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Tight Graphs and Their Primitive Idempotents

ARLENE A. PASCASIO
Mathematics Department, De La Salle University, Manila 1004, Philippines

Abstract. In this paper, we prove the following two theorems.

Theorem 1 Let " denote a distance-regular graph with diameter>d 3. Suppose E and F are primitive
idempotents of, with cosine sequences, o1, ..., oqg and pg, p1, ..., pd, respectively. Then the following are
equivalent.

(i) The entry-wise product E F is a scalar multiple of a primitive idempotent &f.

(i) There exists a real numbersuch that

oipi —oi—1pi—1 =€(0i_1pi —oipi—1) (A =<i=<d).

Let I denote a distance-regular graph with diameter 3 and eigenvaluey > 6; > --- > 6y. Then Jursic,
Koolen and Terwilliger proved that the valenicyand the intersection numbeag, by satisfy

(9 i k )(9 I k ) - 7ka1b1
Tatri)\Tat1) T @mrn?
They defined" to betight whenever is not bipartite, and equality holds above.

Theorem 2 LetI" denote a distance-regular graph with diameter-d3 and eigenvaluegy > 61 > --- > 64.
Let E and F denote nontrivial primitive idempotentdof
(i) Supposé is tight. Then E F satisfy(i), (i) in Theoreml if and only if E, F are a permutation of E Eg.
(ii) Suppose is bipartite. Then EF satisfy(i), (ii) in Theoreml if and only if at least one of EF is equal to
Eqg.
(iii) Supposé" is neither bipartite nor tight. Then B never satisfyi), (i) in Theoreml.

Keywords: tight graph, distance-regular, association scheme, Krein parameter

1. Introduction
Let I' denote a distance-regular graph with vertex Xeand diameterd > 3. Let Eg,

E1, ..., Eq denote the primitive idempotents of (see definitions in the next section).
It is well-known

d
EioEj=IXI"") qlEn (O<i,j<d), €Y
h=0

This work was done when the author was an Honorary Fellow at the University of Wisconsin-Madison (September
1996-August 1997) supported by the Department of Science and Technology, Philippines.
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whereo denotes the entry-wise matrix product and wheg'teare the Krein parameters.
By (1), and sinceEg, E1, ..., Eq are linearly independent we see that for all integers
i, j(0<i,j =<d),the following are equivalent.

(i) Ei o Ej is a scalar multiple of a primitive idempotent Bf
(ii) off # O for exactly onen € {0, 1...., d}.

In this paper, we investigate paigs andE; for which (i), (ii) hold above. We state our
main results in Theorems 1.1 and 1.3 below.

Theorem 1.1 LetI’ denote a distance-regular graph with diameterd3. Suppose E and
F are primitive idempotents df, with cosine sequences, o1, ..., og andpog, p1, ..., Od,
respectively. Then the following are equivalent.

(i) E o F is a scalar multiple of a primitive idempotent of

(ii) There exists a real numbersuch that

oipi —oi—1pi—1 = €(oi_1pi —oipi—1) (1 <i <d).

LetT" denote a distance-regular graph with diamdter 3 and eigenvalue® > 6; > --- >
4. In [4], JurSi¢, Koolen and Terwilliger proved that the valenkyand the intersection
numbersa, b; satisfy

k k —kagby
01+ 04 + > . 2
(1 a1+l)(d a1+l)‘(a1+1)2 @)
They defined" to betightwhenever is not bipartite and equality holds in (2). They showed

thatI" is tight precisely wher" is “1-homogeneous” andy = 0. They also obtained the
following characterization of tight graphs, which will be useful later.

Theorem 1.2([4]) LetT denote a nonbipartite distance-regular graph with diameter

d > 3, and eigenvaluegy, > 6, > --- > 64. Letd and 6’ denote eigenvalues af,
with respective cosine sequenegsos, ..., o4 and pg, p1, ..., p4- Lete € R. Then the
following are equivalent.

. .o , . op—1

(i) T istight 6,6 are a permutation of1, 6g ande = .
(i) 0 # 60,0’ # 6o, and p—c

oipi —0oi_1pi—1 = €(0i_1pi —oipi—1) (L<i <d).
Combining Theorems 1.1 and 1.2, we obtain the following result.

Theorem 1.3 LetI" denote a distance-regular graph with diameterd3, and eigenvalues
6o > 61 > --- > 4. Let E and F denote nontrivial primitive idempotentslaf
(i) Supposd' is tight. Then E F satisfy(i), (ii) in Theoreml.1if and only if E, F are a
permutation of g, Eq.
(i) Supposé’ is bipartite. Then EF satisfy(i), (ii) in Theoreml.1if and only if at least
one of E F is equal to K.
(iii) Supposé is neither bipartite nor tight. Then B- never satisf¥i), (ii) in Theoreni.1
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2. Preliminaries

In this section, we review some definitions and basic concepts. For more background in-
formation, the reader may refer to the books of Bannai and Ito [1], Brouwer et al. [2] or
Godsil [3].

ThroughoutI” will denote a finite, undirected, connected graph without loops or multiple
edges, with vertex seX, path-length distance functighand diameted := max{d(x, y) |
X,y € X}. We sayl' is distance-regulawhenever for all integers, i, j (0 < h,i, j <d)
and for allx, y € X with d(x, y) = h, the number

Pl i=l{ze X|0(x,2) =1i,3(y,2) =}

is independent ok andy. The integerspihj are called théntersection numberor I'. We
abbreviates; 1= p};(0 <i <d),b = p}; ;0 <i <d-1,¢ :=pj_,1<i=<d),
andk; := pf(0 <i < d). Observe

c+a+b=k 0<i<d)), 3

wherek := k; = bg, ¢p := 0 andby := 0.
It is known, by [1], (Chapter 3, Proposition 1.2)

bobiby - - - b1 .
i =— (0<i<d. 4
C1C2C3 - - - G O=i=d “)
Hereon, we assuniéis distance-regular.
Let Matx (C) denote the algebra of matrices o¥@wwith rows and columns indexed by
X. For each integear (0 <i < d), theith distance matrix Ae Matyx (C) hasx, y entry

A — 1, ifax,y)=i « X
(I)Xy—{o’ |f8(X,y);£| (’ye )
Then

Ag=1,

Ag+AL+---+ A=,
A=A (0=<i=<d),

d
AA =D piA, (O<i,j<d),
h=0

whereJ denotes the all 1's matrix. The matricAg, A4, ..., Aq form a basis fora commu-
tative semi-simpl€-algebraM, called theBose-Mesner algebra @f. By [1], (Section 2.3)
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M has a second basts), E;, ..., Eq such that

Eo=X|"1J,
Eo+E1+---+Eg=1,
t _ 5)
EE=E @O<i=<d,
EiEj=8ijEi (Ofi,jfd)-
The Eg, Ey, ..., Eq are called therimitive idempotentsf I, andEy is called thetrivial

idempotent
SetA = A; and defind), 04, ..., 84 € C such that

d
A= Z@i E;.
i=0

It is known8y = k, and thab, 01, ..., 04 are distinct real numbers. Moreov&r> 6; >
—k (0 <i < d), see[1], (Theorem 1.3). We refer@pas theeigenvalueof I' associated
with E; (0 <i < d). We callg, thetrivial eigenvalueof I'. For each integan0 <i < d),
let m; denote the rank oE;. We refer tom; as themultiplicity of E; (or 6,). We observe
from (5) thatmg = 1.

Let 6 denote an eigenvalue of, let E denote the associated primitive idempotent, and
letm denote the multiplicity oE. By [1], (Section 2.3) there exisb, o1, ..., 04 € Rsuch
that

d
E=(XI"'m) o A.
i=0

It follows from [1], (Chapter 2, Proposition 3.3 (iii)) that = 1. We callog, 01, .. ., og
the cosine sequencef I' associated witle (or ). The cosine sequence associated with
Eo consists entirely of ones, see [2], (Section 4.1B). We shall often dendigo .

Lemma 2.1 LetI denote a distance-regular graph with diameter-d3. For any9, oy,
o1, ...,0q € C, the following are equivalent.
(i) oo,01,...,0q IS acosine sequence bfandé is the associated eigenvalue.
(i) oo =1,and
Goi_1+ o +boi1=00 (0<i=<d), (6)

whereo_; andoy, are indeterminates.
(i) oo=1,ke =6 and

Ci(oi_1—0i) —bi(oi —oiy1) =k(oc — Doy (1<i <d), (7)

whereoqy, is an indeterminate.
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Proof:

(i) < (ii) See [2], (Proposition 4.1.1).
(i) < (iii) Follows from (3). O

Lemma 2.2 (Christoffel-Darboux Formula) LetI" denote a distance-regular graph with
diameter d> 3. For cosine sequences, o1, ..., oq andpg, p1, ..., pg Of T,

biby - - - by .
2 (iap —oipg) (O<i <d), C)

i
g — kU [
( p)g hOhOh 0o G

whereoq,1 and pq1 are indeterminates.

Proof: See [1], (Theorem 1.3) or [3], (Lemma 3.1). O
Corollary 2.3 LetI" denote a distance-regular graph with diameter @, and letoy,
o1, ..., 04 denote a sequence of complex numbers. Then the following are equivalent.
(i) oo =1,and
i
biby- - by .
-1 khoh = —=— " (Gi11 — O 0<i<d), 9
(o )hZ:O hoh = oo g @nmo) 0si=d (9)
whereoy,; is an indeterminate.
(i) o9, 01,...,04q is acosine sequence Bf

Proof:

(i) = (ii) We show (7) holds. Pick an integgfl < i < d). By (9) (withi replaced by — 1)
we have

( 1)iik LR ) (10)
g — Ooph = ——(0j — 0j-1).
— hOh CiCr-- G 1 i i—1
Subtracting Eq. (10) from Eg. (9) and eliminatikgrrom the result using (4), we get (7)
as desired. Nowy, 01, ..., o4 iS a cosine sequence by Lemma 2.1 (i) and (iii).
(ii) = (i) Observery = 1 by Lemma 2.1 (ii). To obtain (9), inLemma2.2 )&t o1, ..., pd
denote the cosine sequence Ey; thatis,pj =1 (0 <i < d). 0O

The graphl” is said to bebipartite wheneveig; = 0for0O<i < d.

Lemma 2.4 LetI" denote a distance-regular graph with diameterd3, valency k and
eigenvalue®y > 61 > --- > 64. Letoo, 01, ..., 04 denote the cosine sequence fgr
Then the following are equivalent.
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(i) T is bipartite.
(i) 64 = —k.
(i) oi =(-1" O<i<d).

Proof:
(i) © (i) See [2], (Proposition 3.2.3).
(i), (i) = (iii) Follows easily from Lemma 2.1 (i), (ii).

(iif) = (ii) Observes; = —1, andfy = o1k by Lemma 2.1 (i), (iii), sy = —k. O

Lemma 2.5 LetI denote a bipartite distance-regular graph with diameter-d3, and
eigenvaluegy > 0; > --- > 04. Pickany integer 0 <i < d). Then

(') O = —64—i,
(i) m =mgy_,
(i) Letoy, 01, ..., 04 denote the cosine sequence for Then the cosine sequence for
64_i IS 00, —071, 02, —03, . .., (—1)%0yg.
Proof:

(i), (ii) See [2], (Proposition 3.2.3).

(iii) By Lemma 2.1 (ii) and recalling thedy, a;, . . ., aq4 are all 0, it suffices to show
¢ (=11 o1+ bj(—=1) o)1 =g (-Dlo; (0<j<d). (11)
By Lemma 2.1 (i), (ii), and sincey, o1, . . ., o4 IS @ cosine sequence féy,
Cioj_1+bjojr1=60; (0<j=<d. (12)
Evaluating (12) using Lemma 2.5 (i) we obtain (11), as desired. O
Let og, 01, . . ., 04 denote a finite sequence of nonzero real numberghByumber of

sign change this sequence we mean the number of integéds< i < d — 1) such that

oioiy1 < 0. For an arbitrary finite sequence of real numbers, the number of sign changes
in it is the number of sign changes in the sequence obtained by disregarding the zero
terms.

Lemma 2.6 LetI’ denote a distance-regular graph with diameterd3, and eigenvalues

0o > 01 > --- > 64. Letog, 01, ..., o4 denote a cosine sequencdifand letd denote the
corresponding eigenvalue. For any integ€®@i< i < d), the following are equivalent.

i) 6 =0.

(ii) oo, 01,...,0q4 has exactly i sign changes.

Moreover suppose B 1, and that(i), (i) hold. Then the sequeneg — 01,01 — 02, ...,
04_1 — og has exactly i— 1 sign changes.
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Proof: See [2], (Corollary 4.1.2) or [3], (Lemma 2.1). O

Lemma 2.7 LetI" denote a distance-regular graph with diameterd3, and eigenvalues
fg > 01 > --- > O4. Letoy, 01, ..., 04 denote the cosine sequence associated gyith
Then

00> 01> -+ > 0. (13)

Proof: ByLemma 2.6, the sequeneég— o1, 01—02, ..., 04_1 —oq has no sign changes.
Recall,o; = #;k~* andog = 1 by Lemma 2.1 (iii), so

l=0og>01>00>--->0y. (14)
Suppose (13) fails. Then there exists an integér< i < d — 1) such that

Oi_1 > 0j = Oj41. (15)
Settingo; = oj41 in (7), we find in view of (15) that

oi = oiy1 < 0. (16)

Assume for now that=d — 1, sooy4—1 = o4 < 0. Using (15), and by settirig= d in (7)
we obtain

0 = cy(og-1 — 0q)
= k(o — Doy,
soog = 0, a contradiction. Henceé,< d — 1. We may now argue, by (14), (15), (7) and
(16)
0> —bii1(0i41 —0i42)

= —bi41(0i+1 — 0i42) + Cip1(0) — 0i41)

=k(o — Doij1
> 0,
a contradiction. We now have (13), as desired. O

Let I denote a distance-regular graph with diamelter 3, and letM denote the Bose
Mesner algebra df'. SinceM is closed under the entrywise matrix producthere exist
scalargyj € C such that

d
EioEj=IXI"") qlEn (O<i,j<d. (17)
h=0

We call theqi*j‘ theKrein parameterof I.
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3. The main results

Let E andF denote primitive idempotents of a distance-regular giaphn this section,
we focus on finding necessary and sufficient conditions suct2hd is a scalar multiple
of a primitive idempotent of".

Lemma 3.1 LetI" denote a distance-regular graph with diameterd3. For all integers
h,i, j(O < h,i, j <d), the following are equivalent.

(i) E o E;j isascalar multiple of k.

(i) gj =0forallr €{0,1,...,d}\h.

Proof: Follows immediately from (17) and the linear independenc&®fE,, ..., Eq.
O

Lemma 3.2 LetI" denote a distance-regular graph with diameterd3. Let E, F and H
denote primitive idempotents of, and letog, o1, . . ., o4; po, 01, - .., pg @NAY0, Y1, . .., V4
denote the associated cosine sequences. Then the following are equivalent.

(i) E o F isascalar multiple of H.

(i) =0ip (O<i=<d).

Moreover supposei), (i) hold. Then the scalar referred to {ii) is equal to

mym,m, x|, (18)
where my, m, and m, denote the multiplicity of EF and H respectively.

Proof: Observe

d

E=|X|"'m, ) oA, (19)
i=0
d

F=IX""m, Y niA, (20)
i=0
d

H=|X""m, > nA. (21)
i=0

(i) = (ii) By assumption, there existe € C such that
EoF =aH. (22)
Eliminating E, F andH in (22) using (19)—(21), and evaluating the result we find

m,m,oipi = a| XM,y (0 <i <d). (23)
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Settingi = 0in (23), and recallingo = 1, pg = 1 andy = 1, we find

o= m(,mpm;1|X|‘1. (24)
Eliminatinge in (23) using (24), we obtain

oipi=y (0<i=<d),

as desired.
(i) = (i) By (19)—(21),

d
EoF =|X|?m,m, Y oip A
i=0

d
= |X|72mvmp ZVI Ai
i=0
=aH,

whereq is as in (24). O
In the next lemma, we consider some examples.

Lemma 3.3 LetI" denote a distance-regular graph with diameterd3, and eigenvalues
6> 061> --- > 64.
(i) EooEi=|X['E (0<i<d).
(i) Supposd’ is bipartite. Then
EqoE = |X|'Egwi (0 <i <d).

Proof:

(i) Follows easily from (5).

(i) By Lemma 2.4, the cosine sequence Eyis 1, —1,1, ..., (=1)%. Letog, 01, ..., 04
denote the cosine sequence f§r By Lemma 2.5, the cosine sequence Ey; is
00, —01, 09, . .., (—1)%64. Combining the above information with Lemma 3.2, we find
Eq o E; is a scalar multiple oE4_;. The scalar igX|~* by (18), Lemma 2.5 (i), and
the fact thaimg = 1. O

Theorem 3.4 LetI' denote a distance-regular graph with diameterd3. Let E and F
denote primitive idempotents bf with cosine sequences, o, . .., g andpg, p1, - . ., Od,
respectively. The following are equivalent.

(i) E o F isascalar multiple of a primitive idempotent of.

(i) There exists a real numbersuch that

oipi — oi_1pi—1 = €(oi_1p —oipi—1) (1 <i <d). (25)
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Proof:

(i) = (i) SupposeE o F is a scalar multiple of a primitive idempoteht of I'. Let

Y0, Y1, - - - » Vd D€ the cosine sequence fidr. First, assum& # F and set
-1
e=20"2 (26)
p—o0

Pick an integer (1 <i < d). Observe by Lemma 3.2, Corollary 2.3, Lemma 2.2 and
Eq. (26),

OiPi —O0i—1Pi—-1 = Vi —Vi—-1

CiC2- -Gy +
— (-G Ny
Y )b1b2"'bi—1 = hh
Ci1C2- - Gio1
= (op— P ARG NN
(op )b1b2"‘bi—1§) hOhoh
— (op - 1)<0i,0i1 - Uilpi)
o—p

= €(0j_1pi — 0iPi-1),

as desired.
Next supposd& = F. Theng; = p; for0 <i < d, so in view of Lemma 3.2,

yl:aiz O<i<d.

Observeyy, 1, . . ., yq are all non-negative, sbl = Eq by Lemma 2.6. In particular,
yp=1for0<i <d,so

of=1 (0<i<d).

Now, (25) holds for alk € R.

(i) = (i) Set
¥i=op (O=<i=<d). (27)
By Lemma 3.2, it suffices to shoye, 1, ..., vq IS a cosine sequence. By Corollary 2.3,

this will occur if we can show

i baby - - Iy
-1 Knyph = ——— — 28
(v )hZ:O = g ) (28)

for0 <i < d, whereyyy1 is indeterminate. Setting= 1 in (25), we obtain

op—1=¢€(p—o0). (29)
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By Lemma 2.2,
i
biby - - - by
o — Knohon = ———(0i4101 — 0i pi 30
( P)hg(; hohPh = TG (Gi+1P1 — 0ipi+1) (30)

for 0 < i < d. We first show (28) holds at= d. Observe that the right side of (30)
vanishes at = d. Combining this observation with (27) and (29), we find

d d
(y =D ) knyn = (6p = 1) Y Knonpn (31)
h=0 h=0
d
=e(p—o0) Z Knhohon (32)
h=0
=0, (33)

so (28) holds at = d.
Next, we show (28) holds fdr < d. Multiplying Eg. (30) bye, and simplifying the
resulting equation using (25) and (29), we obtain

i
b1by - - - by
-1 ki = == (6i11Pi+1 — Ti Pi), 34
(op )g hOhOh GG (Gi+10i+1 — i i) (34)
whichimplies (28) in view of (27). We have shown (28) forO < d, S0y, y1, - - -, Y4 1S
a cosine sequence by Corollary 2.3. O

We conclude by determining which nontrivial primitive idempotelatandF satisfy (i),
(i) of Theorem 3.4. We consider three cases.

Theorem 3.5 Let " denote a tight distance-regular graph with diameter=d 3, and
eigenvalueg, > 61 > --- > 4. Let E and F denote nontrivial primitive idempotent§ of
The following are equivalent.

(i) E o F is a scalar multiple of a primitive idempotent Bf

(i) E, F are a permutation of E Eq.

Supposei), (i) hold, and let H denote the primitive idempotentldéuch that Eo F is a
scalar multiple of H. Then the eigenvalue associated with B is. Moreover

k6y_1 = 6164. (35)
Proof:
(i) < (ii) Follows from Theorem 1.2 and Theorem 3.4.

If (i), (i) hold then the eigenvalues of associated withE and F are a permutation
of 6, and6y. Let og, 01, ...,04 andpo, p1, - .., pg denote the cosine sequences dr
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andéy, respectively. By Lemma 2.6y, 01, ..., o4 has 1 sign change ang, o1, ..., o4

hasd sign changes. Combining this with Lemma 3.2 and Lemma 2.7, we observe that
the cosine sequence fét, namelyogpo, o101, ..., 040q hasd — 1 sign changes. By
Lemma 2.6, the eigenvalue associated withs 64_;. Finally, applying Lemma 2.1 (jii),

we getoy = 61k L, p1 = Ok, andoyp1r = 641k, giving (35), as desired. O

Theorem 3.6 LetI" denote a bipartite distance-regular graph with diameterd, and
eigenvalue®y > 61 > --- > 64. Let E and F denote nontrivial primitive idempotents
of I'. The following are equivalent.

(i) E o F isascalar multiple of a primitive idempotent Bf

(ii) Atleastone of EF is equal to E.

Proof:

(i) = (i) Let 0g, 01, ..., 04 andpg, p1, . .., pg denote the cosine sequences Eoand F,
respectively. By Theorem 3.4, there exists a real nunatserch that

oipi —oi—1pi—1 = €(oi_1pi —oipi—1) (1 <i <d). (36)

First assumé& = F. Settingi = 1 in (36), we observe? = o2 = 1. Observer; # 1
sinceE is nontrivial, soo; = —1. Now E = E4 by Lemma 2.4 (i), (ii).
Next assumés £ F. Settingi = 1, 2 in (36), we get

op—1=¢€(p—o0), (37)
0202 — 0p = €(0p2 — 02p). (38)

Let & and6’ denote the eigenvalues f& and F, respectively. Then by Lemma 2.1
(iii),
0 0’
=- =—. 39
o= P= (39)
Recalling thatag, a3, . . ., 8y are 0 sincd” is bipartite, and setting= 1 in (6) and (3),
we get

62 —k 62—k

Tkk—-1 ?Tkk-1" (40)

02

Eliminating ¢ in (38) using (37), and simplifying the result using (39) and (40), we
obtain

0% —k»(©O?-k? =0.

Observed # k andé’ # k, sinceE andF are nontrivial, so one df, 8’ is equal to—k.
Thus, one ofE, F is equal toEy.
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(il) = (i) Follows immediately from Lemma 3.3 (ii). O

Theorem 3.7 LetT" denote a distance-regular graph with diameter-d3, and suppose
I" is neither tight nor bipartite. Let E and F denote nontrivial primitive idempotents. of
Then Eo F is never a scalar multiple of a primitive idempotentiof

Proof: Immediate from Theorem 1.2 and Theorem 3.4. O
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