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ABSTRACT. The gradient method is considered in Hilbert spaces. Ear-
lier results on linear convergence are extended to systems of equations
with certain non-differentiable operators. The method includes the ap-
proximate solution of elliptic systems of quasilinear boundary value
problems.

0. Introduction

The gradient method, a classical approximation method for equations in
R"”, was first applied in Hilbert space by Kantorovich to linear equations
via minimizing the quadratic functional ([2], [3]). Later this result was
extended to any uniformly convex smooth functional ([5]), thus allowing
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the approximate solution of nonlinear operator equations of the following
type:

Theorem (see e.g. [4]). Let H be a real Hilbert space and F : H — H
have the following properties:

(i) F is Gateauzx differentiable;
(ii) for anywu,k,w,h € H the mapping s,t — F'(u+sk-+tw)h is continuous
from R? to H;
(iii) for any w € H the operator F'(u) is self-adjoint;
(iv) there are constants M > m > 0 such that for all u,h € H

m|hl|* < (F'(u)h, h) < M|h|.
Then for any b € H the equation
F(u)=b

has a unique solution u* € H and for any u® € H the sequence

2
ukb = ok — T m(F(uk) —b) (keN)

converges linearly to u*, namely,

M—m
M+m

k
ot =l < o) -3 () RENL )

In [4] this method has been generalized to a class of non—differentiable
operators which can be suitably transformed into Gateaux differentiable
operators. The result gives rise to the approximate solution of quasilinear
elliptic differential equations.

The aim of this paper is to extend the above methods to systems of
equations with non—differentiable operators. The obtained method, devel-
opped in product Hilbert spaces, allows the approximate solution of elliptic
systems of quasilinear differential equations, in an approach different from
discretization methods. Namely, it yields a direct theoretical approxima-
tion of the studied system in the corresponding Sobolev space, and reduces
computational problems to Laplacian type auxiliary linear equations.

The extension of the earlier result [4] to systems allows the approximate
solution of stationary states of reaction—diffusion type systems. (For the
RDE itself, the obtained result might be a starting point of methods that
discretize time.)
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1. Approximate solution of systems in product Hilbert spaces

A real Hilbert space with scalar product (, ) and corresponding norm
| || will be considered. For any r € N* denote by H" := H x H x ... x H
(r times) the product space and for any subspace D C H let D" := D x D X
...xXD. Foru = (uq,...,u,)and v = (vy,... ,v,) in H" the scalar product is

[u,v] :== Y"7_; (u;, v;) and the corresponding norm is [[u]] := (37_; Hui]|2)1/2.

Theorem 1. Let H be a real Hilbert space and D C H a dense subspace.
Let T; : D" — H (i =1,...,7) be non differentiable operators. We con-
sider the system

Ti(uy, ... yup)=g; (i=1,...,7) (2)

with g = (g1,-.- ,9») € H". Let B: D — H be a symmetric linear opera-
tor with lower bound p > 0 and denote by Hp the energy space of B, i.e. the
completion of D with respect to the scalar  product
(x,y) g := (Bz,y) (x,y € D). (Denote by || | B the corresponding norm in
Hp.) Assume that the following conditions hold:

(i) R(B) D R(T;) (i=1,...,r);

(i) for any i = 1,...,r the operators B 'T; (whose domain
D(B™IT;) = D" is dense in the product space H) have Géteaux dif-
ferentiable extensions F; : Hy — Hp, respectively;

(iii) for any u,k,w,h € Hp the mappings s,t — F!(u + sk + tw)h are
continuous from R? to Hg;

(iv) for any u,h.k € Hp

T T
S (Flh ki) g =" (i, F(u)k) g
i=1 i=1
(v) there are constants M > m > 0 such that for all u,h € Hp

m Y Nhilfs < D (Fj(wh, hi)pg < MY il (3)
i=1 i=1

i=1
Let g € R(B) (i=1,...,r). Then

(1) the system (2) has a unique generalized solution

u* = (ui,...,u;) € Hp, i.e. which satisfies
<E(U*)3U>B - <gi,’U> (1) € H37 1=1,... ,7‘); (4)
or any u’ € e sequence u® = (uf,...  ul)ren given by the
2 O ¢c D th k b k wen by th

coordinate sequences

2
kel gk YT (uF) — g; | — :
u =y +mB (Ti;(u™) —gi) (i=1,...,r; keN) (5
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converges linearly to u*. Namely,

T 1/2 1 T
uf — u2‘||2> < — < 1T (u®) giHQ)
(St ilh) =5 (S

1/2

Ceal
(keN). (6)

Using notation

- 1/2
[[ul]B := (Z HUZ'HQB>
i=1

for w e HE, estimate (6) is written briefly as
1 M —m
[ — o < ——(IT(a") ~ 9]l (377

k
) keN).  (7)

Proof. The scalar product of the product space H will be denoted by

r

[u,v]p = Z(ui,vi>3 (u= (u1,...,u), v=(v1,...,0.) € Hp)
i=1

and the corresponding norm by [[u]]p as given in the theorem.
We introduce the operator F':= (F,... ,F,): Hy — Hp, i.e.

Flu) == (Fi(u),... ,Fy(u)) € Hy (ue Hp).

Let g; € R(B) and b; € B 'g; (i = 1,...,r), further, b := (by,... ,b,).
Instead of the system (2) we consider equations

Fi(u) =10;.
Let u° € D" and

2
k+1 . ok _ i EY B - .
T = _I_m(FZ(u) bi) (i=1,...,r; keN). (8)

Since b € D" and from assumption (i) we have R (FZ-|D> = R(B~'T;) C D,
it follows by induction that u* € D" (k € N). Thus

2
k _
W = - BT ),
that is, the sequence (5) coincides with (8).
It follows from the assumptions that conditions (i)—(iv) of the theorem
quoted in the Introduction hold for F' in the space Hj. Indeed:

(i) F is Gateaux differentiable since all F; are Gateaux differentiable.

(i) For any w,k,w,h € Hp the mapping s,t — F'(u + sk + tw)h is
continuous from R? to HY since for all i = 1,...,r the mappings
s,t + F!(u + sk + tw)h are continuous from R? to Hp.
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(iii) For any u,h,v € Hp

T T

[F'(w)h,vlp = Y (F{(wh,vi) =D (hi, F{ (u)v) g = [h, F' (u)v] 5.
i=1 =1

Since the operator F’(u) is bounded linear and symmetric, hence it is
self-adjoint.

(iv) For any u,h € HYS m]h]|% < [F'(u)h,hlp < M]Rh]]3  (obtained
from (3) and the definition of [-,-|p )

Hence the quoted theorem applies to equation F(u) = b in Hp. This

means that the system Fj(u) = b; (¢ = 1,...,r) has a unique solution
u* = (u},...,u’) € Hy and estimate (1) holds for the sequence (u*) defined
by (8):

M —m
M+m

(P bl (

k
) (keN). )

[w* - wlp <

This u* is the generalized solution of (2) since
(Fi(u"),v) g = (bj,v) g := (Bbj,v) = (g;,v) (veD,i=1,...,r)

and the equality also holds for any v € Hp since D is dense in Hp.
Finally, estimate (9) is transformed to (7) in the following way: for any

w € D we have |lw|p := /(Bw,w) > \/p|lwl], hence ||w]|} = (Bw,w) <
1Bw[lllwl < Z5lBwllwls, ie. |wls < J5llBwl. Applying this to

F;(u®) —b; € D, we have for all i = 1,... ,r

1 1
1 (u®) — billp < %HBE(UO) — Bbil| = —pHTz‘(uO) —gill;

7
hence
r 1/2 r 1/2
(w0 — b; |2 i (w9 — g 12 :i W0)
(;IIFZ( ) bl”B) S\/}_)<Z_;HTL( ) gz||> \/ﬁ[[T( )—dll.
i.e. (7) is proved. O

Remark 1. The sequence (u¥) converges to u* also in the norm of H”:

[ = < <[l = wllp < —(170) —gl)

M—m
M+m

)k (keN).
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2. Applications to elliptic systems of differential equations

In this section the approximate solution of uniformly elliptic systems
consisting of r quasilinear boundary value problems is developed, using the
result of Section 1.

The following notations will be used: denote by d the number of multi-

indices o = (ay,... ,ay) € NY where |a| := a1 + ... + ay < n. We write
any 5 € R™ as § - (gi,a)izl,...,r, la|<n — ((gl,a)|a|§nv cee 7(£T7a>|a|§n> with
&ian €R (i=1,...,r |a] <n). Differentiation with respect to &, is de-

noted by 9, . (i =1,...,7, |a] <n). Further, let DMy = (0%u;)iz1,.. . la<n
for any u = (u1,... ,u,) € H}(Q)".

The following system is considered with given functions f; . : OxR™® - R
andgj : Q=R (i=1,...,7, |a| <n):

Tiur,-w) = Y (=110 (fialz, DWu)) =g, (i=1,....7)

lo|<n

aaui|8ﬂ =0 (l = 17 cee Ty ‘O“ <n-— 1) (10)

on a bounded domain Q@ C RY with 9Q € C?»¥ (where N,n € NT,
0<v<l).
The scalar product of the real Hilbert space H{(Q2) is defined by

N
(w,7) 3 ) ::/Q. S @B w) (D . 050)

yoeesin=1
and that of the space HJ(€2)" by <wa”>Hg(Q)r =3 <wi,vi)Hg(Q). We
introduce other scalar products (w,v)}kqg(m = Jo Xjaj<n(0°w)(0°0)
and (w, UMVS(Q) = Jo Xjal=n(0%w)(0%)  on H(£2), which define equiv-
alent norms to the original one, namely, there exist wy,ws > 0 such that
willwlmg @) < lwllyp @) < lwlip @) < wallwllmg @) - (11)

The result on the approximation of (10) can now be formulated.

Theorem 2. Let the functions fi, @ Q X R — R satisfy the following
conditions:
(a) fia €CIHPQ xR (i=1,...,r,0<]|a| <n)
fio € Cl(ﬁx Xer) (i=1,...,7r);
(b) O ofip =0, 5 10 (H7=1,....75 |a],|B] <n);
(c) there exist constants 0 < p1 < ps such that for any
(z,6) € QxR and ¢ € R™

’

:ulz Z |<i,a|2 < Z Z 8§j73fi,a(xa£><-j,ﬁ<-i,a S/JQZ Z |Ci,a 2-

i=1 |a|=n i.j=1al,/B|<n i=1 |a<n
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Further, let g; € COY(Q) (i=1,...,7).
Then

*

(1) system (10) has a generalized solution u* = (uj,... ,u) € H}(Q)",
i.e. for which

/ Z fi,a(:v,D(")u*)(?av dm:/giv dx
Q Q

laj<n
(it=1,...,r, ve HyQ)) (12)
holds.

(2) Let D := {u € C*V(Q) : 0% =0, o <n— 1}. Then for any
u’ € D" the sequence u* = (ul,... uF)ren given by the coordinate se-
quences

2 )
uf+1::u§—M+mzf (t=1,...,r, keN), (13)
where 2F € C?™V(Q) is the solution of the linear equation
Atz = (—1)™(T;(u*) — g5)
k (14)
%2190 =0 (la] <n—1),
converges linearly to u* according to the estimate
r 1/2 r 1/2 &
1 M—-m
k%2 0 2
Y| E < - T g
(St iligo) < (LI - sil)  (3rrm)
(ke N) (15)

(where m := piw?, M = pow3 and p stands for the smallest eigenvalue of
B:=(=1)"A" on D).

Proof.
(1) First we remark the following facts:

(i) Assumption (c) implies that for all 4,57 = 1,... ,r, |a|,|3] < n and
(z,€) € @ x R

‘8ﬁj,afiya(x,f)’ < p2.

(ii) Lagrange’s inequality yields that for all i = 1,...,r, |a|] < n,
(z,€) € A x R™

| fia(, &) < |fiala,0)[ +p2d > 1€l

i=18|<n
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(2) Now we prove that the assertions (i)—(v) of Theorem 1 are fulfilled in
Hi=L2(Q) with D(T):=Di={u € C*"*(Q):0%ujpq =0, la| <n—1} and
with

B:=(—-1)"A"
on D(B) := D. The operator B is symmetric and has lower bound p > 0.
Further, note that for w,v € D the divergence theorem yields

<va>Hg(Q) :/ ( Z 8»21 ...81-2nw) v= /S;(Bw)v

in=1
i.e. HY () is the energy space of B.

(i) For any u € D" the smoothness fi o € Cl*W(Q x R™) (i =1,... 7,
la| < n) implies that T;(u) € C%(Q), hence R(T) C C%*(Q). The as-
sumption 9Q € C?™" implies that R(B) = C%¥(Q2) (see [1]), therefore
R(B)D R(T;) (i=1,...,7).

(ii) For any u € D", v € D and i = 1,... ,r we have (from the divergence
theorem)

(B™'T)(w), o /BB 1T (u v—/T
—/ Z fialz, DMy, )0% dzx.

la|<n

If we put arbitrary u € HJ(Q)", v € Hj(£2) in the obtained integral then
its modulus can be estimated by

/ Z (|fzal“0|+,u222|8ﬁu] >|8a()|dl'

la|<n J=1|p|<n
<\/_<max 1fia(ida. )| z2(q) + p2Vrd|ul3m g >|UHH” @)

i.e. for any fixed u € HJ'(2)" the discussed integral defines a bounded linear
functional in v on H{ (). Hence, using Riesz’s theorem, the formula

(B 0) gy = [ 2 Siale. D)o da (v € Hy ()
|a|<n
defines F;(u) € HJ(Q) for arbitrary u € H{(Q)". The same formula ob-
tained above for BT, when u € D" shows that F} is the desired extension
of B™T; from D" to H}(Q)".
Now the desired properties of the F;’s are going to be checked, using the
density of D in H}(Q2) throughout the calculus. For any u € HF(Q)" let
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Si(u) € L(HF ()", H}()) be the bounded linear operator defined by

T

<SZ(U)h,U>H6L(Q) = 0 Z 8gjﬁfi’a(x’D(”)u)(aﬁhj)(aav) dx
j=llal,|pl<n

(h e Hp(Q) v e Hi(S) .
The existence of S;(u) is provided by Riesz’s theorem, now using the es-
timate ug\/_dHhHHn(Q HvHHn for the right side integral. We will prove

that F; is Gateaux dlfferentlable (t=1,...,r), namely,
Fi(u) = Si(u) (u € Ho ()) -
Let u,h € Hi ()" and € := {v € H}(Q) : |[v]|my () = 1} Then

wn(t) = I\F(U+th) Fi(u) = tSi(u)hl gy (o)

1
=—sup (Fi(u + th) — F;(u) — tS;(u)h, U>H3(Q)

veE

:_Sup / 3 {fm 2. D"u(z) + tDWh(@)) = fia (2, DPu(z))

b vee la|<n

—t i Z O, 5 fia (1‘, D(”)u(x)> 8ﬁhj(x)] 0%v(z)dx

j=llal,|fl<n

—sup/ Z [0¢; 5 fia (:c D™y (z )+t9(:c,t)D(")h(x)>
a,B,j

— 0, sfia (x, D(”)u(x))]aﬁhj (x)0%(x)dx

<sup Z | (8§M fialid, D™yt D™ p)
a7ﬁ7j
— g, fi.a(id. D)) by 1o ) % 1070l] 2 (e -

Here [[0%0||12(q) < HUH}I{;(Q) <wy (la| < n). Further, |t0(z,t)D™h(z)| <
[tDMh(z)| — 0 (if t — 0) almost everywhere on ©, hence the continuity of
O¢; 5Ji,o implies that in each term of the sum the first factor converges a.e.
2
to 0 when ¢t — 0. Since the integrands are majorated by (2u2\85hj (a:)\)
(which belong to L'(Q2) ) for any || < n and j = 1,...,r, Lebesgue’s
theorem yields that the obtained expression tends to 0 when ¢ — 0, thus
lim Sin(t) =0.
(iii) It can be proved similarly to (ii) that for fixed functions u, k,w, h €
Hy(2)" the mapping
s,t — F(u+ sk + tw)h
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is continuous from R? to HJ(2). Namely,
Wik n(8:8) =1 F] (w+ sk + tw)h — Fj (w)hl|prp 0
=sup (F (u+ sk + tw)h — F} (u)h, v>Hg(Q)

vel

:sup/ Z [0, 5 fisa (az D™ u(z) + sDMk(x) + tD(")w(x))
veE
a,B3,j
— O, 5 fia (ac, D(”)u(x))] 8”8hj (x)0%(x)dx
Using the continuity of the functions 9, , fi o and Lebesgue’s theorem, we

obtain just as above that

SI%mO wu kw, h(s t) 0.

(iv) It follows from assumption (b) that for any u,h,k € H}(Q2)"

S 0=, X Bhafuale DO ) )
i=1 i lal,|sl

_/ > Y G fipla DO )(8’8hj)(8aki)dx:Z<hj,FJ{(u)k>Hg(Q).

i |al,|Bl j=1
(v) For any u,h € HJ(Q)"
T

W) e = [, 323 B, e, DOu) 0y (0 i)

=1 4,j B

Hence from assumption (¢) we have

2 r 2 T
1 (1121l o) s;w(u)h,h»ﬂmm(ung(m) (he H3(Q)")

.

therefore

milhl ) < D (F/ (Wh: hi) o) < MRl Fp) (b € HF(Q)")

i=1

with m := pyw? and M := pow3, using (11).
(3) We have seen in points (1)-(2) that 7; (i =1,...,r) and B fulfil the
conditions of Theorem 1 in the space H := L?*(2). Since g; € CO(Q) =
R(B) (i = 1,...,r), the theorem yields the existence of u* € HJ ()"
fulfilling (4), which means

(F()0) gy = [ g0 =1, m v € HY(@),

i.e. u* is the generalized solution defined in (12). Further, (6) yields that
the sequence (u¥) converges to u* according to the estimate (15). O
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Remark 2. We can see that the theorem quoted from [4] in the introduction
applies theoretically to the generalized system Fj(u) =b; (i =1,...,7).
However, in practice the functions Fj(u*) — b; cannot be given explicitly
for a general u* € H7 ()", hence the approximating sequence cannot be
constructed. Thus the advantage of Theorem 2 is the explicit construction
of the sequence.

Remark 3. In practice it is worth transforming the equations (10) to the
unit ball S if there is a C?™" -smooth one-to-one map from € onto S. Then
efficient methods can be used to solve the Poisson equations on S.

Example. Consider the following stationary state of a generalized reac-
tion—diffusion type system:

Ti(u,v)(z) := —Z@i (fi(z,Vu)) + p1(z,u,v) = g1(z)

N
To(u,v)(z) = 72(92- (hi(z, Vv)) + pa(z, u,v) = ga(z)
1=1

upo =0, vpo =0

with the following assumptions:

(a) @ C RY is a bounded domain with 9Q € c?v (where N € N*,
0<v<1) fihi € CH"(QxRY), pr,ps € CY QA X R?), g1,92 €
CO (Q);

((a:,n) €Qx ]RN); Os,p1(, 8) = 05, p2(x, 8) ((a:, 5) € Q x RQ);
(c) There exist constants 0 < pu; < po such that the matrices
N N
{ngfi(x,@}ij:l and {&ijhi(:c,n)}”:l have eigenvalues between 11

and po and the matrix {0, pi(z,s)}, ,_; o has eigenvalues between 0
and pso.

Then the conditions of Theorem 2 are fulfilled.

Let D := {u € C*(Q) s ujpq =0 } Denote by G the Green function

of =/ on D, ie. for any ¢ € C%(Q) the unique solution u € D of the
equation — A\ u = ¢ is given by

u(e) = [ Glayowdy (@)
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Then Theorem 2 yields that for any u”,v° € D? the sequence

W @) = (o) = g ] Gloy) (T o) W) = 1)) dy - (@ € 0)

o @) = @) — a7 [ Gw) (Bb 09 ) - @) dy - (kEN)

converges to the generalized solution (u*,v*) € HE(Q)? according to the
linear estimate

k * 12 k * (12 1/2
(I = w32y + 10F = 0" 33
1 0,0 2 0,0 2 1/2
< s () = g1l oy + 1T2(00) — gele)
where p > 0 is the smallest eigenvalue of —A and m, M are obtained as in
1/2
Theorem 2. (It is easy to see that now w; = 1 and wy = (1 ++ diam(Q)2> /

n (11), hence m = pq and M = (1 + % diam(Q)2> Ha- )

Mm)k
M+m

Comparison to other methods. The most frequently used methods for
(10), based on the variational principle, are the Galerkin or Ritz method and
the discrete gradient method (i.e. that applied to the system of algebraic
equations after discretizing (10)).

The error of the Galerkin approximations essentially arises from the pro-
jection to the corresponding finite dimensional subspaces. The dependence
of this error on the dimension of the subspace possesses no geometric (i.e.
linear) speed estimate. The sequence (13)-(14) in our method arises from
a different, iterative approach. It yields theoretical approximation of the
exact solution with linear speed, and the added numerical error only comes
from the numerical solution of the Poisson equations, which are essentially
simpler than the original one. (The actual performance of solving the Pois-
son equations is subject to choice, i.e. the Green function above is only an
example. An interesting combination may arise if discretization is used for
these linear problems.) That is, the main advantages of our method are
the linear convergence estimate of the theoretical approximation and the
reduction of computational problems to the case of easier linear equations.

Similar considerations hold for the comparison to the discrete gradient
method which also approximates a kind of projected equation.

The price to be paid for this is that a new Poisson equation has to be
solved in each step. A limitation on the number of iterations to achieve a
prescribed accuracy is imposed by the linear convergence estimate.
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