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ON AFFINE SELECTIONS OF SET-VALUED
FUNCTIONS

SZ. WASOWICZ

Abstract. The main result of this paper is the theorem stating that every
convex set—valued function F': I — ¢(Y), where I C R is an interval and Y
is a locally convex space, possesses an affine selection. In the case if Y = R
and values of F' are closed real intervals we can replace the assumption of
convexity of F' by the more general condition.

Introduction. K. Nikodem and Sz. Wasowicz have proved (cf. [3, The-
orem 1]) that if functions f, g : I — R, where I C R is an interval, fulfil for
every z,y € I, t € [0,1] the following condition

fltz+ (1 —t)y) < tg(z)+ (1 —1t)g(y)
and (1)

gltz+(1—t)y) > tf(x)+1—-1)f(y)
then there exists an affine function A : I — R such that f < h < g on
I. The simple consequence of this fact is Theorem 1 which we prove at
the beginning of this paper. Next we prove that every convex set—valued

function F' : I +— ¢(Y'), where Y is a locally convex space and ¢(Y') is the
family of all compact non—empty subsets of Y, possesses an affine selection.
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In the case Y = R™, n € N, we also present a direct inductive proof of this
theorem.

Notation. By I we will denote any fixed real interval.
If X is a topological vector space then we admit the following notation:

n(X) = {ACX:A#0}
c(X) = {Aen(X):Ais a compact set};
ce(X) = {A€ce(X):Ais a convex set}.
The term set valued function will be abbreviated in the form s.v. func-
tion.
If X,Y are vector spaces and D C X is a convex set then we say that a
s.v. function F': D — n(Y) is
a) conver, iff for every x,y € D, t € [0,1]
tF(z)+ (1 —1)F(y) C F(tz + (1 —t)y);
b) concave, iff for every z,y € D, t € [0,1]
F(te+ (1 —t)y) CtF(z) + (1 —t)F(y).
A function f : D — Y is called the selection of the s.v. function
F:Dw—n(Y)iff f(z) € F(z) for every xz € D.

Let us start with the translation of the theorem mentioned in Introduction
into the s.v. functions language (cf. [5, Remark 14]).

Theorem 1. A s.v. function F : I — cc(R) possesses an affine selection
iff for every x,y € I, t € [0,1] the following condition holds

Flta + (1 - t)y) N [tF(2) + (1 — OF ()] # 0. (2)

Before we start the proof let us observe that (2) is the weakest condition
guaranteeing the existence of an affine selection for the s.v. function F'.

Proof of Theorem 1. If there exists an affine selection f : I — R of the s.v.
function F' then the condition (2) is obvious.
Let us assume that the condition (2) holds for every z,y € I, t € [0,1].
Let
f(z):=inf F(z), g(z):=supF(z), z€l.
Then
F(z) =[f(z),9(z)], z€l (3)

We will show that f,g : I — R fulfil the condition (1) for any fixed z,y € I,
t €10,1].
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Let z € F(tz + (1 —t)y) N [tF(z) + (1 — t)F(y)]. There exist z; € F(x),
z9 € F(y) such that

z =tz + (1 —t)z.
Using definitions of f and g we get
flz+ (A -ty) < z=tan+ (1 -1z <tgz)+(1-1t)g(y)
and

gtz +(1—t)y) =2 z=tza+ (1 —t)za >tf(z)+ (1 —-1)f(y)-

Then there exists an affine function h : I — R such that

f(x) <h(z) <g(z), =€l (4)
(cf. [3, Theorem 1]). Conditions (3), (4) imply that h(z) € F(z), x € I,
which completes the proof. ]

Remark 1. 1t is well known that if a s.v. function F': I — cc(R) is convex
(or concave) then F' has an affine selection. Applying the above theorem
we get the new proof of this fact.

Remark 2. The assumption of compactness of the sets F(x), x € I in
Theorem 1 is essential. Consider two s.v. functions F' : R — n(R) and
G:(—1,1) — n(R) defined by formulas

F(z) = [2%,+x), 7€R

Gx) = (221), z€(-1,1).

It is easy to see that F' and G are convex, but they do not have any affine
selection.

Remark 3. 1t is known (cf. [1, Remark 1], [3, Remark 2]) that a s.v. function
F : D~ cc(R), where D C R? is a convex set, need not possess any
affine selection although F' fulfils (2). We can also find the example of
the s.v. function F' : I + cc(R?) which fulfils (2) and does not have
any affine selection. So, Theorem 1 can not be generalized both for s.v.
functions defined on the convex subset of the plane and for s.v. functions
F : T+ cc(R?). Below we present an example which is due to E. Sadowska,
from Bielsko—-Biala.
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Let I = [0,4] (only in this remark) and F : I +— cc(R?) be defined as
follows

FO) = [-44] x {1}

F(1) = {1} x[-4,4];

F(2) = [-44] x{-1}

F@3) = {1} x[-4,4];

F(4) = {(z,z):z€[-4,4]}

F(z) = [-4,4] x [-4,4] for allz € 1\{0,1,2,3,4}.

One can prove that F' fulfils (2). We will show that F' does not possess any
affine selection. An easy calculus shows that the straight line

le_fa
l:{y:—l—f, EER,
sza

is the only line which intersects four segments F'(0), F'(1), F(2) and F(3).
But [ does not intersect the segment F'(4). So the s.v. function F' has not
any affine selection.

It is well known that every continuous function f : I — [ has a fixed point
(if I is the compact interval). On the second hand, every affine function
f 1 — Iis continuous. So, as a consequence of Theorem 1 we obtain the
following

Corollary 1. If the interval I is compact then every s.v.  function
F : 1w cc(l) fulfiling (2) has a fized point (i.e. there exists a point x € I
such that x € F(x)).

Now we shall prove the main theorem of this paper. We present two
proofs. One of them is an application of K. Nikodem’s results (cf. [1]) and
it requires the Axiom of Choice. The second one is direct and inductive but
it works for finite—dimensional spaces R".

Theorem 2. Let Y be a locally convex topological vector space. Fvery con-
ver s.v.  function F: I +— ¢c(Y) possesses an affine selection

f:I—Y.

Proof. Let F : I — ¢(Y) be a convex s.v. function. Then, in particular,
F is a midconvex s.v. function (it fulfils the condition of convexity with
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t = 1/2), and so F possesses a Jensen selection f : I — Y (ie. f(4Y) =

L@ bW - oy e 1) (cf. [1, Lemma 2]).

Since F' is continuous on int/ as a convex s.v. function defined on a subset
of R (cf. [2, Theorem 3.7]), also f is continuous (cf. [2, Theorem 4.3] with
K = {0}, G = F and F = f). Thus f as a continuous Jensen function is
an affine function, which completes the proof. O

In the above proof we have used K. Nikodem’s results which require the
Lemma of Kuratowski—Zorn and one of versions of the Theorem of Hahn—
Banach. Below we give an inductive proof in the case Y = R", n € N.

Second proof (for Y = R™). Before we start an induction on n let us notice
that if F'is convex then the values of [ are convex sets.

STEP 1. If n = 1 then our theorem follows directly from Remark 1.

STEP 2. Assume that every convex s.v. function G : I — ¢(R") has an
affine selection g : [ — R".

STEP 3. Let F': [ +— ¢(R"™) be a convex s.v. function. For any z € [
we put

G(z) = {y cR":3, Ry, 2 c F(:E)} .

It is easy to verify that G(z) is a compact and non—empty subset of R™ (i.e.
G : 1~ ¢c(R"). We will check that G is a convex s.v. function. Fix any
r,x0 €1, t € [0, 1]. Let

y € tG(z1) + (1 — t)G(z2).
There exist y; € G(z;), i = 1,2 such that
y=tyr+ (1~ t)ya.
So there exist z; € R, © = 1,2 such that
(yis 2i) € F(x;), 1 =1,2.
Let z = tz; + (1 — t)22. Since F' is convex we get
(y,2) = t(y1,21) + (1 —t)(y2,22) € tF(z1) + (1 —t)F(z2) C
C F(txy + (1 —t)z2).
So we obtain
y € G(try + (1 —t)xz2).
Let g : I — R"™ be an affine selection of GG. Let us define
H(z)={z€ R:(g9(x),2z) € F(x)}, z€l.
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H(x) is a compact and convex subset of R. From the fact that g(z) € G(z)
we get that H(z) # 0, x € I. So H : I — cc(R). It is not difficult to
calculate that H is a convex s.v. function.

Let h: I — R be an affine selection of H. By putting

f(z) = (g(x), h(x)), =€l

we obtain an affine selection of the s.v. function F' which completes the
proof. O

Remark 4. The above proof was obtained as a result of investigations if
s.v. functions F' : I +— cc(R") fulfiling the condition (2) possess an affine
selection. First the author hoped that the method of decreasing of the
dimension will give an effect in this case. But the example in Remark 3
gave the negative answer of the mentioned problem. However in the case of
convex s.v. functions this direct method gives the simple way of constructing
the affine selections.

Remark 5. It is known that convex s.v. functions F': D — cc(R), where D
is a convex subset of R"™, n > 2, need not possess any affine selection (cf.
[1, Remark 1]). However, if D is a convex cone with base in a real linear
space, then every convex s.v. function defined on D with compact values in
a real locally convex space has an affine selection. It was obtained recently
by A. Smajdor and W. Smajdor [4].

Remark 6. It is known that the convex s.v. function F': I — ¢(Y'), where
Y is a topological vector space are continuous. An application of our results
gives another proof of this fact in the case when Y = R". Using Theorem 2
(for Y = R™) we obtain the existence of an affine selection f of F. Since f
is affine and f : I — R", it must be continuous. Then F' has a continuous
selection, so ' must be continuous on I (cf. [2, Theorem 3.3]).
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