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Abstract. We introduce a construction called tfractional multipleof a graph. This construction is used to
settle a question raised by E. Welzl: We show th&@ é&indH are vertex-transitive graphs such that there exists a
homomorphism fronG to H but no homomorphism froril to G, then there exists a vertex-transitive graph that
is homomorphically “in betweenG andH.
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1. Introduction

The concept of graph homomorphisms gives rise to a natural quasi-order on the class of
graphs: For two graphG andH, we write G < H if there exists a homomorphism (i.e.,

an edge-preserving map) fro@ to H. We consider graphs without loops, and it often
happens that for given grapfsandH, there exists no homomorphism fraénto H. The
quasi-order defined above therefore has a non-trivial structure. We®vkitéd if G < H

and there exists no homomorphism fré#rto G. Also, we callG andH homomorphically
equivalentif both relationsG < H andH < G hold. It can be shown that the relation
induces a lattice order on the classes of homomorphically equivalent graphs. Welzl [10]
investigated the quasi-orderwith respect to density, and proved the following result:

Theorem 1[10, Theorem 5.1] Let G, H be finite graphs such that H is not bipartite and
G < H. Then there exists a finite graph K such thatd® < H.

An elegant short proof of this result has recently been found independently $gtiNe”

[7] and Perles (see [5]). The same type of investigation is also possible in other relational
structures. In this spirit, N&til and Zhu [8] characterized the dense intervals in the class of
oriented paths. An earlier problem dealt with a specific subclass of the class of undirected
graphs: Welzl asked in [11] if a density result also holds for the class of vertex-transitive
graphs. Some particular instances of this question were answered affirmatively in [1, 11].

Partially supported by grant FCAR ER-1647 of the Miaistde lEducation du Qebec.
Current address: Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan,
Canada, S4S0A2.



62 TARDIF

Albertson and Booth [1] have also shown that any vertex-transitive graph is the lower end
of an interval that is void of vertex-transitive graphs. Our main result is the following:

Theorem 2 Let G, H be finite vertex-transitive graphs such that<{@. Then there
exists a finite vertex-transitive graph K such thak®& < H.

Our method relies on a class of graphs which we callfthetional multiplesof a graph.

These bear the same relation to some numerical parameters associated with graphs as do the
complete graphs to the chromatic number, or the Kneser graphs to the fractional chromatic
number. This class of graphs is presented in the next section, and Section 3 presents the
related parameters. The proof of Theorem 2 is given in Section 4. All graphs considered

in this paper will be finite.

2. Fractional multiples of graphs

For a graphG and integers, s such that 1< r < s, the (r, s)th multiple G"® of G is
defined by putting

V(G") ={f:Di - V(G): Df S {L,....s}|Df| =r}
E(G™®) ={[f.g]:[f(i).g()] € E(G)foralli € Df N Dg}.

Some instances of this construction are well known. For exan@if is thesth cate-
gorical power ofG in the sense of Miller [6] (see also (3) below); to within homomorphic
equivalence, itis the same @s At the other extreme i§*9, the Zykov join ofs mutually
disjoint copies ofG, which from the point of view of homomorphic equivalence may be
regarded as an integral multiple@f The “fractional multiples” or “fractional joinsG"-®

lie in between these two extremes. However, note that the word “fractional” represents a
genuine abuse of language in the sense that even up to homomorphic equivaiéfice,
depends on both valuesands rather than solely on the rat&yr. For instance, iG = K3
and 2<r < s/2,G"9 is the well-known Kneser grapk (r, s), and it is known (see [9])
that forr andsrelatively prime, there exists a homomorphism frirtur, as) to K (8r, 8s)
only if 8 is a multiple ofc.

The smallest example of a fractional multiple of a graph which does not belong to any
of these classes is the gra&f’a depicted in figure 1. It is not clear from the figure that
this graph is vertex-transitive. However, the next proposition shows that the definition of
fractional multiples of graphs allows one to define more automorphisms than those that
appear at first glance.

Proposition1 The wreath productr Aut(G) is a subgroup oAut(G"®). Inparticular,
if G is vertex-transitivethen so is @9,

Proof: Letwr beapermutationdfl, ..., s}andgs, ..., ¢s, automorphisms of a gragh.
Then the mapy : G — G"9 defined by putting/ (f) = g, whereDy = 7(D¢) and
g(i) = ¢; o f(x~(i)), is an automorphism a9, O
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Figure 1 K£2’3).

Also, note that if¢ : G — H is a homomorphism, then for £ r < s, we can de-
fine a homomorphisny : G*® — H®S by puttingy (f) = ¢ o f. S0,G < H implies
GrS GH®,

3. Generalizations of fractional colourings

For graphsG andH, let Hg(H) denote the family of induced subgrapHs of H such
thatH’ < G, andag(H) = max{|H’| : H € Hs(H)} (where|H’| denotes the cardinality
of the vertex set oH"). We define the&s-fractional chromatic numbexs(H) of H as the
solution of the following linear program:

Xe(Hy=min >~ u(H)

H'eHg(H)

subjectto Y u(H)>1 forallue V(H).
ueV(H")

)

The minimum is taken over non-negative weight functign®n Hg(H), so the linear
program has one variable for each membekgf(H) and one constraint for each vertex of
H. The dual expression for the value of this program is the following:

xe(H) =max Y v(u)

ueV(H)

subject to Z vu)y <1 forallH € Hg(H).
ueV(H")

)

WhenG is the one-vertex grapk,, Hs (H) is the set of all independent setstéf ag(H)
is the stability number oH and xg(H) is the fractional chromatic number &f. Many
of the known properties of the fractional chromatic number extend in a natural way to all
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parametergg. The next lemma presents some basic results on these parameters.

Lemma 1l

() Foranygraph H xg(H) > [H|/ac(H).
(i) xc(H)=1lifandonlyif HQG.
(i) If K < H, thenxsg(K) < xg(H).

Proof:

(i) |H|/ac(H) is the value of the feasible solution to the linear program (2) obtained by
puttingv(u) = 1/ag(H) forallu € V(H).
(ii)y Follows easily from (i).
(iii) If K < H, thenany homomorphism froik to H can be used to pull back (by compo-
sition) any feasible weight function Gtig (H) to a feasible weight function ol g (K)
with the same value. O

In [4], Hahn et al. characterize the fractional chromatic number in terms of graph homo-
morphisms. The nextresult shows that a similar characterization holds for any parageter

Proposition 2 For any graphs G and H
xc(H) = maX{|K|/ac(K) : K IH}
Proof: By Lemma 1, we have
xc(H) = max|K|/ag(K) : K < H}.

Let v be rational nonnegative weight function d(H) such thatv(u) =s,/r for each
ueVH) andZueV(H) v(u) = s/r. Define a graptK as follows: For eaclie V(H),

V (K) contains an independent sgtof sizes,, and if [u, v] € E(H), then I/, v'] € E(K)
forallu’ € §,andv’ € S,. Clearly,K < H, and it is easily seen that an induced subgraph
K" of K belongs tdHg(K) if and only if V(K’) € yeyn,) S for someH’ € Hg(H).

So, ifv is a feasible solution to the linear program (2), they{K) < r, and

s _IKI _ K|

r r = ag(K)
Thus,

xc(H) = max{|K|/ac(K) : K <H]J.

O

This alternative definition ofg allows a slight generalization of the No-Homomorphism
lemma of Albertson and Collins [2] that was also obtained by Bondy and Hell [3].
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Proposition 3
(i) Let H be a vertex-transitive graph. Thega(H) =|H|/ac(H).
(ii) [3, Proposition4] Let H, K be graphs such that H is vertex-transitive and<kH.
Then|K|/ag(K) < [H|/ac(H).
(iii) Let H, K be graphs such that H is vertex-transitive <H and |K|/ag(K)=|H|/
ag(H). Theng 1(H")| = ag(K) forany homomorphis: K — Hand H € Hg(H)
such thaH'| =ag(H).

Proof:

(i) Let HE(H) denote the set of members #ig(H) of sizeag(H). Then any vertex

of H belongs to the same number, say of members of{§ (H). Furthermore, we
havem - |H| = ag(H) - [HE(H)|. Puttingv(u) = 1/ac(H) forallue V(H) yields a
feasible solution to the linear program (2) with valt /ac (H), and puttinge (H') =
1/mfor all H" € HE(H) provides a solution to the linear program (1) with value
|HE(H)|/m. Since these values are equal, they coincide with the optimal value
xc(H).

(i) This follows from (i) and Proposition 2.

(i) Clearly, |¢~2(H")| < ag(K) foranyH’ € HE(H). Also, foru € V(K), ¢(u) is in
preciselym members of{§ (H), so we have

m-Kl= Y 17 H| < [HE(H)] - aa(K).

H'eHE (H)
However, sincgK |/ac(K) = |H|/ac(H) = |HE(H)|/m, the inequality cannot be strict,
and since the summation was majorized termwise, we must|paveH’)| = ag(K) for
all H e HE(H). O

We are mainly interested in the role played by the fractional multi@€$’ in the
computation ofyg. This is summarized in the next result.

Proposition 4 For any graphs G and H

xc(H) = min{r§ i H <1G(”S)}
Proof: Fori €{1,...,s}, we have

A ={f eV(G"):ieDi}eHs(G"?).
Puttingu (A) = 1/r fori =1, ..., sthen shows thats(G"®) < s/r. So, ifH <G"9,
then by Lemma 1yg(H) < s/r. Thus,

xc(H) < min{rE H ﬁG“’S)}.
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Let u be a rational nonnegative weight function afg (H) such thatuw(H’) = sy /r for
eachH’ € Hg(H) andZH,eHG(H) w(u) = s/r. If u satisfies the constraints of the linear
program (1), we can define a map H — G as follows: For eacd’ € Hg(H), fix

a homomorphisngy, : H' — G, and assign tdd’ ansy-setSy C {1, ..., s} such that
different members of{g(H) are assigned disjoint sets. Then for each V(H) we can
selectam-setS, € Uyeyny S- The mapp is then defined by putting (u) = f, where
D =S andf(i) = ¢u (u)fori € § N Sy . Itis easily seen that is a homomorphism.
Thus,

xc(H) > min{r§ “H glG("s)}.

O

We have not been able to determine the range of the fungtpfior arbitrary G. For
instance, whels = K1, xg is the usual fractional chromatic number which can be 1 or any
rational value greater than or equal to 2. It is conceivable thati# not homomorphically
equivalent toK 1, xg can assume any rational value greater than or equal to 1, but we have
no proof of this.

4. Proof of Theorem 2

The G-fractional chromatic numbeys (H) of a graphH can be thought of as a measure

of how far H deviates from admitting a homomorphism irgo(cf. Lemma 1). With this

in mind, we begin this section with a numerical counterpart to the density statement of
Theorem 1.

Lemma2 LetG, H be two graphs such that @ H. Then for eacle > O, there exists a
graph K suchthat Ga K <H andxg(K) < 1+e.

Proof: By a repeated application of Theorem 1, we can find a sequgtgk1 of
graphs such thaG < H;<tH and G < Hyy1 < Hy for all n> 1. Further, at each stage,
we can suppose thdd, is chosen with smallest cardinality. This means that for each
u € V(Hp) we haveH, —u <G, in which caseu is called acritical vertex of H,, or

G 4 Hn — u, in which caseu is called aressentiavertex ofH,,. Note that a vertex can be
critical and essential at the same time. tgtande, denote, respectively, the number of
critical and essential vertices éf,. We then have, + ¢, > |Hn|. However,e, < |G| for
eachn, and the size oV (H,) must become arbitrarily large with, since there is only

a finite number of isomorphism classes of graphs with a given number of vertices. So,
liMp_ o0 Ch = 00. Also, xc(Hn) < ¢n/(ch — 1) since we get a feasible solution of the linear
program (1) definingig by puttingu(H, — u) = 1/(c, — 1) for each critical vertex: of

Hn. Thus, lim_ « xc(Hp) = 1. O

Recall that the usualategorical product Gx H of two graphsG andH is defined by
putting



FRACTIONAL MULTIPLES OF GRAPHS AND THE DENSITY 67

V(G x H) =V(G) x V(H),

®)
E(G x H) = {[(U, v1), (U2, v2)] : [Ug, U2] € E(G), [v1, v2] € E(H)}

Clearly, the categorical product of two graphs is vertex-transitive whenever both factors
are. Both projections db x H on its factors are homomorphisms. Also, for graghd,,
H,, we haveG < H; x H; if and only if G < H; andG < H,.

Proof of Theorem 2: Let G andH be vertex-transitive graphs such thati H. By
Lemma 1,xg(H) > 1, so by Lemma 2 there exists a finite graptsuch thailG <« K << H
andxc(K) < xc(H). By Proposition 4, there exist integarss such thatk <G and
xa(K) = s/r. We then haves <H x G"9 < H, whereH x G is vertex-transitive,
and it remains to show that there is no homomorphism fiénto H x G or from

H x G to G. It is easily seen that both possibilities would contradict the choice of
K, sinceH <H x G <G™ implies xg(H) < s/r = xc(K), andH x G"® <G
impliesk <H x G©9 <4G. S0,G<H x G qH. O

Yoav Kirsch recently told us that Theorem 2 was also obtained by Micha Perles, using a
different construction.
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Note

1. Strictly speaking we should writg, s)G instead ofG(-®, but the latter is considerably less cumbersome.
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