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Abstract. We introduce a construction called thefractional multipleof a graph. This construction is used to
settle a question raised by E. Welzl: We show that ifG andH are vertex-transitive graphs such that there exists a
homomorphism fromG to H but no homomorphism fromH to G, then there exists a vertex-transitive graph that
is homomorphically “in between”G andH .
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1. Introduction

The concept of graph homomorphisms gives rise to a natural quasi-order on the class of
graphs: For two graphsG and H , we writeGE H if there exists a homomorphism (i.e.,
an edge-preserving map) fromG to H . We consider graphs without loops, and it often
happens that for given graphsG andH , there exists no homomorphism fromG to H . The
quasi-order defined above therefore has a non-trivial structure. We writeGC H if GE H
and there exists no homomorphism fromH to G. Also, we callG andH homomorphically
equivalentif both relationsGE H and H EG hold. It can be shown that the relationE
induces a lattice order on the classes of homomorphically equivalent graphs. Welzl [10]
investigated the quasi-orderE with respect to density, and proved the following result:

Theorem 1 [10, Theorem 5.1] Let G, H be finite graphs such that H is not bipartite and
GC H. Then there exists a finite graph K such that GC K C H.

An elegant short proof of this result has recently been found independently by Neˇsetřil
[7] and Perles (see [5]). The same type of investigation is also possible in other relational
structures. In this spirit, Neˇsetřil and Zhu [8] characterized the dense intervals in the class of
oriented paths. An earlier problem dealt with a specific subclass of the class of undirected
graphs: Welzl asked in [11] if a density result also holds for the class of vertex-transitive
graphs. Some particular instances of this question were answered affirmatively in [1, 11].
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Current address: Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan,
Canada, S4S0A2.



62 TARDIF

Albertson and Booth [1] have also shown that any vertex-transitive graph is the lower end
of an interval that is void of vertex-transitive graphs. Our main result is the following:

Theorem 2 Let G, H be finite vertex-transitive graphs such that GC H. Then there
exists a finite vertex-transitive graph K such that GC K C H.

Our method relies on a class of graphs which we call thefractional multiplesof a graph.
These bear the same relation to some numerical parameters associated with graphs as do the
complete graphs to the chromatic number, or the Kneser graphs to the fractional chromatic
number. This class of graphs is presented in the next section, and Section 3 presents the
related parameters. The proof of Theorem 2 is given in Section 4. All graphs considered
in this paper will be finite.

2. Fractional multiples of graphs

For a graphG and integersr , s such that 1≤ r ≤ s, the (r, s)th multiple G(r,s) of G is
defined1 by putting

V
(
G(r,s)

) = { f : D f → V(G) : D f ⊆ {1, . . . , s}, |D f | = r }
E
(
G(r,s)

) = {[ f, g] : [ f (i ), g(i )] ∈ E(G) for all i ∈ D f ∩ Dg}.

Some instances of this construction are well known. For example,G(s,s) is thesth cate-
gorical power ofG in the sense of Miller [6] (see also (3) below); to within homomorphic
equivalence, it is the same asG. At the other extreme isG(1,s), the Zykov join ofs mutually
disjoint copies ofG, which from the point of view of homomorphic equivalence may be
regarded as an integral multiple ofG. The “fractional multiples” or “fractional joins”G(r,s)

lie in between these two extremes. However, note that the word “fractional” represents a
genuine abuse of language in the sense that even up to homomorphic equivalence,G(r,s)

depends on both valuesr ands rather than solely on the ratios/r . For instance, ifG = K1

and 2≤ r < s/2, G(r,s) is the well-known Kneser graphK (r, s), and it is known (see [9])
that forr ands relatively prime, there exists a homomorphism fromK (αr, αs) to K (βr, βs)
only if β is a multiple ofα.

The smallest example of a fractional multiple of a graph which does not belong to any
of these classes is the graphK (2,3)

2 depicted in figure 1. It is not clear from the figure that
this graph is vertex-transitive. However, the next proposition shows that the definition of
fractional multiples of graphs allows one to define more automorphisms than those that
appear at first glance.

Proposition1 Thewreathproduct Sswr Aut(G) is asubgroupofAut(G(r,s)). Inparticular,
if G is vertex-transitive, then so is G(r,s).

Proof: Letπ be a permutation of{1, . . . , s} andφ1, . . . , φs, automorphisms of a graphG.
Then the mapψ : G(r,s)→G(r,s) defined by puttingψ( f ) = g, whereDg = π(D f ) and
g(i ) = φi ◦ f (π−1(i )), is an automorphism ofG(r,s). 2
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Figure 1. K (2,3)
2 .

Also, note that ifφ : G→ H is a homomorphism, then for 1≤ r ≤ s, we can de-
fine a homomorphismψ : G(r,s)→ H (r,s) by puttingψ( f ) = φ ◦ f . So,GE H implies
G(r,s)E H (r,s).

3. Generalizations of fractional colourings

For graphsG and H , letHG(H) denote the family of induced subgraphsH ′ of H such
that H ′EG, andαG(H)= max{|H ′| : H ′ ∈ HG(H)} (where|H ′| denotes the cardinality
of the vertex set ofH ′). We define theG-fractional chromatic numberχG(H) of H as the
solution of the following linear program:

χG(H) = min
µ

∑
H ′∈HG(H)

µ(H ′)

subject to
∑

u∈V(H ′)

µ(H ′) ≥ 1 for all u ∈ V(H).
(1)

The minimum is taken over non-negative weight functionsµ on HG(H), so the linear
program has one variable for each member ofHG(H) and one constraint for each vertex of
H . The dual expression for the value of this program is the following:

χG(H) = max
ν

∑
u∈V(H)

ν(u)

subject to
∑

u∈V(H ′)

ν(u) ≤ 1 for all H ′ ∈ HG(H).
(2)

WhenG is the one-vertex graphK1,HG(H) is the set of all independent sets ofH , αG(H)
is the stability number ofH andχG(H) is the fractional chromatic number ofH . Many
of the known properties of the fractional chromatic number extend in a natural way to all
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parametersχG. The next lemma presents some basic results on these parameters.

Lemma 1
(i) For any graph H, χG(H) ≥ |H |/αG(H).

(ii) χG(H) = 1 if and only if HEG.
(iii) If K E H , thenχG(K ) ≤ χG(H).

Proof:

(i) |H |/αG(H) is the value of the feasible solution to the linear program (2) obtained by
puttingν(u) = 1/αG(H) for all u ∈ V(H).

(ii) Follows easily from (i).
(iii) If K E H , then any homomorphism fromK to H can be used to pull back (by compo-

sition) any feasible weight function onHG(H) to a feasible weight function onHG(K )
with the same value. 2

In [4], Hahn et al. characterize the fractional chromatic number in terms of graph homo-
morphisms. The next result shows that a similar characterization holds for any parameterχG.

Proposition 2 For any graphs G and H,

χG(H) = max{|K |/αG(K ) : K E H}.

Proof: By Lemma 1, we have

χG(H) ≥ max{|K |/αG(K ) : K E H}.

Let ν be rational nonnegative weight function onV(H) such thatν(u)= su/r for each
u∈V(H) and

∑
u∈V(H) ν(u) = s/r . Define a graphK as follows: For eachu∈V(H),

V(K ) contains an independent setSu of sizesu, and if [u, v] ∈ E(H), then [u′, v′] ∈ E(K )
for all u′ ∈ Su andv′ ∈ Sv. Clearly,K E H , and it is easily seen that an induced subgraph
K ′ of K belongs toHG(K ) if and only if V(K ′) ⊆ ⋃

u∈V(H ′) Su for someH ′ ∈HG(H).
So, if ν is a feasible solution to the linear program (2), thenαG(K ) ≤ r , and

s

r
= |K |

r
≤ |K |
αG(K )

.

Thus,

χG(H) ≤ max{|K |/αG(K ) : K E H}.
2

This alternative definition ofχG allows a slight generalization of the No-Homomorphism
lemma of Albertson and Collins [2] that was also obtained by Bondy and Hell [3].
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Proposition 3
(i) Let H be a vertex-transitive graph. ThenχG(H)= |H |/αG(H).
(ii) [3 , Proposition4] Let H, K be graphs such that H is vertex-transitive and KE H.

Then|K |/αG(K ) ≤ |H |/αG(H).
(iii) Let H, K be graphs such that H is vertex-transitive, K E H and|K |/αG(K )= |H |/

αG(H). Then|φ−1(H ′)| =αG(K ) foranyhomomorphismφ : K→ H and H′ ∈HG(H)
such that|H ′| =αG(H).

Proof:

(i) Let H∗G(H) denote the set of members ofHG(H) of sizeαG(H). Then any vertex
of H belongs to the same number, saym, of members ofH∗G(H). Furthermore, we
havem · |H | = αG(H) · |H∗G(H)|. Puttingν(u) = 1/αG(H) for all u∈V(H) yields a
feasible solution to the linear program (2) with value|H |/αG(H), and puttingµ(H ′) =
1/m for all H ′ ∈ H∗G(H) provides a solution to the linear program (1) with value
|H∗G(H)|/m. Since these values are equal, they coincide with the optimal value
χG(H).

(ii) This follows from (i) and Proposition 2.
(iii) Clearly, |φ−1(H ′)| ≤ αG(K ) for any H ′ ∈ H∗G(H). Also, for u ∈ V(K ), φ(u) is in

preciselym members ofH∗G(H), so we have

m · |K | =
∑

H ′∈H∗G(H)
|φ−1(H ′)| ≤ |H∗G(H)| · αG(K ).

However, since|K |/αG(K ) = |H |/αG(H) = |H∗G(H)|/m, the inequality cannot be strict,
and since the summation was majorized termwise, we must have|φ−1(H ′)| = αG(K ) for
all H ′ ∈ H∗G(H). 2

We are mainly interested in the role played by the fractional multiplesG(r,s) in the
computation ofχG. This is summarized in the next result.

Proposition 4 For any graphs G and H,

χG(H) = min

{
s

r
: H EG(r,s)

}
Proof: For i ∈ {1, . . . , s}, we have

Ai =
{

f ∈ V
(
G(r,s)

)
: i ∈ D f

} ∈ HG
(
G(r,s)

)
.

Puttingµ(Ai ) = 1/r for i = 1, . . . , s then shows thatχG(G(r,s)) ≤ s/r . So, if H EG(r,s),
then by Lemma 1,χG(H) ≤ s/r . Thus,

χG(H) ≤ min

{
s

r
: H EG(r,s)

}
.
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Let µ be a rational nonnegative weight function onHG(H) such thatµ(H ′) = sH ′/r for
eachH ′ ∈ HG(H) and

∑
H ′∈HG(H)

µ(u) = s/r . If µ satisfies the constraints of the linear
program (1), we can define a mapφ : H → G(r,s) as follows: For eachH ′ ∈ HG(H), fix
a homomorphismφH ′ : H ′ → G, and assign toH ′ ansH ′ -setSH ′ ⊆ {1, . . . , s} such that
different members ofHG(H) are assigned disjoint sets. Then for eachu ∈ V(H) we can
select anr -setSu ⊆

⋃
u∈V(H ′) SH ′ . The mapφ is then defined by puttingφ(u) = f , where

D f = Su and f (i ) = φH ′(u) for i ∈ Su ∩ SH ′ . It is easily seen thatφ is a homomorphism.
Thus,

χG(H) ≥ min

{
s

r
: H EG(r,s)

}
.

2

We have not been able to determine the range of the functionχG for arbitrary G. For
instance, whenG = K1, χG is the usual fractional chromatic number which can be 1 or any
rational value greater than or equal to 2. It is conceivable that ifG is not homomorphically
equivalent toK1, χG can assume any rational value greater than or equal to 1, but we have
no proof of this.

4. Proof of Theorem 2

TheG-fractional chromatic numberχG(H) of a graphH can be thought of as a measure
of how far H deviates from admitting a homomorphism intoG (cf. Lemma 1). With this
in mind, we begin this section with a numerical counterpart to the density statement of
Theorem 1.

Lemma 2 Let G, H be two graphs such that GC H. Then for eachε > 0, there exists a
graph K such that GC K C H andχG(K ) ≤ 1+ ε.

Proof: By a repeated application of Theorem 1, we can find a sequence{Hn}n≥1 of
graphs such thatGC H1CH and GC Hn+1C Hn for all n≥1. Further, at each stage,
we can suppose thatHn is chosen with smallest cardinality. This means that for each
u ∈ V(Hn) we haveHn − uEG, in which caseu is called acritical vertex of Hn, or
G 6E Hn − u, in which caseu is called anessentialvertex ofHn. Note that a vertex can be
critical and essential at the same time. Letcn anden denote, respectively, the number of
critical and essential vertices ofHn. We then haveen+ cn ≥ |Hn|. However,en ≤ |G| for
eachn, and the size ofV(Hn) must become arbitrarily large withn, since there is only
a finite number of isomorphism classes of graphs with a given number of vertices. So,
limn→∞ cn = ∞. Also,χG(Hn) ≤ cn/(cn − 1) since we get a feasible solution of the linear
program (1) definingχG by puttingµ(Hn − u) = 1/(cn − 1) for each critical vertexu of
Hn. Thus, limn→∞ χG(Hn) = 1. 2

Recall that the usualcategorical product G× H of two graphsG andH is defined by
putting
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V(G× H) = V(G)×V(H),

E(G× H) = {[(u1, v1), (u2, v2)] : [u1,u2] ∈ E(G), [v1, v2] ∈ E(H)}.
(3)

Clearly, the categorical product of two graphs is vertex-transitive whenever both factors
are. Both projections ofG× H on its factors are homomorphisms. Also, for graphsG, H1,
H2, we haveGE H1× H2 if and only if GE H1 andGE H2.

Proof of Theorem 2: Let G and H be vertex-transitive graphs such thatGC H . By
Lemma 1,χG(H) > 1, so by Lemma 2 there exists a finite graphK such thatGC K C H
andχG(K ) < χG(H). By Proposition 4, there exist integersr , s such thatK EG(r,s) and
χG(K ) = s/r . We then haveGE H × G(r,s)E H , whereH × G(r,s) is vertex-transitive,
and it remains to show that there is no homomorphism fromH to H × G(r,s) or from
H × G(r,s) to G. It is easily seen that both possibilities would contradict the choice of
K , sinceH E H ×G(r,s)EG(r,s) implies χG(H) ≤ s/r = χG(K ), and H ×G(r,s)EG
implies K E H × G(r,s)EG. So,GC H × G(r,s)C H . 2

Yoav Kirsch recently told us that Theorem 2 was also obtained by Micha Perles, using a
different construction.
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Note

1. Strictly speaking we should write(r, s)G instead ofG(r,s), but the latter is considerably less cumbersome.
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7. J. Nešetřil, “Structure of graph homomorphisms I,” to appear inProceedings of Matrahaza Meeting, V.T. Sos

(Ed.), 1996.
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