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FORCED OSCILLATIONS OF FIRST ORDER
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Abstract. First order forced nonlinear neutral differential equations are
studied and sufficient conditions are derived for all solutions to be oscillatory.

1. Introduction. We shall be concerned with the oscillatory behavior
of solutions of the forced nonlinear neutral differential equation

+ZP +Z@] i(1)) = R(t),

(1.1)
where k and m are some positive integers, P;(t), Q;(t), R(t) € C((0,00),R)
(i=1,2,....k j =1,2,...,m), fj(u) € C(R,R), ufj(u) >0 for u#0
(j=1.2,...,m), 7i(t), oj(t) € C((0,00),R) (i =1,2,...,k; 5 =1,2,...,m),

lim;_ o 73(t) = o0, and limy_, o, 0(t) = oo.

By a solution of (1.1), we mean a function z : [T,00) — R such that
z(t) is continuous, z(t) + Y-8 | Pi(t)z(7;(t)) is continuously differentiable
and satisfies (1.1) for all sufficiently large ¢ > T,. A solution of (1.1) is
called oscillatory if it has arbitrarily large zeros.
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Oscillation properties of first order neutral differential equations have
been investigated by many authors. We refer the reader to Graef, Gramma-
tikopoulos and Spikes [2], Grammatikopoulos, Ladas and Sficas [3], and
Jaro§ and Kusano [4, 5] for neutral differential equations without forcing
term. In particular, the oscillation of neutral differential equations with
forcing term was studied by Grace and Lalli [1]. However, it seems that very
little is known about the forced oscillations of neutral differential equations.

The purpose of this paper is to present conditions which imply that every
solution of (1.1) is oscillatory. In Section 2 we consider the case where the
coefficients are oscillatory. In Section 3 we consider the case where the
coefficients are nonnegative.

2. Equations with oscillating coefficients. In this section we derive
sufficient conditions for no solution of the neutral differential inequality

k m
o) + 3 P®a(m®)| + Y Q0 fi(alo; (1) < R()
dt i=1 j=1 (2.1)

to be eventually positive, and then we obtain the oscillation results for (1.1).
Our method is an extended adaptation of that used by Kusano and Yoshida
[7], and Yoshida [9].

Theorem 2.1. Suppose that the following hypotheses hold:

(H2.1)  fo(u) is nondecreasing on R for some £ € {1,2,...,m};
(H2.2)  o4(t) <t and oy(t) is nondecreasing.

Assume that there exists a sequence {t,}°° 1 such that:

lim ¢, = oo; (2.2)

n—oo

Pi(t) <0 on [02(ty), oe(ty)], Pi(oe(t,)) =0 and Pi(t,) >0
for i € I; (2.3)

Qj(t) >0 on [O'lg(tn)a tn} for j € Ip; (2'4)

tn g, (tn) tn
/ Qu(s)fe <c —/ ‘ R(r) dr) ds —/ R(s)ds > ¢
a¢(tn) ae(s) ag(tn)
for any ¢ >0, (2.5)

where a2 (t) = o4(o(t)) and Iy = {1,2,...,N} (N =1,2,...). Then (2.1)
has no eventually positive solution. Assume, moreover, that there exists a
sequence {t,}>2, such that:

lim £, = oo; (2.6)

n—oo
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Pi(t) <0 on [02(tn), o¢(tn)], Pi(ou(tn)) =0 and Pi(t,) >0
for i€ Iy; (2.7)

Qj(t) >0 on [o—,?(fn), th} for j € Lp; (2.8)
?n UZ(?n) ?n
7/ _ Qu(s)fe (c 7/ R(r) dr) ds + _ R(s)ds>c
og(tn) ae(s) oo(tn)

for any ¢> 0. (2.9)

Then every solution of (1.1) is oscillatory.

Proof. First we show that (2.1) has no eventually positive solution. Suppose
that x(t) is eventually positive solution of (2.1). In view of the fact that
limy o0 73(t) = 00 and lim¢—, o 07j(t) = 0o, we find that z(7;(t)) (i € I) and
x(0j(t)) (j € Im) are eventually positive. We set

k

y(t) = x(t) + Y Pi()z(r(t). (2.10)

i=1
Then inequality (2.1) and condition (2.4) imply that

Y (1) + Qe(t) felz(oe(t))) < R(t), t € [07(tn), ta] (2.11)
and
(1) S R(t)., teof(tn), ta] (2.12)
for all sufficiently large n. It follows from (2.3) that
k
w(0¢(s)) = x(oe(s)) + Y Piloe(s))a(ri 0 oe(s)) = y(ow(s)),
i=1
s € [op(tn), tn], (2.13)
k
y(tn) = I(tn) + Zpi(tn)x('rz(tn)) > x(tn) >0,
i=1

and
k
y(oe(tn)) = (0e(tn)) + Y Pi(oe(tn))x(7i 0 04(tn)) = z(o¢(tn)) > 0,
i=1

where 7; 0 0y(t) = 7;(0p(t)). Integration of (2.12) over [oy(s), oy(t,)] yields

a(tn)
y(oe(s)) > yloe(tn)) — /U “ R(r)dr, s € [oi(tn), tnl. o1
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Integrating (2.11) over [o4(t,,), ty], we have

i) —ylortn) + [ Qs iatonts))ds < [ SCL
Combining (2.13)—(2.15), we obtain
st < ot = [ Qs (store) - [ wryar)
ou(tn) ou(s)
+ " R(s)ds.
au(tn)

The left hand side of the above inequality is positive. However, (2.5) implies
that the right hand side of the above inequality is nonpositive. This is a
contradiction. Hence, (2.1) has no eventually positive solution. We now
prove that every solution of (1.1) is oscillatory. Since (1.1) is included
in (2.1), (1.1) has no eventually positive solution. Suppose that z(t) is
eventually negative solution of (1.1). Then, z(t) = —x(t) satisfies

k m
% z(t)+zpi(t)z(n(t)) +;Qj(t)[—fj(—2(ffj(t)))}=—R(t)- (2.16)

Proceeding as in the case where z(t) is eventually positive, we conclude
that (2.16) has no eventually positive solution. This contradicts that z(¢)
is eventually positive. The proof is complete. O

Corollary 2.1. Suppose that (H2.2) holds, and that the following hypothe-
sis (H2.3) holds:

(H2.3)  There exists a constant 3 > 0 such that
fe(w) > B, for all u#0.
u
Assume that there exists a sequence {t,}°2, which satisfies (2.2)—(2.4) and
the following:

i 1
/U Qu(s)ds > (2.17)

o(tn)

tn tn Ué(tn)
/ R(s)ds+ Q(s) / R(r)drds <0.
o ) oe(s)

o(tn) o1 (tn (2.18)

Then (2.1) has no eventually positive solution. Assume, moreover, that
there exists a sequence {t,}o°; which satisfies (2.6) (2.8) and the following:

in 1
/ Qi(s)ds > ik

UZ(?n)
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/ _ R(s)ds+p [ _ QZ(S)/ ‘ R(r)drds > 0.
oe(tn) o¢(tn) oe(s)
Then every solution of (1.1) is oscillatory.

Proof. 1t suffices to show that (2.1) has no eventually positive solution. Let
z(t) be an eventually positive solution of (2.1) and define y(¢) by (2.10).
Then, inequality (2.1), condition (2.4) and hypothesis (H2.3) imply that

Y () + BQu(t)z(00(t)) < R(t), s € [07(tn), ta]
for all sufficiently large n. By the same arguments as in the proof of Theorem
2.1, we obtain y(t,) > 0, y(o(t,)) > 0 and

tn ay(tn)
) < vt = [ 500 (st = [ ey ar)
+ o) R(s) ds.

It follows from (2.17) that

y(tn) gﬁ/tn Q) /UW(t") R(r)drds+/tn R(s) ds.

oy(tn o(s) oe(tn)

This contradicts (2.18) and completes the proof. O

Theorem 2.2. Suppose that (H2.1) and (H2.2) hold, and that the following
hypothesis (H2.4) holds:

(H2.4) 7i(t) > t and 1;(t) is nondecreasing for i € Ij.
Assume that there exists a sequence {t,}52, which satisfies (2.2) and the
following:
Pi(t) 20 on J[rio0f(tn), 7i00u(ta)] Uo7 (tn), oc(tn)] U {ta}
icly
for i€ Iy; (2.19)

Qj(t) > 0 on [ag(tn), max{t,, 7" o oy(tn)} for j € I,; (2.20)

R(t) <0 on [02(tn), T° 0 op(tn)]; (2.21)
n k Ué( n)
/az(tn)Qz(S)fe ([1 - ;Pz’(ff@(s))L [C /O_Z(Sj R(r) dTD ds

tn
—/ R(s)ds > ¢ for any ¢ >0, (2.22)
UZ(tn)
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where 7*(t) = max{r;(t) | i € It} and [p(t)]+ = max{p(t), 0}. Then (2.1)
has no eventually positive solution. Assume, moreover, that there exists a
sequence {t, }>° 1 which satisfies (2.6) and the following:

Bi(t) >0 on |J[ricaf(tn), 7ioou(tn)] Uo7 (tn), oe(tn)]U{tn}
i€l

for i€ Iy; (2.23)
Q;t) > 0 on [07(t,), max{t,, 7" o ou(ty)}] for j € IL; (2.24)

R(t)>0 on [a%(fn), 7% 0 oy(tn)]; (2.25)

)ds

tn
—l—/ _ R(s)ds>c for any ¢>0. (2.26)
ay(tn)

ou(tn)
c+ / R(r)dr
ou(s)

v k
*/ _ Qe(s) [ ( [1 - 23’(0@(8))]

oy (tn

J’_

Then every solution of (1.1) is oscillatory.

Proof. Let z(t) be an eventually positive solution of (2.1) and define y(t)
by (2.10). From (2.1), (2.20) and (2.21) we have

y'(t) + Qe(t) fe(z(0e(1))) < R(2),
t € [o2(ty), max{t,, 75 oou(ty)}] (2.27)

and

y' () <R(t) <0, teo(ty), TF00y(ty) (2.28)
for all sufficiently large n. Integration of (2.27) over [o¢(t,), t,] and integra-
tion of (2.28) over [oy(s), op(ty)] yield (2.15) and (2.14) respectively. Since

y(t) is nonincreasing on [0Z(t,), 7% 0 0y(t,)], we find that

y(rioop(t)) <ylou(t)), te€lop(ty), tn] for i€ Ij.
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Therefore, from (2.19) we observe that

k
z(04(s)) = y(ou(s)) = Y Pi(oe(s))z(7i 0 0u(s))
=1
k k
> y(ou(s)) = Y Pi(oe(s)) {I(Ti 0 0y(s)) + Y Pu(7i 0 04(s))x (T 0 Ti 0 04(5))
=1 v=1
k
= y(ou(s)) = Y Pioe(s))y(mi 0 o4 (s))
=1

>

k
1 - ZPZ-(W(S))] y(oe(s)), s € loe(tn), tn]-

Since z(t) is eventually positive and

k

y(oe(s)) = z(0¢(s)) + Y Pi(oe(s)z(ri 0 0¢(s)) > 0, s € [oe(tn), ta]
i=1

by (2.19), we see that
k
z(a(s)) = ll - ZPz'(Ue(S))] y(ou(s)), s € [ou(tn), tal.
p . (2.29)

Combining (2.14), (2.15) and (2.29), we obtain
k
Qe(s) fe ( ll -> Pi(Ue(S))]
i=1 +

ag(tn) tn
: ly(aé(tn)) —/ R(r) dT])ds—l—/ R(s) ds.

ou(s) oo(tn)

The condition (2.19) implies that y(¢,) > 0, and hence, the left hand side of
the above inequality is positive. However, it follows from (2.22) that the ri-
ght hand side of the above inequality is nonpositive. This is a contradiction.
We have thus proved the theorem. O

Corollary 2.2. Suppose that (H2.2) (H2.4) hold, and that there exists a
sequence {t, }>2 | which satisfies (2.2), (2.19)~(2.21) and the following:

tn k
/U Quls) [1 - Z:Pi(ag(s))] ds > %;

o(tn) +
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tn k Ul(tn)
+ 3 Qe(s) [1 — ZB‘(U@(S))] / R(r)drds <0. (2.30)
i=1 Lo

ou(tn) e(s)

Then (2.1) has no eveniually positive solution. Assume, moreover, that
there exists a sequence {t,}5°, which satisfies (2.6), (2.23)-(2.25) and the

following:
tn k
l@fM@P;meﬁ ds > 7

+

—_

+8 ) Qs l1—zp e ] /W(t”) R(r)drds > 0. (2.31)
+ g,

0'[ n Z(S)

Then every solution of (1.1) is oscillatory.

The proof follows by using same arguments as in Corollary 2.1 and will
be omitted.
Now we assume that the following hypothesis (H2.5) holds:
(H2.5)  Py(t) > 0 and 7(t) is strictly increasing for some h € Ij.

We introduce the following notation:

Lt i =h
Fi(t) _ Th ()7 Z s
7 bomi(t), i#h,

7;(t) = Th_l ooj(t) for je I,

1
i=h,

- , # h.
Pl on®) 7

Let z(t) be a solution of (2.1). We set w(t) = Pp(t)x(7,(t)). Then we find
that w(t) satisfies

k
+> Pi(tyw
=1

4

+z@ )i (Palo(#)w(@;(t)))

< R(t). (2.32)
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Hence, if (2.32) has no eventually positive solution, then (2.1) has no eventu-
ally positive solution. Using the same arguments as in the proof of Theorem
2.2, we obtain the following theorem.

Theorem 2.3. Suppose that (H2.1) and (H2.5) hold, and that the following
hypothesis (H2.6) holds:

(H2.6) T¢(t) and T;(t) are nondecreasing and Go(t) <t < T;(t) for i € I.
Assume that there exists a sequence {t,}52, which satisfies (2.2) and the
following:

Pi(t) >0 on |J[FioT;(ta), Ti 0Tu(tn)] UG (tn), Te(tn)] U {tn}
i€l
for i€ Iy; (2.33)

Qj(t) >0 on [57(tn), max{t,, T oTe(ty)}] for j € L;

(2.34)

R(t) <0 on [62(t,), T oTu(ty)]; 0.35)

tn - . k > Eg(tn)R . .
/az(mQE(Sm h(w(swl _; "(O'f(s))]+ [C—/ms) (r) 7‘] s

tn
7/ R(s)ds > ¢ for any ¢ > 0,
Te(tn)

where T"(t) = max{7T;(t) | ¢ € Iy}. Then (2.1) has no eventually positive
solution. Assume, moreover, that there exists a sequence {t,}52, which
satisfies (2.6) and the following:

Pi(t)>0 on U [Fi0T2(tn), Ti 0Te(tn)] U [G2(Ln), Teltn)] U {tn}

for ie I; (2.36)

Q;(t) >0 on [7;(tn), max{ty, 75 oGe(ty)}] for j € Im;

(2.37)
R(t)>0 on [E?(fn), 7™ oﬁg(fn)]; (2.38)
[ s (Pt [1- S Pmen| o [ ] )
Goltn i=1 + To(s)
+ tn~ R(s)ds > ¢ for any ¢ > 0.
T¢(tn)

Then every solution of (1.1) is oscillatory.
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By the same arguments as in the proof of Corollary 2.1, we obtain the
following corollary of Theorem 2.3.

Corollary 2.3. Assume that (H2.3), (H2.5) and (H2.6) hold, and that there

exists a sequence {t,}5°, which satisfies (2.2), (2.33)—(2.35) and the follo-
wing:

9

=

tn - ko
/E ( )Qe(s)Ph(ag(s)) [1 — ZPi(Eg(S))] ds >
elin i=1 N

tn
R(s)ds
/m) (s)
tn

_ ko _ Te(tn)
+8 Qul(s)P(0u(s)) l1 -3 Pi(Eg(s))] / R(r)drds < 0,

Te(tn)

+ 70e(s) (2.39)
Then (2.1) has no eventually positive solution. Assume, moreover, that

there exists a sequence {t,}%, which satisfies (2.6), (2.36)~(2.38) and the
following:

Then every solution of (1.1) is oscillatory.

Remark 2.1. Corollary 2.1 is a generalization of the results of Kusano and
Yoshida [7, Theorem 3] and Yoshida [9, Theorem 1 and Corollary 1], and
Corollary 2.2 is a generalization of the result of Yoshida [9, Theorem 1 and
Corollary 1].

Remark 2.2. Every result in this section is true when @Q;(t) > 0 for t > 0
and j € I,,, and Theorems 2.2, 2.3, Corollaries 2.2 and 2.3 are also true in
the case where P;(t) > 0 for ¢t > 0 and ¢ € I. However, in Theorem 2.1 and
Corollary 2.1, the oscillation properties of P;(t) for i € Ij are necessary.
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Remark 2.3. If 7% 0 oy(t) > ¢, then (2.21) and (2.25) imply that R(t) < 0
on [02(tn),tn] and R(t) > 0 on [02(t,), t,]. Hence, in Corollary 2.2 the
conditions (2.30) and (2.31) are unnecessary when 7% o gy(t) > t. In the
case where 7* 0 G¢(t) > t, the conditions (2.39) and (2.40) are unnecessary
analogously.

Remark 2.4. In the case where the hypothesis (H2.5) holds, the hypothesis
(H2.6) holds if and only if 7;(¢) (¢ # h) and oy(t) are nondecreasing, oy(t) <
() <t and 73,(t) < 7;(t) (¢ # h).

FEzample 2.1. Let us consider the equation
d
T [m(t) —cos2tx(t — 71')} +62(t — 3m)3 +4z(t — 37) + z(t — 37)

= —Y2(sint + cost). (2.41)

Here, k = 1a m = 35 Pl( ) = _COBZt Ql( ) = 67 Q2(t) = 4’ Q3(t) = 1a
R(t) = —@(sint—l—coqt) = iln( 31, fl( ) = ud, fo(u) = f3(u) = u,
) =t—m, o1(t) =t — 3m, O'g(t) =t— 37, and o3(t) = t — 3m. We
choose ¢ = 1. The hypotheses (H2.1) and (H2.2) are fulfilled. Setting

= (2n+3)m and ¢, = (2n+ )7, we easily see that conditions (2.2)—(2.4)
and (2.6)—(2.8) hold. An easy calculation shows that

(2n+3)r (2n+3)r—1nx 3
/ ! 6|c— / e sin(r — 3m)dr | ds
(2n+%)7r7%7r sf%w

(2n+%)7r

. 3 d

/(2 3yl sin(s — gm)ds — ¢
n 1 ’R'—Eﬂ'

@2n+3)x 2n+3)x

2/ ! 603d8—/ ) sin(s — 3m)ds — ¢
(2n+i)7r (2n+i)7r

=31 —c+1>0

for any ¢ > 0. Thus, condition (2.5) holds. In a similar fashion, we find
that (2.9) holds. The hypotheses of Theorem 2.1 are satisfied. Hence, every
solution of (2.41) is oscillatory. One such solution is x(t) = sint.

Ezxample 2.2. We consider the equation

%[I(t) + st + %w)} + 32a(t — 3m)% + La(t — m)3 + Ja(t — 27)
= —sint. (2.42)
Here,kzl,m:3, Pl()_% Ql(t):QQ(t): Q3 ()ZiSinta
fi(u) = falu) = v, fs(u) = u, 7i(t) = t+ 3, Ul(t) t—gm, 02(t) =t—3m,
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and o3(t) = t — 2m. We choose ¢ = 1. The hypotheses (H2.1), (H2.2) and
(H2.4) are fulfilled. We set t, = (2n + 1)7 and f, = 2nm. Then, we find
that conditions (2.2), (2.6), (2.19) (2.21) and (2.23) (2.25) hold. We easily

observe that
@ntDr 16 1 (2n+1)m—% 3
/ {1—— c—/ 2(—sinr)dr ds
@n+1)r—2 3r 2]y s—I

(2n+1)m
f/ (—sins)ds — ¢
@n+D)7r—5%

@n+l)m 9 (2n4+1)w
Z/ —03d5+/ sinsds — ¢
@n+1)mr—3 3 @n+l)r—2

13
=-c’—c+1>0
3C C

for any ¢ > 0. Thus, condition (2.22) holds. Analogously we conclude that
(2.26) holds. Therefore, Theorem 2.2 implies that every solution of (2.42)
is oscillatory. For example, z(t) = cost is such a solution.

3. Equations with nonnegative coefficients. In this section we as-
sume that:

(H3.1)  Pi(t) >0, Q;(t) >0 forie€ Iy, j€ In;
(H3.2)  there exist the nondecreasing functions f(u)e C(R,R) and
g(u) € C([0,00), [0,00)) such that:
fe(w) > f(u), u>0and fo(u) < f(u), u<0 forsome ¥l € I,
flu+v) < f(u)+ f(v), uw>0, v>0,
flu+v) > f(u)+ f(v), u<0,v<O0,
g(0) =0, g(u) >0, u>0,
flew) <gle)f(u), ¢>0, u>0,
flew) = g(e)f(u), ¢>0, u<0;
(H3.3)  7i(t) € C1((0,00),R), 7/(t) >0 for i € I, t > 0.
The following notation will be used:
Q.(t) = min {Qg(t), min {% ie{jely| Pilout) > 0}}} ,
A={t € (0,00) | oelt) <, oult) < mi(t) for i € Iy},

where we assume that min () = oo.

~—

<
> glc

Our method is an extended adaptation of that used by Kitamura and
Kusano [6].
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Theorem 3.1. Assume that (H3.1)<(H3.3) hold, and that the following hy-
potheses hold:

(H3.4)  there ewists an oscillatory function 0(t) € C1((0,00),R) such that
0'(t) = R(t) fort > 0;
(H3.5) 7i000(t) =o0pomi(t) forie Iy, t>0.

If
L du -1 du
/H)m@o, /Om@o, (3.1)
/ Q.(t)dt = 5o (3.2)
ANBy
and
/ Q. (t)dt = oo, (3.3)
ANB_

then every solution of (1.1) is oscillatory, where

Bi={te(0,00) | +0(cy(t)) >0}

Proof. Let z(t) be an eventually positive solution of (1.1). Then there exists
a number ¢y > 0 such that z(¢) > 0, z(r;(t)) >0 (i € Iy), z(oj(t)) >0 (j €
Iy,) in [tp, 00). Setting

z(t) = =(t) + Z Pi(t)z(r(t)) — 0(1), (3.4)
we have

d(t) =— i Qj(6)fi(2(0;(1)) < =Qe(t) f(2z(0c(t))) <0, ¢ > to. .

Hence, z(t) is nonincreasing in [tp,00). In view of the fact that 0(t) is
oscillatory and P;(t) is nonnegative, we see that z(¢) > 0 in [t1,00) for some
t1 > to. Dividing (3.5) by f(z(t)) and integrating from ¢; to ¢, we obtain

tQﬁ(S)f(l'(Ué(S)))d < t —z'(s)d _/Z(tl) du

w o TEe) ST T Ly ) S

t>t. (3.6)
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Sti)nce Q@(}f) > Q.(t) and Qu(m:(8))7i(t) > Q«(t)g(Pi(o¢(t))) for i € I, we
observe that
QU rlons))
t f(z(s))
L QS
k+1Jy f(z(s))

g [ QU o ety
(

Fr1 ) () ’
L[t Q) @lons)
“k+1 f(z(9))

0 Qu(5)8(Py(0e(5)) f (2 (73 0 0¢(5)))
k—l—lZ/T ‘ ‘ ds

> 1 ““)62 f(Z(oz(S))-+-9(01(8)))d

«(s s
“ it YT Gme)
1
—_— s)ds
~ k41 Jty,am)nanB, )
for some ty > t1, where
at) =min{t, 771(t) | i € I} (3.7)

and
7.(t) = min{t, 7(¢) | i € I} }.
It follows form (3.6) that
/ Q(s)ds < 0o, t>1;.
[t2,0(8)NANB..

This contradicts (3.2), and (1.1) has no eventually positive solution. In
exactly the same way, we conclude that (1.1) has no eventually negative
solution. We have thus proved the theorem. ]

Corollary 3.1. Assume that (H3.1)-(H3.3) and (H3.5) hold, and
following hypothesis (H3.6) holds:

(H3.6)  there exist a function 0(t) € C((0,00),R) and sequences {t,}>1, {t,}3,
for which 0'(t) = R(t) for t > 0, lim,_ ooty = limp_ootp =
00, O(ty) =0, 0(t,) =0 and 0 < O(t) <0 fort > 0.

If (3.1) holds and

/QﬁW:w, (3.8)
A

then every solution of (1.1) is oscillatory.
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Proof. Letting 6(t) = 0(t) — 8, we see that 6(t) is oscillatory, 6(t)" = R(t)
and 0(t) > 0 for t > 0. Using the same arguments as in the proof of
Theorem 3.1, we conclude that (1.1) has no eventually positive solution.
Similarly, it follows that (1.1) has no eventually negative solution. The
proof is complete. O

Theorem 3.2. Assume that (H3.1)-(H3.5) hold. If
| Qs o))t = o (39

and
| Qs )t = o, (310)

then every solution of (1.1) is oscillatory.

Proof. Let z(t) be an eventually positive solution of (1.1) and define z(t)
by (3.4). Integration of (3.5) over [t1,t] yields

th(s)f(w(ae(s)))ds < —z(t) +2(t) < 2(t), t=t,
t1 (3.11)

where t; is the same number appearing in the proof of Theorem 3.1. Using
the same arguments as in the proof of Theorem 3.1, we obtain

t
[ Qo) el >
1 a(t)
FT1),  @OIGO) +0os))ds (3.12)
for some ty > t1, where a(t) is defined by (3.7). Since
k

#(oe(t)) + 0(oe(t)) = x(t) + Y Pi(t)z(ri(t)) > 0

i=1
and
z(o¢(t)) + 0(oe(t)) > 0(ae(t))
for all sufficiently large ¢t > 0, we see that
2(o4(t)) + 0(oe(t)) > [0(oe(t))]+-
Hence, (3.11) and (3.12) imply that

a(t)
[ Q)7 (0tols)))ds < ox.

to
This contradicts the hypothesis and the proof is complete. O
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Now we assume that:
(H3.7)  oy(t) € C((0,00),R), a}(t) >0 for t > 0.
We introduce the following notation:
~ . . i(t)) - pl(t . .
Q) = min { Qu(), min {LLBEDLED | i g < 1| Pyttt > 0},

A={t€(0,00) | op(t) < t, op(t) < pi(t) for ie I},

where
pi(t) = o,  ori0au(t).

Theorem 3.3. Assume that (H3.1)—(H3.4) and (H3.7) hold. If

/N 0. (t)dt = oo, (3.13)
ANBy

/; O.(t)dt = (3.14)
ANB_

and (3.1) holds, then every solution of (1.1) is oscillatory.

Proof. Let z(t) be an eventually positive solution of (1.1) and define z(t)
by (3.4). Proceeding as in the proof of Theorem 3.1, we see that (3.6) holds
and z(t) is nonincreasing and positive in [t1, 00) for some t; > 0. We observe
that

' Q) @)
T IG(9)
L QG
P C0)
; &0 Qulle)) el 0 oe D)ol
+k+1221/p1 o i) &
LG f(elons)
sz CO R
& 70 G (o)l Pilouls)) el 0 oule)) )
2/ o RECD) ;
U0 f((o(s) +0(0u(s)
o AL ey 0% P 3 R
1

—_— ~* s)ds
~ k41 Jiya)nAnB, @(s)

for some ty > t1, where

a(t) =min{t, p;1(t) | i € I} and p.(t) = min{t, p;(t) | i € I;}.
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This contradicts (3.6) and the proof is complete. O

Corollary 3.2. Assume that (H3.1)-(H3.3), (H3.6) and (H3.7) hold. If
(3.1) holds and

/~ Q.(8)dt = oo, (3.15)
A
then every solution of (1.1) is oscillatory.

Proof. The proof is quite similar to that of Corollary 3.1 and hence will be
omitted. O

Theorem 3.4. Assume that (H3.1) (H3.4) and (H3.7) hold. If
| Qs o))t = o (3.16)

and
| e = . (317)

then every solution of (1.1) is oscillatory.

Proof. The conclusion follows by the same arguments as in the proofs of
Theorems 3.2 and 3.3. U

Remark 3.1. In the case where fy(u) = |u|”sgnu (v > 0), we can choose
that f(u) = min{1,2' 7} u|? sgnu and g(u) = u".

Remark 3.2. Tt is easy to see that p;1(t) = o, ' o 7,71 0 0y(t) and

2
7! o oy(t) - o)(t)
pg(t) = : 1 s .
ojo0, o1 oot

FEzample 3.1. Let us consider the equation

%[m(t) +z(t — W)} + |z(t — %w)ﬁ sgna(t — 5m) = cost

(3.18)
Here, k =1, m =1, Pi(t) = Q1(t) = 1, R(t) = cost, fi(u) = |u|% sgn u,
m(t) =t —m, and 01(t) =t — 3m. We choose f(u) = g(u) = |u|% sgnu. The
hypotheses (H3.1)-(H3.3), (H3.5) and condition (3.1) are fulfilled. Letting
0(t) = sint, we conclude that 6(t) satisfies (H3.6). It is easily checked
that Q.(t) = 1, and hence (3.8) hold. It follows from Corollary 3.1 that
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every solution of (3.18) is oscillatory. For example, x(t) = —sin®t is such a
solution.

FEzample 3.2. We consider the equation

%[z(t) +a(t— 3)] +a(t - m) = cost (3.19)
Here, k = 1, m =1, Pi(t) = Q1(t) = 1, R(t) = cost, fi(u) =u, n(t) =
t — %, and 01(t) =t — 7. We choose f(u) = g(u) = u. The hypotheses
(H3.1)-(H3.3) and (H3.5) are fulfilled. We put 0(t) = sint. Then 6(t)
satisfies (H3.4). It is easy to verify that Q.(¢f) = 1, and hence (3.9) and
(3.10) hold. Therefore, Theorem 3.2 implies that every solution of (3.19) is

oscillatory. One such solution is z(t) = sint.
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