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Abstract. We investigate the following problem: how different can a cellular algebra be from its Schurian
closure, i.e., the centralizer algebra of its automorphism group? For this purpose we introduce the notion of a
Schurian polynomial approximation scheme measuring this difference. Some natural examples of such schemes
arise from high dimensional generalizations of the Weisfeiler-Lehman algorithm which constructs the cellular
closure of a set of matrices. We prove that all of these schemes are dominated by a new Schurian polynomial
approximation scheme defined by timeclosure operators. A sufficient condition for threclosure of a cellular

algebra to coincide with its Schurian closure is given.
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1. Introduction

The starting point of the paper is the Graph Isomorphism Problem (ISO), a famous unsolved
problem in computational complexity theory (see [8]). The problem is to test whether two
finite graphs are isomorphic by means of an efficient algorithm. Despite many efforts, at
presentthe bestisomorphism test for graphs witbrtices makes at least ef®@(/nlogn))
steps in the worst case (see [3] for the discussion of this and related topics).

In [14] an approach to the ISO based on the notion oélaular algebrawas developed.
Let Maty be the full matrix algebra ove® on a finite se¥. A subalgebra of Matis called
cellularifitis closed under the Hadamard (componentwise) multiplicatitime Hermitian
conjugatior* and contains the matrix all of whose entries are equal't@®he of the most
important examples of cellular algebras is the centralizer alggb®& V) of a permutation
groupG onV, i.e., the set of all matrices of Maftstable with respect to the induced action

*Research supported by the Volkswagen-Stiftung Program on Computational Complexity.
TResearch partially supported by the DFG Grant KA 67314-1, by ESPRITS Grants 7097 and ECUS 030, and by
the Volkswagen-Stiftung.
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of G on Mat,. Conversely, we associate to each cellular alg@bis automorphism group
Aut(W) which is by definition the group of all permutations \éfpreserving any matrix
of W. This defines a cellular superalgebra 8&h = Z(Aut(W), V) of the algebraV with
the same automorphism group, called 8shurian closuref W. We note thatV does not
necessarily coincide with S¢W) (see [15]). If it does, then the algebra is cali&churian

The idea of the cellular algebra approach to the ISO is the following. It is well-known
that this problem is polynomial-time equivalent to the problem of finding the orbits of the
automorphism group A(F) of a graphl” (see [12]). However, these orbits can easily be
derived from the algebrZ (Aut(T"), V) whereV is the vertex set of . The last algebra is
in fact the Schurian closure of the smallest cellular alg&t&) containing the adjacency
matrix of I'. Hoping that the algebrs/(I") is always Schurighin 1968 B. Weisfeiler
and A. Lehman proposed some way to compute it. Their procedure is a special case of a
more general algorithm called now tiéeisfeiler-Lehman algorithigsee [14], Section C8),
which given matriced\,, ..., As € Maty efficiently (in polynomial time) constructs their
cellular closure Py, . .., Ag, i.e., the smallest cellular algebra containing them. From the
algebraic point of view, this algorithm constructs a sequdngce Ly C --- C Ly = Ly1
of linear subspaces of MatwhereL; = [A4, ..., Ag], so thatLg is linearly spanned by
A1, ..., AsandL;. is the smallest subspace of Matontaining(L; - Lj) o (L;j - Lj)*.

The Weisfeiler-Lehman algorithm gives a polynomial-time reduction of the 1ISO to the
problem of constructing the Schurian closure of a cellular algebra. Here we face a common
situation in mathematics: we want to construct some object but have in hand only an
approximation to it. Certainly, it would be more convenient to deal with a sequence of some
natural approximations giving eventually the object we are interested in. For this reason
we introduce in this paper the notion oSghurian polynomial approximation scheme

Let us have a rule according to which given a cellular alg&ldra Mat, and a positive
integerm a cellular algebrav™ < Maty can be constructed. We say that the operators
W~ WM™ m = 1,2 ...) define a Schurian polynomial approximation scheme if the
following conditions are satisfied:

1. W=WD <... <wWw® = ... = SchW);
2. (WM)H = W foralll e [m];
3. W™ can be constructed in tinm™

wheren is the cardinality ofV. Condition (1) obviously implies AGW™) = Aut(W) for
allm > 1. Further, condition (3) means that the algef& is in a sense the trace of some
m-dimensional object. All known to us Schurian polynomial approximation schemes are
defined just in this way. On the other hand the last condition prevents a scheme from being
degenerate.

In this paper we describe a special Schurian polynomial approximation scheme and study
its main properties. The key notion of our approach is that@losure. To define it, given
W andm denote byV™ the smallest cellular subalgebra of Matcontaining the algebras
Z(Sym(V),V™ andW ® --- ® W (m times). ThenW™ is by definition the cellular
algebra being the restriction %™ to V (included inV™ diagonalwise). We caWv™
them-closureof W.
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Theorem 1.1 The m-closure operators W> W™ (m = 1,2, ...) constructed above
define a Schurian polynomial approximation scheme.

Probably the book [14] was the first source where a series of constructions and pro-
cedures (deep stabilization) carrying into Schurian polynomial approximation schemes
was considered. For example, a weaker analog of the aly&tvais obtained from the
dual graph described in Section 06.4 of this book. One more construction just outlined in
Section 06.2 underlies the algorithm of [7] which given a cellular alg&¥ra Mat, and
a positive integem produces a cellular algebi, (W) > W with the same automorphism
group by using a subalgebra of Matcanonically defined bW (for the exact definitions
see Section 4 of this paper). This defines the Schurian polynomial approximation scheme
Bm: W~ Bn(W) (m=1,2,...). The ideas of [14] also gave rise to thedim W-L
methodbased on then-dimensional stabilization procedure which refines a given initial
coloring of V™ (see [5] and Section 4). Itis worth noting that for= 2 this procedure is the
combinatorial analog of the Weisfeiler-Lehman algorithm for finding the cellular closure of
a set of matrices (see above). Thelim W-L method is generally used in isomorphism-like
problems for graphs, the initial coloring ™ chosen according to the isomorphism type
of m-vertex labeled subgraphs (cf. [14], Section 06.3). Similarly, replacing a graph by a
cellular algebra we come to the algorithiag : W — An(W) (m =1, 2, ...) defining a
Schurian polynomial approximation scheme (for the exact definition see Section 4).

In connection with the above discussion the natural question arises: what are the relations
between the cellular algebra,(W), Bn(W) andW™? The next proposition gives a
partial answer to the question.

Theorem 1.2 The Schurian polynomial approximation scheme defined by the m-closure
operators dominates ones defined by aad B,,. More exactly

W™ > A (W), W™ > B (W)
for all cellular algebras W and n» 1.

One of the most important problems concerning Schurian polynomial approximation
schemes is a good estimation of the smaltest 1 for whichW™ = Sch'W). Note, that
if suchm was bounded by a constant then by condition (4) the ISO could be solved in
polynomial time. We do not know whether this is true for ours or someone else’s Schurian
polynomial approximation scheme. However, in the first case we can give an upper bound
for min terms of the split number of a cellular algebra defined below.

The split numbes(W) of a cellular algebraV is by definition the smalles for which
there exisby, ..., vs € V suchthaw,, _, = Maty whereW,, . isthe smallest cellular
subalgebra of Mat containingW and all diagona{0, 1}-matrix with exactly one nonzero
element standing in row and colunan Clearly,s(W) < n— 1 for all W. Some non-trivial
upper bounds for this number can be found in [2] and [6]. We also mention paper [10] where
a similar invariant (called freedom degree) was defined for a permutation group.

Theorem 1.3 Let W be a cellular algebra with(3V) < m — 1. ThenSchw) = W™,



32 EVDOKIMOV, KARPINSKI AND PONOMARENKO

The idea of the proof is to study the cellular algelW4" < Maty» defined above. We
vi € V. By using this fact we find a faithful regular orbit of the componentwise action of
the group AutwW) on V™ (coinciding with an orbit of AmW(m>)). Comparing the cellular
algebras being the restrictions W™ to this orbit and the diagonal 8f™ we conclude
that the last algebra is Schurian. This means that $6(%.

As an easy corollarys(W) < 1) we get the following statement.

Corollary 1.4 Ifa cellular algebra W< Maty has no proper cellular superalgebrahien
W® = Schw).

The paper consists of six sections. The second one contains main definitions and some
preliminary results concerning cellular algebras. In Section 3 we define the notion of
closure and in detail study the propertiesetlosed cellular algebras. As aresultwe getthe
proof of Theorem 1.1. Sections 4 and 5 are devoted to Theorems 1.2 and 1.3 respectively.
In Section 6 we discuss some open problems.

Notation. As usual byC we denote the complex field.

Throughout the papér denotes a finite set with = |V | elements. A subset &f x V
is called a relation oW. For a relationR onV we define its suppoik to be the smallest
setU c V suchthatR c U x U.

Under an equivalencié onV we always mean an ordinary equivalence on a subsét of
(coinciding withVg), the set of its equivalence classes is denoteW Hy.

The algebra of all complex matrices whose rows and columns are indexed by the elements
of V is denoted by Mat, its unit element (the identity matrix) bly, and the all one matrix
by Jy.ForU c V the algebra Mat can be viewed in a natural way as a subalgebra of/Mat

The transpose of a matrik is denoted byAT, its Hermitian conjugate by*.

Each bijectiong : V — V'’ (v — v9) defines a natural algebra isomorphism from Mat
onto Mat,.. The image of a matribA underg is denoted byA9.

The group of all permutations &f is denoted by SyigV).

For integerd, m the set{l,| + 1,..., m} is denoted byl m]. If | = 1, we write jn]
instead of [1m].

2. Cellular algebras

By acellular algebra WonV we mean a subalgebra of Matontaining the identity matrix
lv, the matrixJy all of whose entries are equal to 1, and closed under the Hermitian conju-
gation and the Hadamard (componentwise) multiplicatiddelow we give a combinatorial
characterization of cellular algebras. It is convenient to \f@wl}-matrices belonging to
Maty as the adjacency matrices of relations\onThroughout the paper we identify these
matrices with the corresponding relations.

The next statement follows from Proposition E1 and Section C11 of [14].

Proposition 2.1 A linear subspace W= Maty is a cellular algebra if and only if there
exists a linear bas® = R(W) of W consisting of0, 1}-matrices such that
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=

- 2rer R=Jv:
.ReR< R eR;
3. there exists a disjoint partition \& Uiszl V; of V into nonempty sets guch that
(@) ly, e Rforalli;
(b) for all R € R there existjj € [s] such that RC Vi x Vj;
(c) the number ofl’s in the uth row(resp. vth colump of the matrix Re R, R C
Vi x Vj, does not depend on the choice oEWV; (resp. v € V), this number is
denoted by gi(R) (resp. ¢h(R));
4. given R S, T € R the number

pu,v; ST ={weV:Uw) eSS (w,v)eT}, UveV

N

does not depend on the choice(of v) € R.

Remark 2.2 Itis easily seen that the ba®and the partitioV = | J7_, Vi are uniquely
determined byW.

The linear bas® of a cellular algebraV defined in Proposition 2.1 is called thandard
basisof W and its elements theasis matricesr basis relations Any subset; c V (resp.
a possibly empty union o¥;’s) is called acell (resp. acellular se} of W. The set of all of
them is denoted by C@N) (resp. Cel(W)). Given a relationR € W its supportVr is,
obviously, a cellular set oiV.

Below we will use the following generalization of statement (4) of Proposition 2.1. Let
u,veVandr = (Ry,...,R) e R'. We say thatu, ..., v) € V'*1is a(u, v)-path of
the typer if vo = U, vy = vand(vi_1, vi) € R foralli € [I]. The number of all such paths
will be denoted byp(u, v; 7).

Lemma 2.3 (Path Proposition [14]Theorem C19 Let W be a cellular algebra. Then
given Re R(W) the integer [gu, v; t) does not depend on the choiceofv) € R.

The set of all cellular algebras ahis ordered by inclusion. The largest and the small-
est elements of this set are respectively the full matrix algebra, Matl the simplex
Z(SymV), V), i.e., the algebra with the linear bade¢, Jy}. For cellular algebrag/ and
W we writeW < W’ if W is a subalgebra oV'. If A, ..., As € Maty, then the inter-
section of all cellular algebras dn containingW and all the matriceg is also a cellular
algebra onV. It is denoted byW[Ay, ..., As]. We use notationAy, ..., Aj] if Wis a
simplex andW,, . if Ai =1, = Iy, withv; € V foralli.

Two cellular algebrasV onV andW’ onV' are calledsomorphicf W¢ = W’ for some
bijectiong : V — V' called arisomorphisnirom W to W’'. The group of allisomorphisms
from W to itself contains a normal subgroup

Aut(W) = {g € Sym(V) : A9 = Aforall A e W}

called theautomorphism groupf W.

Following Section G3.1 of [14] let us define for cellular algebras the notion of tensor
product. LetW; < Mat,, andW, < Maty, be cellular algebras ov; andV,. Obviously,
the subalgebraV; ® W, of Maty, ® Maty, = Maty, xv, is closed under the Hadamard
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multiplication in Mat,,.v,. It also contains the matricds, v, = lv, ® |y, andJy,xv, =
Jv, ® Jv,. SOW; ® W; is a cellular algebra oW x V; called the tensor product &%, and
Ws. Clearly, R(W; @ W,) = R(Wp) ® R(W,) and AuiW; @ Wa) = Aut(W) x Aut(Ws).
A large class of cellular algebras comes from permutation groups as follows (see [14],
Section F). LeG be a permutation group ovi. Then its centralizer algebra

Z(G,V) ={AecMaty: A% = Aforallg € G}

is a cellular algebra ol the standard basis of which consists of all orbits of the natural
action ofG onV x V. For a cellular algebr&V onV we set

SchW) = Z(Aut(W), V).

Clearly,W < SchW) and AufW) = Aut(SchiW)). The algebraV is calledSchurianif
W = SchiW). Certainly, Sckiw) is a Schurian algebra for alv. It follows from [1, 15]
that there exist cellular algebras which are not Schurian.

Any isomorphism of cellular algebras obviously induces a bijection between the standard
bases of them. The converse statement is not true. This motivates the following definition
(cf. [14], Section E5). Cellular algebr&g onV andW’ onV’ are calledveakly isomorphic
if there exists an algebra isomorphigm W — W’ such thatp(R(W)) = R(W’). Any
suchg is called aveak isomorphisrfrom W to W’. The following statement describes the
basic properties of weak isomorphisms.

Proposition 2.4 Lety : W — W’ be a weak isomorphism. Then

1. (Ao B) = ¢(A) oe(B)andp(A*) = p(A)*forall A,B e W.

2. ¢ induces a natural bijection X»> X¢ from Cel*(W) onto Cel*(W’) preserving cells
such thatp(lx) = Ix.. Moreover | X| = | X¢| and, in particular, |V| = |V’|.

Proof: The first part of statement (1) is trivial. The second follows from the observation
that givenR € R(W), the matrixRT is the only matrix ofR(W) whose product byR is

not orthogonal tdy with respect to the Hadamard multiplication. éte Cel*(W). Then

the equalitiedxlx =lIxolx = Ix lmpIy thatgo(lx)w(lx) = g0(|x) o (p(lx) e §0(|x).

So there existX’ c V' such thatp(lx) = Ix. Sincelx € W/, we haveX’ € Cef'(W’).
SetX? = X'. Sincely = ZXECGKW) Ix andg(ly) = ly/, the mappingX — X¢ gives a
bijection from Ce{W) to CelW’), which proves the first part of statement (2). Note that
o(Jy) = Jy. S0p(Jx) = e(IxIvlx) = Ixe Iy Ixe = Ixe for all X € Cel(W) and the
rest of statement (2) follows from the equality = | X|Jx. O

Remark 2.5 We note that the equality(R(W)) = R(W’) in the definition of a weak
isomorphism can be replaced by the first equality of statement (1)

Let W be a cellular algebra o and E be an equivalence ovi. We say that is an
equivalencef W if it is the union of basis relations &¥. A nonempty equivalencé of W
is calledindecomposablén W) if E is not a disjoint union of two nonempty equivalences
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of W. Otherwise, it is calledlecomposableSince the algebraV is closed with respect
to the Hadamard multiplication, each equivalencé\btan uniquely be represented as a
disjoint union of indecomposable ones calleditidecomposable componewfsE. It can
be proved that the property to be an equivalence (resp. indecomposable equivalence) of a
cellular algebra is preserved under weak isomorphisms.

Let E be an equivalence &. For eaclJ € V/E the setWg y = Iy WIy can be viewed
as a cellular algebra do with the standard basis

R(Wey) = {luRIy: Re R(W), RC E, IyRly # O} (1)

Obviously, each basis relation Wfg , can uniquely be represented in the foligRIy with
R e R(W). If E = Jy whereU € Cel" (W), then the algebrsVe y is denoted by, and
called the restriction ofV to U.

Lemma 2.6 If E is an indecomposable equivalence of hen

1. the mappingpu,ur :WE,U — WE,Uf such thatg[JU,Ur(|UA|U) = lgAly, Ae W, isa
well-defined weak isomorphism fromg\y to We - forallU, U’ € V/E.

2. lUNnX|=|U'NX|>O0forallcell X of W, X ¢ Vg, andallU,U’ € V/E.

Proof: First we prove that
IluRly #0 forallU e V/E,Re R(W), RcC E. 2)

Indeed, iflyRIy = 0, thenVg NU = @. SoE is the union of two nonempty equivalences
of W : Iy, Elv, andlvg\v;Elvg\vy, Which contradicts the indecomposability Bf

Let nowU,U’ e V/E andg = ¢y . Then formulas (1) and (2) imply that is a
well-defined linear isomorphism froM/e y to Weg y/. It is also an algebra isomorphism,
since

e(luRily - luRely) = e(lu RiRely) = Iy RiRely = Iy Ralys - Ty Ral)
forall Ry, R, € R(W), Ry, R, C E. This proves statement (1). It follows from formula (1)
that each cell of the algebME y is of the formU N X whereX € Cel(W), X C V. By

statement (1p = ¢y y' is a weak isomorphism. Thus statement (2) is the consequence of
statement (2) of Proposition 2.4, sing¢ N X)¢ = U’ N X by the definition ofp. O

3. Extended algebras andn-closures
Let W be a cellular algebra ovf. For each positive integen set

WM = [W®---®@W Z(SymV),V™M]
— ———

m
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with Sym(V) acting onV™ in a natural way (s, ..., vm)? = (v7, ..., vi), g € Sym(V).
We call the cellular algebraV™ < Maty» the m-dimensional extended algebod W.
Obviously, W® = W and

Aut(W™) = {(g, ..., g) :g € Aut(W)} ()
————

for all m.
Now we are going to describe some relations belonging/t®. To do this we define
for an arbitraryS c [m]? a binary relationPs on V™ by

(G,v) € Ps&V(, j) € S:ui = vj (4)

wherel = (U, ...,Up), v = (v1,...,vm) € V™ It follows thatPs € Z(Sym(V), V™)
forall S c [m]2.

Examples LetM c [m].

1. Set
Dy = Ps whereS = Im U I[m]\M- (5)

Clearly,Dy C lym for all M, Dy = lym and Dy = 14 Where

A={w,...,v) eV":v eV} (6)
2. Set
Em = Ps whereS= ly. @)

Clearly, Ey is an equivalence o™ for all M andEy = Jym, Ejmy = lym.

Below we will mainly use the relationBy andEy as well as matrices

A=ly® - ®Ily @A, AecW (8)

I
m-—1

also belonging tav™.
Each clasd) of the equivalenc&;,_1; is of the form

U = U‘Ul,m,vm,l = {(vlv ceey Um—1, v) ‘v e V}
for somev; € V. Let us define a bijection, as follows:
tu:V—->U, v (v1,...,0m 1, V).

The following lemma describes the simplest properties of the map.
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Lemma3.1 Inthe above notation the following statements hold
1. A = |jAly = IuA = Aly forall A e W;
2. Wy on)® < We y whereW = W™ and E = Ejm_1.

Proof: Statement (1) is trivial. It follows from it thatvév §VA\/E,U. On the other hand,
(1)® = opom s = luDimlu € Wey  foralli e [m—1]. O

Thus(Wvl ..... Umfl)zu = W{U [(|v1)§u LA | (Ivmfl){u] S WE.U .
Forl € [m] let us define another map

6|m:VI - V™ (u,...,0) = WLV, ). 9)

Itis easy to see thaf" is an injection and™ (V') (coinciding with the support 0Dy ) is
a cellular set of V™.

The important feature of the cellular aIgeMém) is the possibility to extend the algebra
W without changing its automorphism group. To show it set

W — (),

wheres = 87" : V — V™Mis the injection (9) and\ = §(V) is the cellular set (6). Clearly,
W™ > W and AutW™) = Aut(W) (see (3)). We say thaV/ is m-closedf W = W™,
Each algebra is certainly 1-closed. However it is not the casefor 2. In fact we will
show later that a non-Schurian cellular algebra cannetotosed for allm > 2.

Below we list some properties of the operatévs—> W™ W > W™,

Lemma 3.2 For all cellular algebras WWj, W, on V and positive integer m
1. Wy < W, impliesW™ < W™ and W™ < W,™;
o ~ N - _ _
2. (W N W)™ < W™ N W™, (We n W)™ < W™ n g™
3. the intersection of m-closed cellular algebras is m-closed
4. (WO < (WM)y foralll e [m] where X= §"(V");
5. W™ is |-closed for all | € [m].

Proof: _Statement (1) is clear. (2) follows from (1). W™ =W, andW,™ = W, then

o -m

W1 NWo) " < Wi N'W; by (2). Since the inverse inclusion is obvious, we have (3).
Further, our definitions imply that

(Z(Sym(V), V)T c Z(Sym(V), V™), (W ® --- @ W) CIx(W® --- ® W)lx.
N— ———— N— ————

| m

whereX = §™(V'). As far asX is a cellular set ofV™, (4) follows.
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It follows from statement (4) and the equalifjfo 8} = 5" (see (9)) thatv'" < W™ for

allW’. Applying ittoW’ = W™ we see that it suffices to prove statement (5) ferm. We
will check that them-dimensional extended algebraswfandW™ coincide. Clearly, the
second contains the first. To prove the inverse inclusioRset Ps whereS; = {(i, j):i €
[m]}, j € [m] (see (4)). A straightforward calculation in Mat = Maty ® - - - ® Maty
shows that for alfj € [m]

RIAR=®.. 0 ®AQ N ®...0 Jy, AcMaty
—_— —_—

-1 m—j

wheres is the map (9). Since the Hadamard multiplication in @&t - - - ® Maty can be
done factorwise,

AL® - ®An=(R{AR)) o o (RLALRy) forall Ag, ..., Ay € Maty.
ThusW™ @ ... @ W™ < W™ by the definition ofW™. O

It follows from statement (5) of Lemma 3.2 that the cellular algab& is m-closed.
We call it them-closureof W.

The following proposition describes some relations between the notiomsabdsure
and Schurian closure SEN) of a cellular algebraV. It shows that in a sens&’™ can be
interpreted as an approximation to $&).

Proposition 3.3 For each cellular algebra W on V the following statements hold
1. AutW™) = Aut(W) for allm > 1;

2. W = (|§1) <...<WM=... = Sch'W);
3. (W) =W foralll €[m].

Proof: Statement (1) is clear. Let us prove (2). The inclusisf® < W™ forl < m

is contained in the proof of statement (5) of Lemma 3.2. The equalify = SchW) for

m > n follows from Theorem 1.3, since, obviousk(W) < n — 1 for all W. (Note that
Theorem 1.3 is proved in Section 5 independently of this assertion.) Finally, (3) coincides
with statement (5) of Lemma 3.2. O

Proposition 3.4 Given a cellular algebra W on V and a positive integer m the standard
bases of the cellular algebra&™ and W™ can be constructed in timeX™.

Proof: Since the standard baseswf® - -- ® W (m times) andZ (Sym(V), V™) can be
found in timen®™, the standard basis ™ (and so ofW™) can be found within the
same time due to the Weisfeiler-Lehman algorithm for constructing the cellular closure of
a set of matrices (see Section 1). O

Remark 3.5 The time analysis of the Weisfeiler-Lehman algorithm done in [13] gives an
O(mrP™logn) upper bound for the time of constructing the algetM4% andW™. The
algorithm from [4] enables us to reduce it@mmne™ logn).
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Propositions 3.3 and 3.4 show that the operatrs> W™ (m = 1, 2, ...) define a
Schurian polynomial approximation scheme (see Section 1). This proves Theorem 1.1.
We complete the section by a statement being of use later. ForReack x V set

Xe={U,...,u,v) e V":(u,v) € R}.

Proposition 3.6 Let W be a cellular algebra on V and m 2. Then

1. VRCV x V:Re R(W) & Xg e Cel(W);

2. VX e CelW) Vi, j e [MIR € R(W): ((v1,...,vm) € X = (v, v)) € R)
whereW = W™ andW = W™,

Proof: Below we writev; - - - vy, instead of(vs, ..., vy). Let us prove statement (1).
AssumethaR € R(W). Chooseu, v) € Randdenote b, T, S the basis relations o/
containing the pairgu™, u™v), (U™ v, U™ v) and (U™ v, v™M) respectively. Clearly,
pu™, v™; ) = Lwherer = (S, T, $). By the Path Proposition (Lemma 2.3) the equality
holds for all(u)™, (v)™with (U, v') € R.SoT = lx,, whenceXy € Cel(W). Conversely,
let Xg € Cel(W). Chooseu™ v e Xg and denote byS, R, S, the basis relations
of W containing the pairgu™ v, u™), (u™, »™) and (v™, U™ 1v) respectively. Clearly,
pu™ v, um™ty; t) = 1 wherer’ = (S, R, S,). By the Path Proposition the equality
holds for all points ofXg. It follows that R = R? wheres is defined in (9). That is
R e R(W).

To prove statement (2) we assume without loss of generalityithain — 1, j = m.
Let X € Cel(W). Choosel = v;---vm € X and denote byR the basis relation oV
containing the paitvn_1, vm). By statement (1) we havkg € CeI(W). Set

S=Xrx X)N E{m—l.m}
whereEqm_1m is defined in (7). ClearlyS R(W), dn(S9 =1 and(vn"]jvm, v) € S

So for anyv’ € X there existsl’ € Xg such that(@’, v') € S. If v/ = vy--- v}, then

0 = (v,_"™ ), whence(v, ;,v},) € R. U

4. High dimensional Weisfeiler-Lehman procedures
In this section we prove Propositions 4.1 and 4.2 from which Theorem 1.2 follows.

A map f from V™ onto [d] is called acoloringof V™. Any setf (i) c V™is called a
color classof f.Letm > 2. Denote byR; the partition ofV x V into the classes of the
form

R, ={U,v)eVxxV:fW,...,u,v)=fu,...,u,v)}, uveV.

Conversely, given a partitioR of V x V let us define a colorindz of V™ by

fr(0) = fr(¥) & VReRVi,je[m]: ((v,vj) eR & (v{,v}) e R).
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In this notation for a cellular algebi& onV we set
Al(W) - Wv Am(W) = [Rflv m Z 2

where f is the coloring ofV™ derived fromf, = frw) by the following procedure.

4.1. m-dim stabilization

Input: a coloring fo of V™.
Output: a coloringf of V™.

Step 1.Setl = 0.
Step 2.For eachv € V™ find a formal sunS(v) = > .y, fi(v/u) where
1_)/U = (ﬁl,u» e, ﬁm,u) with 1_)i,u = (vy,...,v_1, U, Vigly, -« > Um)
and

fio/u) = (Fi@rw), ..., fi@mu)).
Step 3.Find a coloringf| 11 of V™ such that
fi1(0) = fiu@) & (@) = fi@), S@) = S@").

If the numbers of color classes 6fand f|; are different, theh:=1 + 1 and go to Step 2.
Otherwise sef = fi.

Proposition 4.1 Let W be a cellular algebra on V. Thai™ > A, (W).

Proof: We will show by induction orl that each color class of; is a union of the
cells of the algebraV™. Then givenR € R(W™), by statement (1) of Proposition 3.6
f(v) = f(@)forall v, v € Xg and we are done.

By statement (2) of Proposition 3.6 and the fact tha W™ the above claim is true
forl = 0. Suppose itistrue forad < 1. Letv € V™. For eactu € V set

PU(I_)) = (ﬁ’ l_)l,Lla sy l_fm,u, l_))

Itis easy to see that the pay(v) from v to itself is of the typer = (Ry, ..., Ry) for some
basis relation® C Ps, (see (4)) where

S={(. D Gi+De[mP:j#ij#i+1, iel0,m].

Moreover, any(v, v)-path of the typer coincideAs withP,(v) for someu € V.
Let v, v’ € V™ belong to the same cell dV™. Then by the induction hypothesis
fi_1(v) = fi_1(?"). Besides by the Path Proposition (Lemma @), v; t) = p(¥’, v'; 7).
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If P,(v) andPy, (v') are of the typer, theny; , and! , belong to the same cell o™ for

iu
alli. So by the induction hypothesi_1(v/u) = fi_1(¥'/u’). ThusS_1(v) = S_1(V")
and consequently; (v) = i (v'). O
Another implementation of the-dimensional procedure was described in [7]. We are
going to prove that this procedure constructs a cellular subalgebra of-thesure.
Fori > 1 set

Avi=EjyoMatyi= Y |, ., ®Mat

(v1,...,vi—1)eVi—T

wherel,, 4, =1,8---®I,_,. Clearly, Ay is a subalgebra of Mat closed under the
Hadamard multiplication and the Hermitian conjugation. Let us define a linear map

Tt Avir = Avi, 1 >1,

by

T ( Z Ivl,...,vi ® Au1 ..... vi> = Z Ivl,....vi,l &® Z Av1 ..... v - (10)
(v

(U1 ..... U|,1) Vi eV

In these terms the procedure from [7] can be described as follows.

4.2. Procedure R(m > 1)

Input: a cellular algebraV onV.
Output: a cellular algebrd,,(W) > W.

Step 1.Construct the seR, = {Ii: R e R(W)} C Av.m and the cellular algebra
W(m) = [Rm, Dizmys - - » Dim-1.my]

whereR and Dii.m; are as in (8) and (5) respectively.
Step 2.Fori =m—1,..., 1 find sucsessively the linear spaces

W(i)=m (W@ + 1) C Ay;.

SetW' = [W(D)].
Step 3.If W £ W, thenW:=W’ and go to Step 1. Otherwise, &t (W) = W'.

Proposition 4.2 Let W be a cellular algebra on V and m 1. Then B,(W) < W™,
Proof: Fori € [m] set

Wi = Eji_g 0 (Dgi.my W™ Dyj ).
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ThenW C ¢i(Av,i) whereg; : Ay — Ay m is the linear map induced by the injection
5" : V' — V™M defined in (9). We will prove that
7 (Wiy) c W foralli € [m—1]

wherern| = g7 ¢} andr; is defined by (10).
A straightforward check shows that

7{ (A) = Dyi m) Epmpviiy AEmpiy Dpimp, - A € ¢ig1(Aviita).
Som{(Wi4+1) C W foralli. By the definition ofW(m) at Step IW(m) C W,. Therefore,
W(D) =71+ -1 (W(M) C @y Mg -+ 73 (Win) C o7 H(Wh) = W™,

which completes the proof. O

5. Proof of Theorem 1.3

In this section we prove Theorem 1.3. Givdhwith s(W) < m — 1 we will show that the
algebraW? = W™ s Schurian.

By the hypothesis of the theorewWl,, . , = Maty for some(vy, ..., vm_1) € V™1
Denote byE the indecomposable component Wl = W(m)) of the equivalenceéEm_1
for whichU = U,, ., is one of the classes. By statement (2) of Lemma 3.1 we have
Weu > (W, .. )% = Maty, whenceWg ; = Maty. By statement (1) of Lemma 2.6
and statement (2) of Proposition 2.4

Wegy = Maty,  forallU’ e VME. (11)

Statement (2) of Lemma 2.6 implies that
S
VMe =X (12)
i=1

where X; € Cel(W) with U’ N X; = ¢ for all U’ e V™/E. It follows from (11) that
U’ N Xj| = 1forallU" andi. In particulars = n.

ForanyU’ € V™/Eletgy y- : WE,U — VA\/E,U/ be the weak isomorphism from statement
(1) of Lemma 2.6 (withWV instead ofW). By (11) ¢y .y is induced by a bijectiomy y- :
U — U ie,puu (A = A forall Ae Wey. Set

hy = ¢ugu ¢yt U e VTE (13)

Clearly,hy. € Sym(V) for all U’. Moreover, by Lemma 3.1 and the definition of the iso-
morphismgy - we have

A = AV = (Ig Al = (guu (WAl = (I Aly)’ = A
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forall Ac WwhereA= 1y ® ---® Iy ® A(see (8)). Thus
hy: € Aut(W) forallU’ e V"/E. (14)

We are to show that giveR € R(W) and(u, v), (U, v') € Rthere exist&)’ € V™/E such
that

(uhU’, vhU’) =, v). (15)

Then it will imply by (14) that AutW) acts transitively on each basis relationwf i.e.,
the cellular algebraV is Schurian.
Let R € R(W) and(u, v), (U, v') € R. Consider the following path

(u,...,u,v)—>(Ul,...,Umfl,u)—)(U]_,...,Umfl,v)_>(u,...,u,v).
Denote its type byRy, Ry, Ry) whereR € R(W), i = 0, 1, 2. Clearly (see (4)),
Ry C P{(m—l,m)]» RRCE, RC P[(m,m)]- (16)

By statement (1) of Proposition 3.6 the poilts. .., u, v) and(U’, ..., u’, v') belong to
the same cell ofV. So by the Path Proposition there exists a path ftam..., u’, v’) to
itself of the type(Ry, Ry, Ry). By (16) it is of the form

! / / /

W, ... ,u,v) > (v}, .., v, U) = (V. v, V) = (UL UL )

for some(vy, ..., v, ;) € V™1 andU’ = Uy, is aclass modulde. To complete

..... m

the proof it suffices to check thatv = u’ andv™’ = v’. We prove only the first equality,
since the second one is proved similarly.

SinceR; € R(W), the points(vy, ..., vm—1, U) and (v}, ..., v},_,, u’) belong to the

same cell ofW. From R: C E it follows that the cell coincides witlX; for somei. Since
lUNXj|=|U N Xj| =1 (see above) we have

UnX ={(v1,....,om1, W}, U'NX ={@],...,v5_q, U}

By the definition ofgy u' (see also Lemma 2.6) we see thidtn X;)%v =U’'N X;. So
W1y e vy U1, WRY = (v, ..., vf g, U,

On the other hand, by the definition lof. (see (13))
(U1, - Omo1, W)Y = (V. Vg, th’)

for all w € V. Thereforeu™’ = u’. Theorem is proved. O
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6. Concluding remarks and open problems

There is a lot of problems concerning Schurian polynomial approximation schemes. We
concentrate here only on two of them.

1. LetS:W § (W) andT : W T(W) (m=1, 2...) be two Schurian polynomial
approximation schemes. We say tl&is reducible toT if there exists a linearly bounded
function f :N— N whereN={1, 2, ...} such thatS,(W) < T¢m) (W) for all cellular
algebrasV and allm. SandT are called equivalent if each of them is reducible to the other.
Theorem 1.2 shows that the schemfeand B (see Section 4) are reducible to the scheme
defined by thean-closure operators.

Problem 6.1 Are all the three schemes equivatght

2. From the algorithmic point of view the Schurian polynomial approximation scheme
defined by them-closure operators is based on finding the cellular closure of a set of
matrices. This problem can efficiently (in polynomial time) be solved by the standard
Weisfeiler-Lehman algorithm.

Problem 6.2 Is the above problem iNC? In other words can the cellular closure of an
n x n-matrix be found by AV parallel computers in timglogn)°®?

(For the exact definition diC and related concepts see [11].) The main difficulty here is
that the cellular closure is defined by means of two binary operations (the ordinary matrix
multiplication and the Hadamard one) which do not commute with each other. Note, that
for each of them the problem of constructing the closure with respect to iN€in

Notes

1. Throughout the paper we assume that the unity of a cellular algebra coincides with the identity matrix.of Mat
In this case cellular algebras coincide with coherent algebras introduced in [9].

2. A counterexample was revealed in [1].

3. Itwas proved in the Electronic Journal of Combinatorics 6 (1999), #R18 that the séhisrequivalent to the
scheme defined by tha-closure operators.
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