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Abstract. We prove two determinantal identities that generalize the Vandermonde determinant
identity

In the first of our identities the set {0, ..., m} indexing the rows and columns of the determinant is
replaced by an arbitrary finite order ideal in the set of sequences of nonnegative integers which are
0 except for a finite number of components. In the second the index set is replaced by an arbitrary
finite order ideal in the set of all partitions.
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In this paper we derive two determinantal identities that generalize the Vander-
monde determinant identity

Let us denote by S the set of all sequences (A0) A1, ...) of nonnegative integers
with all but a finite number of the A's equal to zero. For brevity we also
use (A0, A1, ..., \k) for the sequence (A0, A 1 , . . . , Ak, 0, 0, ...). S has a natural
partial ordering: A < n if Ak < Mk for k = 0, 1, 2,.... By an order ideal in S we
mean a subset I of S such that if p e I and A e S and A < n, then A e I. In
the first of our identities the set {0, ..., m} indexing the rows and columns of
the Vandermonde determinant is replaced by an arbitrary finite order ideal in
S. By a partition we mean an element of S which is weakly decreasing. Let P
denote the set of all partitions. An order ideal in P is a subset I of P with the
property that if A, p e P and A < \i and /j e I, then A e I. In the second identity
the index set is an arbitrary finite order ideal in the set of all partitions. This
identity involves the shift operator a which assigns to an element A = (A0, A1, ...)
of S the sequence s(A) = (A1, A2, ...).

Our identities involve a two-dimensional array xij, i, j > 0, of indeterminates.
For each pair A, n e S we define a monomial x^ in the x's by



Here the monomial factor x1 arises from the partition (11), and x2 arises from
(21). The six binomial factors arise from the six covering pairs {(0), (1)}, {(0),
(2)}, {(1), (2)}, {(1), (11)}, {(2), (21)}, and {(11), (21)}.

Theorem 2 states that

If we order the rows and columns as we did the five partitions above, then the
matrix in our theorem is

One sees immediately that if I is the ideal consisting of the partitions
(0), (1), . . . , (m), then we recover the standard Vandermonde determinant as
special cases of both Theorem 1 and Theorem 2. The proof of Theorem 1 is
just like that of Theorem 2, only simpler. Thus in what follows we discuss only
the proof of Theorem 2. Here is an example of Theorem 2.

Example. Let I be the order ideal of P consisting of the partitions (0), (1),
(2), (11), and (21). To simplify the notation for this example, let us replace the
variables

THEOREM 2. Let I be a finite order ideal in P. Then

THEOREM 1. Let I be a finite order ideal in S. Then

Suppose that X and n are partitions with A < n. We say that p. covers A (and
write A -< n) if A and ^ differ in exactly one coordinate. Suppose that \i covers
A and differs from A in just the rth coordinate. Then we denote by AX(/JL, A)
the binomial difference xr,ltr - xr,\r.

Now we can state our results:
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Implicit in the proof we will give is a method for computing the determinant.
We now illustrate the method for this example. Let / be the ideal in the example.
The largest index of any nonzero part of a partition in / is 1, and the largest
value of such a part is 1. The two partitions in I that achieve this maximum
are (11) and (21). To reduce M to block-triangular form, we subtract from the
(11) and (21) rows appropriate combinations of rows corresponding to partitions
which they cover. In this case we subtract the (1) row from the (11) row and
the (2) row from the (21) row. Then M becomes

We factor out x\(y1 -y0) from the fourth row and x2(y1 -y0) from the last row.
The determinant is now the product of two Vandermonde determinants, and we
easily verify that Theorem 2 is correct in this case.

The general proof is just a more elaborate version of the preceding computa-
tion. It requires a simple property of Vandermonde matrices given in the lemma
below.

LEMMA. Let Vm denote the Vandermonde matrix Then there is a

linear combination of the first m rows of Vm which, when subtracted from the last
row, reduces the last row to

Proof of Lemma. Since the upper-left m-by-m minor of Vm is also Vandermonde,
it is nonsingular. Thus a linear combination of the first m rows can reduce the
last row to the form (0, .. . , 0, c) for some c. But then we have

detVm =

The lemma then follows immediately from the standard Vandermonde determi-
nant formula. d

Proof of Theorem 2. Let / be an order ideal in the set of all partitions. Let M
be the matrix (X'A')A (€I- If I is empty or consists of just the all-zero partition,
the result is trivial. We therefore assume that / contains a nonzero partition.

Let r be the largest integer such that / contains a partition A with Ar > 0.
We may assume by induction that Theorem 2 is true for order ideals containing
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fewer partitions than I. Let m be the largest value of Ar for all partitions A in
I. Then m > 0.

Let J be the subset of I consisting of those partitions A of / such that Ar < m.
Let K be the set of those partitions in I for which Ar = m. Then I is the
disjoint union of the nonempty sets J and K, so that J and K determine a block
decomposition of M into the four blocks MJJ, MJK, MKJ, and MKJ,

Next we show how one may subtract a linear combination of J rows from K
rows in order to make the block MKJ zero. Let A = (A0, A1, ..., A r_1 , m) be
any partition in K. Consider the submatrix of M whose rows are indexed by the
partitions (A0, ..., A r_1 , k), k = 0, .. . , m. These partitions are part of / since /
is an order ideal. Moreover, those with k < m are precisely the partitions of J
that are covered by A. Each column of this submatrix is one of the columns

multiplied by a monomial in the other x's. Hence, by applying the same row
operations given by the lemma, we can reduce the row with index A so that all
its entries are zero except those in the columns from K. If \i € K, then the
(A, fj) entry of M, which was originally x$, is replaced by

Let us denote by M' the KK block after the preceding reduction. Then

det M = det MJJ • det M'.

By induction we can use Theorem 2 to compute det MJJ.
Now we consider M'. Let v denote the partition (m, m, ..., m) with r + 1

initial parts equal to m and the rest of the parts equal to 0. For A e K let
A' denote the partition obtained by subtracting m from the parts of A. Then
A = A' + v. Define the order ideal K' = {A'|A 6 K}. Suppose that, for p, & K,
we divide the //th row of M' by

Then we obtain a matrix M" with

Suppose that we introduce new variables yi,j = xi,m+j. Then M" becomes
the matrix
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so we can apply Theorem 2 (inductively) to evaluate det M". After applying
Theorem 2 and replacing the y's by the x's, we find that

Also,

Theorem 2 follows by combining the preceding three equations. D

Remark. The study of these determinants arose as follows. Let m be a positive
integer, and let Pm denote the set of partitions of m, i.e., partitions A with
^2k>0 ^k = m. The set of partitions Pm is not an order ideal. However, if we
apply to each A e Pm the operator which subtracts 1 from each of the nonzero
parts of A, then we obtain an order ideal Qm. For any two partitions A, /x let
A • fj, = Y^,k>0 ^kUk- In [1] it was necessary to show that the matrix (qA'/J)A eQm
was nonsingular for certain values of q. Out of curiosity we computed the
determinants of some of these matrices and were surprised by the factorization
of these determinants into products of powers of q and powers of binomials of
the form q' - 1. This led to the discovery of Theorem 2, which immediately
implies the observed factorization when we replace the variables xi,j with qi.
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