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1. Introduction

The infinite dimensional Lie algebra s/, = A fll_)l can be realized in several ways as an algebra
of differential operators. This is done by identifying its simplest irreducible highest weight
representation (the so-called basic representation) with the tensor product of a polynomial
ring by the group algebra of a lattice. The two famous such realizations are the principal one,
due to Kac, Kazhdan, Lepowsky and Wilson [6] and the homogeneous one, due to Frenkel
and Kac [1]. But there are many other realizations. Kac and Peterson [5] have classified
them and showed that they are parametrized by the partitions v = (ny, na, ..., ny) of n.
The principal and homogeneous realizations can be regarded as the two extreme cases
corresponding respectively to v = (n) and v = (1, ..., 1). Ten Kroode and Van de Leur
[4] have calculated the vertex operators for all partitions v. In [8], we have shown that the
intertwining operator between the principal and homogeneous realizations can be described
very simply by using a combinatorial construction coming from the representation theory
of symmetric groups: the n-quotient, n-core and n-sign of a partition. The aim of this note
is to generalize this result to the realizations of sl corresponding to all partitions v of n.
To do this we introduce the notions of v-quotient, v-core and v-sign of a partition, which
reduce to the classical ones whenv = (1, ..., 1).

It would be interesting to investigate if these notions have also a meaning in the repre-
sentations of symmetric groups.

2. Several realizations of the basic representation of Aftlll

In this section we recall following [4] how to construct the different realizations of the basic
representation of Afllzl. We putv = (ny, ny, ..., nyg), with |v| = n.
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We follow the notation of [3]. Let A'" | be the subalgebra of @, consisting of the matrices
A = (ajj)i,jez such that

n

Qjtn,j+n = Qij, Zani+k.rzj+k =0, (I, jeZ). (1
=1

a1y

The subalgebra A(lzl @ Cc of ay, is isomorphic to A, ”;, and the affine Lie algebra qulll is

n

obtained by adjoining to A,(lll/l the degree operator

D=- Z \le_J Eij, 2

where the E;; are the units matrix. The Chevalley generators e;, f;, h; fori € {0,...,n—1}
are
e = Z Eiiv1, fi= Z Eiv1i,  hi =le, fil. 3
k=i mod n k=i mod n

We denote by b the Cartan subalgebra generated by hy, ..., h,_, D.

To describe how to associate a Heisenberg subalgebra denoted by H,, to a partition
v = (ny, ny, ..., ng) of n we need the construction of Aflljl as a loop algebra.

A;l_)/l is the central extension (C[t, '] ®c A,_1) @ Cc of the loop algebra of A,_, the
bracket being given by

[* @x, ' @yl =" @ (xy — yx) + k& tr (xy) ¢,
(x.y€A 1. k1€Z), 4

(see [3], 7.1). The isomorphism ¢ between the two realizations is

L(tj ® Er.s) = Z Er+ni,x+ni+nja (1 <r,s=<n-— 1) (5)
i€l

In this construction the degree operator acts by
[D,u(t*®x)]=ktt*@x), (xeA, i, keZ). (6)

Then, we need to change the usual basis of gl(n), {E; j}1<i j<,- We will work with
partitions in blocks of an n x n-matrix.
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To v we associate the matrix

By, Bp ... By
By By
By ... ... By

where B is a block of size n; x n;. The standard basis for the (7, j)th-block is the set of
matrices {Ep’ }1<p<n,.1zq<n, defined by

123
Ep,q T Enl+"'+Vli—l+Pvnl+'“+n/—1+q'
The commutation relations become

[E;]q, Efsl] = Sj,ksq,rE;,ls - 6i~18PsSE£LIj'

We can now return to A,(L)I. In its realization as a loop algebra we put for 1 </ < n; and
1<i<s

k
ai(l) =tk ® Ai,l

where A; ; corresponds to a matrix with zero entries, except on its (i, i)th diagonal block.
This block is made of 4 blocks of size [ x (n; —1),1 x 1, (n; —1) x (n; —1) and (n; —1) x I:

0 0 1
0 ... 0 1
0 0
t 0 0

We then define for1 <i <s —1

1 1
k k k
ﬂi()—_ ()——Ol()

_'al'.ni i+1niq”

n; nit+1

Theorem 1 [4, 5]

(i) Forv=(ny,...,ny)the subalgebra generated by the elements oti(lk), ﬂj(k)fork el, 1<
i<s,1<l<n; 1 <j<s—1isan Heisenberg subalgebra H,,.
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(i) The Heisenberg subalgebras H, form a complete non-redundant list of Heisenberg
subalgebras of A;l_)l up to conjugacy.

In particular, the principal Heisenberg subalgebra is associated to v = (n) and the homo-
geneous one tov=(1,..., 1).

There is a realization of the basic representation of A,(llll associated to each Heisenberg
subalgebra.

‘We then want to construct an intertwiner between all this realizations, and to do this we
introduce combinatorial notions.

3. Combinatorial notions

A partition . = (A, ..., A,) is a weakly decreasing sequence of nonnegative integers. We
denote by P the set of partitions, by |A| the weight of A and by /(1) = ¢ the length of A.

3.1. v-core, v-quotient, v-sign

Fix v = (ny, ..., ny) a partition of n. To any partition A, we associate the v-core A(,), the
v-quotient 1) and the v-sign €, (1) of A. These notions generalize the classical notions of
n-core, n-quotient and n-sign of a partition A (see [2, 11]) which correspond to the case
v={_(1,...,1).

To A we associate an infinite decreasing sequence

O = (Ao — 1,3 =2,..)=(0",02,...).

Such a decreasing sequence can be encoded by a configuration of beads on an abacus
with s infinite runners numbered O, ..., s — 1 from left to right. The possible positions of
a bead on the abacus are indicated by integer labels, the ith-runner being labelled by all
integers congruent modulo z to the numbers —(ng+- - - +ng_;11), —(ns+---+n,_jy1+1),
cory =g+t g+ g — 1),

Then one encodes A by putting a bead in position ' for each i. Note that all but a finite
number of negative positions are occupied by a bead. Thus, for A=(6,5,5,3,3,2, 1),
n=3andv = (2, 1), we have

0()\') = (69 47 35 07 _19 _3, _5, _7, _8, . .)

and the corresponding (2, 1)-abacus is shown in the left-part of figure 1.

It is convenient to call ‘holes’ the unoccupied positions with a label i < 0, and ‘particles’
the occupied positions with a label i > O (see the infinite wedge construction in [7]). By
definition, there are as many holes as particles.

One can now read the v-core of A on the corresponding abacus. This is the partition A,
corresponding to the bead configuration obtained by sliding the beads up as high as possible
on their respective runners. Thus, continuing our previous example, the bead configuration
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Figure 1. The (2, 1)-abacus of A = (6, 5, 5, 3, 3,2, 1) and of its (2, 1)-core A2,1) = (3, 1).

of the (2, 1)-core of A = (6, 5,5, 3, 3,2, 1) is shown in the right-part of figure 1, so that

Aoy =G, 1).
This description shows that there is a bijection between the set C, of v-core partitions (that
is, partitions p such that © = () and the set of s-tuples (ao, ai, . . . , a;—1) of integers such

that )", a; = 0.1Itis obtained by defining a; to be either minus the number of holes or plus the
number of particles on runner s — 1 — i of the bead configuration corresponding to . € C,.

Hence, one can associate to each 14 € C, a monomial g§° - - - ¢**7 in Clgg", ..., ¢=',].
We can then define the v-quotient of A. It is a (s — 1)-tuple of partitions denoted by
A0 = !, ..., A1), We are going to read the ith part of the v-quotient on the s — 1 — ith

runner. For each particle, in decreasing order, we count all the holes above it on the same
runner. This gives us a partition. For our example we have ANV=4,2andr! =(1,1,1,1).

Proposition 1 The map . — (hy, ") is a bijection from P to C, x P.
Proof: It is obvious by the construction of the v-core, the v-quotient. O

To finish we now define the v-sign of A by using two different orderings of the beads of
its bead configuration. Since in our setting the number of these beads is infinite, we have
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Figure 2. The two numberings of the finite bead configuration of A = (6, 5, 5, 3, 3,2, 1).

to restrict to a finite subset. An incomplete row with beads on all remaining integers is
also without holes. To obtain the finite part of the abacus we discard all the negatives rows
without holes such that the first row discarded is a complete row. The finite part gives us
the finite bead configuration of A. The first way of numbering the beads is given by the
natural ordering of their labels. For the second one, we sort the beads into different layers,
the jth layer (j > 1) consisting of those beads which have j — 1 beads above them on their
respective runners in the finite bead configuration. In this numbering, called 7 -numbering,
a bead on runner i and layer j is numbered before a bead on runner i; and layer j; if
and only if j < jj, or j = j; and i > i;. When we compare these two numberings, we get
a permutation i, whose sign is denoted by €, (1). This is the v-sign of A. In our running
example, figure 2 shows the natural numbering (left) and the 7 -numbering (right). Thus

o236 T80
TenW =11 35 274 6 9 8)

so that e 1) (A) = 1.
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3.2.  Symmetric functions

We review the necessary background in the theory of symmetric functions (see [9]). We
denote by Sym(X) the algebra of symmetric functions in an infinite set of variables
X ={x1, x2, ...} with coefficients in C. When there is no danger of confusion we shall
omit X and simply write Sym. The algebra Sym can also be regarded as the polynomial
ring Sym = C[ py; k € N*] where p; = ix{‘ is the power sum symmetric function. An
important linear basis of Sym is the basis of Schur’s S-functions

5 = Z X () Pu

o e

where for A and £ = (1™ - - - ™) two partitions of m, we put
pu:P;nl"'P;n", zp = 1"mil- - r"rm,l,

and x, () is the irreducible character x; of S,, evaluated on the conjugacy class of cycle-
type u.

Let (-, -) be the scalar product of Sym defined by (sy, s,) = 8., Where 8y, is Kronecker’s
symbol. We denote by Dy the adjoint of the multiplication by f withrespectto (-, -), thatis,

(Drg. h) = (g. fh), (f. g heSym).

Dy is in fact a differential operator since we have for f = f(p1, p2,...)

D f< 0 ) 0 0 )
= e e NN e B
4 op1 dp> 0pn

The multiplication of an S-function by a power sum py is conveniently described as
follows. It is a particular case of a formula of Muir for multiplying an S-function by a
monomial symmetric function (see [10]).

Let T = (7;);> be an infinite sequence of pairwise distinct integers such that t; = —i + 1
for i large enough. Then there is a finite permutation w such that w(r) = 6(A) for some
partition A. It is convenient to introduce the notation

S =sgnws;, @)

and to extend this notation to sequences 7 such that 7; = t; for some pair i, j, by putting
S: = 01in this case. Then (see e.g. [9] I 3, Ex. 11)

Pk Sr = Z Sr+k5[ (8)

i>1

where €; = (§;;) j>1. Clearly, only a finite number of summands have all their parts pairwise
distinct and the above sum is finite.
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The partitions p such that s, occurs in pys, are those obtained from A by addition of a
ribbon (or rim-hook) of length k. The sign of s,, is then equal to the sign of the permutation
w such that 5,4, = sgn ws;. Similarly, we have

Dy Se = See- ©)
i>1
Finally, we denote by Sym(X1, ..., X;) the C-algebra of functions of j sets of vari-
ables X1, ..., X;, symmetric in each set separately. In other words, Sym(Xy, ..., X;) =
Clpr(X;); k e N*, 1 <i <n]. Alinear basis of this algebra is given by the products s, (X)
-+ - 84 (Xj) where ol .., ol are arbitrary partitions.

We denote respectively by pi(X;) and D, (x,, the endomorphisms

~ 0
DeX)(f) = pe(XD) f,  Dpxp(f) = kmﬂ (f eSym(Xy, ..., X;)).

More generally, for g € Sym(X;, ..., X;), we define ¢ and D, by expanding g as a poly-
nomial in the variables p;(X;) and taking the corresponding polynomials in the p,(X;) or
Dp(x)-

4. Construction of the intertwiners

We generalize to all the realizations of the basic representation of A'", constructed in
[4] the results obtained for the homogeneous one in [8]. Thoughout this section we put
v=(ny,ny,...,ns), with |v| = n.

In fact, the aim of this section is to show that the notions of v-sign, v-quotient and v-core
introduced before allow to give a simple combinatorial description of the isomorphism
between constructions of [6] (for the principal realization) and [4] (for the others) of the
basic representation of Afll_)l.

Let (Ag, ..., A,_1, 8) denote the basis of h* dual to (h, ..., h,_1, D). We are going to
describe the several explicit realizations of the basic representation of qulll linked to the sev-
eral Heisenberg subalgebras introduced in Section 2. This representation is the irreducible
representation L(A() with highest weight Ag (see [3] 9.3, 14).

We consider the Fock representation «p of Afll_) |» Obtained by restricting to Af,l_)l the action
of a,, on Sym (see [3] or [8]). We have the explicit description of the Chevalley generators
in this representation:

kp(e)ss =Y su. kp(f)si= ) s, (10)
7 v

where p (resp. v) runs through the partitions obtained from A by removing (resp. adding)
a node with content d = i mod n.

We know (see [8]) that L(A) in its principal picture is isomorphic to the subalgebra of
Sym 7™ = C[p;, i 0 mod n].
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We shall now transport this Fock representation into the picture corresponding to the
Heisenberg subalgebra H,,, and describe its unique irreducible component of type L(Ay).
Let us recall that L(A() does not remain irreducible by restriction to H,,, we have

L(Ao) In, =Q(Ao) Q¢ S(H,) an
where the space €2 (/) is an irreducible module over the Heisenberg subalgebra consisting
of all vectors in L(Ag) which are killed by the o)’ and 8 with k > 0.

We define the C-vector space B, = M ®¢ Sym(Xy, X1, ..., X;_1) where M is the sub-
space of Clg;", ..., ¢*',] with basis {g* - -- ¢ | @+ -+~ +a,_1 = 0}.
We can now introduce the main tool of the construction which is the generalization of

the intertwiner ®,, of [8].

Definition 1 Denote by I1, the isomorphism of C-vector spaces given by

1, : Sym(X) — B, (12)
s:(X) = €,(Mg’ g @ 530(Xo) - s35-1 (X 1)

where aq, . .., a;_; are related to A, as in Section 2.1.

The fact that this is indeed an isomorphism of vector spaces results from Proposition 1.
The map IT, allows to transport the representation «p of Afll_)l on Sym to a representation
Kk, on 3, defined by
Kky,(x) =TI, okp(x) o H;l, (x € A;(11—)1) .
For g € Sym(Xy, ..., X,;_1) we define endomorphisms of B, by

gm@ f)=m@Z(f), Dg(m® f)=m® Dyg(f),
(mGM, feSym(Xo,...,Xs,l)).

Theorem2 ForkeN,ie{l,...,s},le{l,...,n; — 1}, we have

k)
Kv(ai(l ) = Dpl+n,-k(Xa—i—l)’ (13)
Ky (Ol;fk)) = Puk—1(Xs—i—1) kK #0, (14)
1 1
k
Ku(ﬁ,’( )) = ;Dpnik(Xsf,f]) - n_—-HDpn,-Jr]k(X.;—i)? (15)
_ 1, 1,
(B7Y) = —hukXomio) = ——Pu i (Xo). (16)
i i+l

Proof: To prove this result we are going to use the Boson-Fermion correspondence, i.e.
the isomorphism between the realization of L(Ag),,, in Sym and its realization as an
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infinite-wedge representation described below (see [3], 14.9). This is the alternative real-
ization of L(Ay),,, in a space F with basis vectors

Up = Ujy NUjpg N NUj N

where I = (i )x>1 runs through all decreasing sequences of integers such that iy = —k + 1
for k sufficiently large. Here, u; denotes the canonical basis of CZ on which the matrix units
operate by E;jur = &;;u;. The Lie algebra A, of Z x Z-matrices with a finite number of
nonzero entries acts on JF by derivation, that is,

EijQuiy Nuiyg A --2) = (Eijug) ANy Ne- -+ ugy AN (Ejju) A

and this extends uniquely to a projective representation of a,, hence to a linear represen-
tation of a., hence by restriction to a linear representation of Afll_)].

In fact, here, we use the multicomponent fermionic version of [4]. Instead of the u; we
relabel the basis vector according to v, we put:

L+ 1K) = gy, ke (18)

Then the basis vectors become u;, (k1) A ui, (ko) A ---.
We have then to introduce fermionic creation and annihilation operators for the basis
vectors:

Wi (k) (i, (k) A iy (ko) A --0) i= i (k) Awg, (ki) Augy (ko) A--
i () i, (o) Ay (ko) A=) = > (=178 8 i, (ky) A g, (ko)
=
/\"'/\ui//(.;j)/\"' .

One can easily check the anti-commutation relations of these multicomponent fermions.
One has

vityyr ) ifk>0

S (k)l//i ) = { _wi*(l)wl. (k) otherwise,

The unique isomorphism between the ‘bosonic’ realization Sym and the ‘fermionic’
realization F is the so-called boson-fermion correspondence o : Sym — F. It sends the
S-function s, onto the infinite wedge

o(sy,) = Upny-

Using (18) we can easily compute 8 (1) from the multicomponent fermions. Now, following
[4], we have

al) = Z S (Y L k) s (19)

reZ
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Then

ai(lk) (”v(e(x))) = Z up

1

where u,(9(,)) is obtained from ug(;) by relabelling it following (18) and u; is obtained from
Uy by changing the parts equal to u; (r + [ 4 n;k) into u; (r) by using (19). Then with
this result, the definition of the v-quotient, Eqgs. (8), (9), and the definition of I, we obtain
the result. O

Theorem 2 shows that the representation «,, is a realization of the Fock representation of
Afll_)1 in which the operators of the subalgebra H, act by multiplication and derivation with
respect to the variables p, ;—;(X;—;—1). Hence we have obtained the Fock representation
in the picture corresponding to the Heisenberg subalgebra 7, . It remains to single out the
representation L(Ay) inside B,,.

Theorem 3  The realization of L(A) in B, is obtained by applying 1, to the realization
of L(Ao) in Sym. Let A be the subring of Sym(Xy, ..., X;_1) generated by the power
sums ppi—1(Xs—ic1) k> 1, 1 <i <s5. We have

Mn,(7T")=MQA.

Proof: Because of the decomposition (11) we have to prove that M is equal to Q2 (Ay).
We use the operators T; = Q; Qijrll introduced by [4]. The Q; satisfy the relations:

Qi) = —y;(k)Q; ifi # j,
Qivi (k) = =y (k)Q; ifi # J,
Qivi(k) = —yi(k+1Q;,
Qi (k) = ¥/ (k+1)Q;,
0 'tk = =y, Q" ifi # j,
0 Yk = —yik Q" ifi # j,
0 ik = —yitk — DO,
0 i) = Ytk — 1o,
Then by [4] we know that  (Ag) is isomorphic to the group generated by T; for1 <i < s—1.
With the definition of the action of 7; described above on the vacuum vector vy written in the

multicomponent basis vector and the definition of the v-core we obtain the desired result.
The fact that S(H)) is isomorphic to A follows from Theorem 2. O
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