under the assumptions of Theorem 2, S, (f)
does not have to be a closed set. This will be shown in a forthcoming paper.
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