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Abstract. Let T, X, Y be topological spaces and F' : T x X +— n(Y)
be a set—valued function. We consider the Nemytskii operator generated
by F which associates with every set—valued function G : T +— n(X)
the superposition F(-,G(:)) : T + n(Y). Conditions under which this
superposition is lower or upper semicontinuous are presented.

1. Introduction. Let T, X and Y be topological spaces, n(Y) be the
family of all nonempty subsets of Y and F': T'x X — n(Y') be a set valued
function (s.v. function, for short). We consider the Nemytskii operator N
generated by F', i.e. the superposition operator defined by

N(G)(t) == F(t,G(1) = |J F(tz)
reG(t)
for every s.v. function G : T +— n(X). For single—valued functions this ope-
rator plays an important role in nonlinear analysis. Also for s.v. functions

it appears in many fields of applied mathematics, e.g. in control theory and
mathematical economics. In this note we present conditions under which
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the s.v. functions F'(-, G(-)) are lower or upper semicontinuous. Such pro-
blem was considered in [1] in the case where F' is a s.v. function and G
is single-valued and in [2] in the case where F' is single-valued and G is
set—valued. In this paper F' as well as G are s.v. functions.

Let us recall that an s.v. function H : X +— n(Y') is lower semicontinuous
(Ls.c.) at apoint zog € X if for every open set W C Y such that H(xg)NW #
(), there exists a neighbourhood U of xy such that H(X) N W # 0 for all
x € U. H is upper semicontinuous (u.s.c.) at xq if for every open set W C Y
with H(xg) C W there exists a neighbourhood U of z¢ such that H(z) C W
for all x € U. 'H is continuous at x if it is L.s.c. and u.s.c. at xg.

2. The superposition operators generated by l.s.c. and u.s.c.
s.v. functions. In this section T, X and Y are topological spaces. We
denote by ¢(Y') the family of all non empty compact subsets of Y.

Proposition 1. If F': T x X — n(Y) is u.s.c. and G : T +— ¢(X) is
u.s.c., then F(-,G(-)) : T — n(Y) is u.s.c.

Proof. Fix a point t3 € T and take an open set W C Y such that
F(to,G(tg)) € W. Then F(typ,z) C W for all x € G(tp). For every
x € G(tp), by the u.s.c. of F at (tg, ), there exist a neighbourghood U, of
to and a neighbourghood V. of x such that

Ft,z)cW  for all  (t,2') € Uy x V,. (1)

Since G(to) is compact and G(to) C Uyeq(sy) Var there exists points
x1,...,Z, € G(x) such that

G(to) CVy U UV,

Put
U:=U; N...NU, and V=V, u...uV,.

By the u.s.c. of G at ty there exists a neighbourhood U C U of tg such that
Git)ycV for all teU.

Then, for every t € U and 2’ € G(t) there is an i € {1,... ,n} for which
(t,x") € Uy, x Vy,. Using (1) we get F(t,2’) C W. Thus

Ft,Gt) cW  for all teU,
which proves that F'(-,G(+)) is u.s.c. at £p. O

Proposition 2. If F': Tx X —n(Y) isls.c. and G: T — n(X) is l.s.c.,
then F(-,G(-)) : T +— n(Y) is l.s.c.
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Proof. Fix a point tg € 1T and take an open set W C Y such that
F(to,G(to)) N W # 0. Then F(tg,zo) N W # () for some xy € G(tg).
By the Ls.c. of F' at (tg,z) there exist a neighbourhood U of ¢y and a
neighbourhood V' of zy such that

F(t,z)nW #£10 for all (t,z) e U x V. (2)

Since G(tg) NV # 0, by the ls.c. of G at to there exists a neighbourhood
U C U of tg such that

G)yNnV #£0  for all teU.

Fix a point ¢ € U and take an 2, € G(¢t)NV. Then (t,;) € U x V and so,
by (2), F(t,x;) N W # (). Thus

Ft,Gt)NW #£10 for every teU,
which means that F'(-,G(-)) is Ls.c. at to. O

REMARKS. An s.v. function F': T x X + n(Y) is called superpositio-
nally continuous if for every continouos single—valued function ¢ : T +— X
the superposition F'(-,¢(-)) : T +— n(Y) is continuous. As an immediate
consequence of Propositions 1 and 2 we get that every continuous s.v. func-
tion F' : T x X — n(Y) is superpositionally continuous. This result is
formulated in [1, Lemma 2] for s.v. functions F': ©Q x R — ¢(R), where Q
is a compact subset of the Euclidean space.

The superpositions F'(-,G(-)) where I': T'x X — Y is a single-valued
continuous function and 7', X, Y are metric spaces are considered in [2] as
so called parametrized set—valued maps. In this case our Propositions 1 and
2 reduces to a result presented there (cf. [2, Prop. 1.4.14)).

3. The superposition operators generated by midconvex s.v.
functions. In this section we consider the superposition operator generated
by midconvex s.v. functions. Let X, Y be topological vector spaces and D
be a convex subset of X. Recall that an s.v. function H : D +— n(Y) is
said to be midconvex if

WCH(L;‘U), r,y € D.

It is known that midconvex s.v. functions need not be continuous (even if
the domain D is an open subset of R™). However their continuity can be
deduced from other (much weaker) properties such as measurability, lower
semicontinuity at a single point or boundedness on a set with non—empty
interior (cf. eg. [4]). Using these results we can obtain various conditions
under which the superposition operator generated by a midconvex s.v. func-
tion transforms the space of continuous (Ls.c., u.s.c.,) (s.v.) functions into
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itself. The theorem presented below gives one of such possibilities. We say
that an s.v. function F' : D +— n(Y) is weakly bounded on a set A C D if
there exists a bounded set B C Y such that F(z) N B # () for every x € A.

Theorem 1. Let Y be a topological vector space and F : (a,b) xR — ¢(Y')
be a midconvex s.v. function. Assume that for some continuous function o :
(a,b) — R which is not affine on any interval I C (a,b), the superposition
F(,¢(4) : (a,b) — c(Y) is weakly bounded on an interval (o, ) C (a,b).
Then the superposition F(-,G(-)) is l.s.c. for every ls.c. s.v. function
G : (a,b) — n(R), and it is u.s.c. for every u.s.c. s.v. function G :

(a,b) — ¢(R).
The proof of this theorem is based on the following two results.

Lemma 1. [3, Thm. 2, §5, Chpt. 9] Let ¢ : (a,3) — R be a continuous
not affine function. Then the set Gry + Gro (the algebraic sum of the
graphs of @) has non—empty interior.

Lemma 2. [4, Cor. 3.3 for K = {0}] Let X, Y be topological vector spaces
and D C X be an open convex set. If a midconvex s.v. function H : D —
c(Y) is weakly bounded on a set A C D with non—empty interior, then it is
continuous on D.

(In fact, in [4] the continuity is understood in the sense of the Hausdorff
topology in n(Y). However for s.v. functions with compact values these two
concepts of continuity are equivalent).

Proof of Theorem 1. The weak boundedness of the superposition F'(-, (-))
on (@, 3) means that F' is weakly bounded on the set G := Gr¢|(4,g)-
Therefore there exists a bounded set B C Y such that

F(s,z)NB#0 for every (s,z)e€G.

Fix arbitrary (s,z), (t,y) € G and take points u € F(s,x) N B and
v € F(t,y) N B. Then 3(u +v) € (B + B) and, by the midconvexity
of F,

1 1 t,

S(utv) € 5(Fls,2) + F(t,y)) € F (W) .

Hence

N .
2 2 0
Since the set %(B + B) is bounded, this means that F' is weakly bounded
on the set %(G + G). By Lemma 1 this set has non-empty interior; so,

by Lemma 2, F' is continuous on (a,b) x R. Now it is enough to apply
Propositions 1 and 2. O

F((s,m)—{—(t,y)) B+ B
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As a consequence of the above theorem we get the following result.

Corollary 1. Let Y be a locally bounded topological vector space and F :
(a,b) x R — ¢(Y) be a midconver s.v. function. Assume that for some
continuous function ¢ : (a,b) — R which is not affine on any interval
I C (a,b), the superposition F(-,¢(-)) has a selection continuous at a point.
Then F' is superpositionally continuous.

Proof. Assume that g : (a,b) — R is a selection of F(-,(+)) continuous at
a point to € (a,b). Fix a bounded neighbourhood W of zero in Y and take
a neighbourhood («, ) of ty such that

g(t) € g(to) + W for all t¢e (a,p).
Put B := g(ty) + W. Then B is bounded and

F(t,p(t)NB#0,  te(a,p),
which means that I’ is weakly bounded on the set Gr¢|(,,z). By Theorem
1, the superposition F'(-, f(+)) is continuous for every continuous function
f: (a,b) — R, which finishes the proof. O
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