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Abstract. We introduce a family of planar regions, called Aztec diamonds, and study tilings of these
regions by dominoes. Our main result is that the Aztec diamond of order n has exactly 2n(n+1)/2

domino tilings. In this, the first half of a two-part paper, we give two proofs of this formula. The
first proof exploits a connection between domino tilings and the alternating-sign matrices of Mills,
Robbins, and Rumsey. In particular, a domino tiling of an Aztec diamond corresponds to a compatible
pair of alternating-sign matrices. The second proof of our formula uses monotone triangles, which
constitute another form taken by alternating-sign matrices; by assigning each monotone triangle a
suitable weight, we can count domino tilings of an Aztec diamond.
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1. Introduction

The Aztec diamond of order n is the union of those lattice squares [a, a +
1] x [b, b + 1] c R2 (a, b e Z) that lie completely inside the tilted square
{(x, y) : |x| + |y| < n + 1}. (Figure 1 shows the Aztec diamond of order 3.) A
domino is a closed 1 x 2 or 2 x 1 rectangle in R2 with corners in Z2, and a tiling
of a region R by dominoes is a set of dominoes whose interiors are disjoint and
whose union is R. In this paper we will show that the number of domino tilings
of the Aztec diamond of order n is 2n(n+1)/2. We will furthermore obtain more
refined enumerative information regarding two natural statistics of a tiling: the
number of vertical tiles and the "rank" of the tiling (to be defined shortly).

Fix a tiling T of the Aztec diamond of order n. Every horizontal line y = k
divides the Aztec diamond into two regions of even area; it follows that the

*Part II will appear in the next issue.
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Fig. 1. Aztec diamond of order 3.

Fig. 2. The rotation move.

number of dominoes that straddle the line must be even. Letting k vary, we see
that the total number of vertical dominoes must be even; accordingly, we define
v(T) as half the number of vertical tiles in T.

The most intuitively accessible definition of the rank statistic r(T) comes by
way of the notion of an "elementary move," which is an operation that converts
one domino tiling of a region into another by removing two dominoes that form a
2x2 block and putting them back rotated by 90° (see Figure 2). It will be shown
that any domino tiling of an Aztec diamond can be reached from any other by
a sequence of such moves; we may therefore define the rank of the tiling T as
the minimum number of moves required to reach T from the "all-horizontals"
tiling (shown in Figure 5(a)). Thus, all-horizontals tiling itself has rank 0, and
the tiling shown on the right side of Figure 2 (viewed as a tiling of the order-1
Aztec diamond) has rank 1.

Let

THEOREM:

where T ranges over all domino tilings of the order-n Aztec diamond; this is a
polynomial in x and q. The main result of this paper is



where we adopt the convention that an omitted variable is set equal to 1.
In this two-part article, we will give four ways of understanding the formula

for AD(n). The first exploits the relationship between tilings of the Aztec
diamond and the still fairly mysterious alternating-sign matrices introduced by
Mills, Robbins, and Rumsey in [12]. Our second proof yields the formula for
AD(n) as a special case of a theorem on monotone triangles (combinatorial
objects closely related to alternating-sign matrices and introduced in [13]). The
third proof comes from the representation theory of the general linear group.
The last proof yields the more general formula for AD(n; x, q) and also leads
to a bijection between tilings of the order-n diamond and bit strings of length
n(n + 1)/2. We conclude by pointing out some connections between our results
and the square ice model studied in statistical mechanics.

2. Height functions

It is not at all clear from the definition of rank given in Section 1 just how one
would calculate the rank of a specific tiling; for instance, it happens that the
all-verticals tiling of the order-n Aztec diamond has rank n(n + 1)(2n +1)/6 and
that every other tiling has strictly smaller rank, but it is far from obvious how
one would check this. Therefore, we will now give a more technical definition
of the rank and prove that it coincides with the definition given above. We
use the vertex-marking scheme described in [21]; it is a special case of the
boundary-invariants approach to tiling problems introduced in [3].

It will be conceptually helpful to extend a tiling T of the Aztec diamond to
a tiling T+ of the entire plane by tiling the complement of the Aztec diamond
by horizontal dominoes in the manner shown in Figure 3 for n = 3. Let
G be the graph with vertices {(a, b) € Z2 : |a| + |b| < n + 1} and with an
edge between (a, 6) and (a', b) precisely when |a - o'| + \b - b'\ = 1. Color
the lattice squares of Z2 in a black-white checkerboard fashion so that the
line {(x, y) : x + y = n + 1} that bounds the upper-right border of the Aztec
diamond passes through only white squares. Call this the standard (or even)
coloring. Orient each edge of G so that a black square lies to its left and a
white square lies to its right; this gives the standard orientation of the graph
G, with arrows circulating clockwise around white squares and counterclockwise
around black squares. (Figure 4 shows the case n = 3.) Write u —» v if uv

ALTERNATING-SIGN MATRICES AND DOMINO TILINGS 113

As important special cases we have
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Fig. 3. Extending a tiling to the whole plane.

is an edge of G whose standard orientation is from u to v. Call v = (a, 6) a
boundary vertex of G if |a| + |b| = n or n + 1, and let the boundary cycle be
the closed zigzag path (-n - 1, 0), (-n, 0), (-n, 1), (-n + 1, 1), (-n + 1,2), . . . ,
(-1, n), (0, n), (0, n+1), (0, n), (1, n), . . . , (n+ 1, 0), ..., (0, -n-1), ..., (-n-
1, 0). Call the vertex v = (a, 6) even if it is the upper-left corner of a white
square (i.e., if a + b + n + 1 is even) and odd otherwise, so that in particular the
four corner vertices (-n - 1, 0), (n + 1, 0), (0, -n - 1), (0, n + 1) are even.

If one traverses the six edges that form the boundary of any domino, one
will follow three edges in the positive sense and three edges in the negative
sense. Also, every vertex v of G lies on the boundary of at least one domino
in T+. Hence, if for definiteness one assigns height 0 to the leftmost vertex
(-n -1,0) of G, there is for each tiling T a unique way of assigning integer-
valued heights HT(v) to all the vertices v of G, subject to the defining constraint
that if the edge uv belongs to the boundary of some tile in T+ with u —> v,
then HT(V) = HT(U) + 1. The resulting function HT(-) is characterized by two
properties:

(i) H(v) takes on the successive values 0, 1, 2, ..., 2n + 1, 2n + 2, 2n + 1, ...,
0, ..., 2n + 2, ..., 0 as v travels along the boundary cycle of G;

(ii) if u -> v, then H(v) is either H(u) + 1 or H(u) - 3.

The former is clear, since every edge of the boundary cycle is part of the boundary
of a tile of T+. To see that (ii) holds, note that if the edge uv belongs to T+

(i.e., is part of the boundary of a tile of T+), then H(v) = H(u) + 1, whereas if
uv does not belong to T+, then it bisects a domino of T+, in which case we see
(by considering the other edges of that domino) that H(v) = H(u) - 3.

In the other direction, notice that every height function H(•) satisfying (i) and
(ii) arises from a tiling T and that the operation T-> HT is reversible: given a
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Fig. 4. Oriented edges of the square grid.

function H satisfying (i) and (ii), we can place a domino covering every edge uv
of G with |H(u) - H(v} | = 3, obtaining thereby a tiling of the Aztec diamond,
which will coincide with the original tiling T in the event H = HT- Thus there
is a bijection between tilings of the Aztec diamond and height functions H(•) on
the graph G that satisfy (i) and (ii). For a geometric interpretation of H(-}, see
[21].

Figure 5 shows the height functions corresponding to two special tilings of the
Aztec diamond, namely, (a) the all-horizontals tiling Tmin and (b) the all-verticals
tiling Tmax- Since HT(v) is independent of T modulo 4, we are led to define the
reduced height
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The reduced-height function of Tmin is thus constantly zero; the reduced-height
function of Tmax is as shown in part (c) of Figure 5. Last, we define the rank
statistic

It is easy to verify that if one performs an elementary rotation on a 2-by-2
block centered at a vertex v (a 'V-move" for short), the effect is to leave hT(v)
alone for all v'= v and to either increase or decrease h T (v ) by 1; we call the
moves raising and lowering, respectively.

We may now verify that r(T) (as defined by the preceding equation) is equal
to the number of elementary moves required to get from T to Tmin. Since
r(Tmin) = 0 and since an elementary move merely changes the reduced height of
a single vertex by ±1, at least r(T) moves are required to get from T to Tmin.
It remains to verify that for every tiling T there is a sequence of moves leading
from T to Tmin in which only r(T) moves are made. To find such a sequence, let
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Fig. 5. Height functions of the all-horizontals and all-verticals tilings.

TO = T and iterate the following operation for i = 0, 1, 2, ... : Select a vertex Vi

at which hTi(.) achieves its maximum value. If hTi(vi) = 0, then T, = Tmin and we
are done. Otherwise, we have hT i(v i) > 0, so that .HTi(vi) > HTmin(vi) with vi not
on the boundary of G (since hTi vanishes on the boundary). Reducing HTi(V i)
by 4 preserves the legality of the height labeling and corresponds to performing
a vi-move on Ti,, yielding a new tiling Ti+1 with r(T i+1) = r(Ti)- 1. By repeating
this process, we continue to reduce the rank statistic by 1 until the procedure
terminates at Tr(T) = Tmin.

Thus, we have shown that every tiling of the Aztec diamond may be reached
from every other by means of moves of the sort described. This incidentally
furnishes another proof that the number of dominoes of each orientation (hori-
zontal or vertical) must be even, since this is clearly true of Tmin and since every
move annihilates two horizontal dominoes and creates two vertical ones, or vice
versa.

The partial ordering on the set of tilings of an Aztec diamond given by height
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functions has a pleasant interpretation in terms of a two-person game. Let T, T
be tilings of the Aztec diamond of order n. We give player A the tiling T
and player B the tiling T'. On each round, A makes a rotation move and B
has the choice of either making the identical move (assuming it is available to
her) or passing. Here, to make an identical move means to find an identically
situated 2-by-2 block in the identical orientation and give it a 90° twist. If, after
a certain number of complete rounds (i.e., moves by A and countermoves by
B), A has solved her puzzle (that is, reduced the tiling to the all-horizontals
tiling) and B has not, then A is deemed the winner; otherwise, B wins. Put
T' x T if and only if B has a winning strategy in this game. It is easy to verify
(without even considering any facts about tilings) that the relation ^ is reflexive,
asymmetric, and transitive. In fact, T < T if and only if h T (v) < h T ( v ) for all
v e G. Moreover, the ideal strategy for either player is to make only lowering
moves —although in the case T' < T, it turns out that B can win by copying A
whenever possible, regardless of whether such moves are lowering or raising.
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3. Alternating-sign matrices

An alternating-sign matrix is a square matrix (n-by-n, say) all of whose entries
are 1, -1, and 0, such that every row sum and column sum is 1 and such that
the nonzero entries in each row and column alternate in sign; for instance,

is a 4-by-4 alternating-sign matrix. (For an overview of what is currently known
about such matrices, see [16].) Let An denote the set of n-by-n alternating-sign
matrices.

If A is an n-by-n alternating-sign matrix with entries ay (1 < i, j < n), we
may define

for 0 < i, j < n. We call the (n + l)-by-(n + 1) matrix A* the skewed summation
of A. (It is a variant of the corner-sum matrix of [17].) The matrices A* that
arise in this way are precisely those such that ai0 = a0i = i and a*in = ani*, = n - i
for 0 < i < n and such that adjacent entries of A' in any row or column differ by
1. Note that ay = 1/2(ai-1,j + ai,j-1

* - a*i-1,j-1 - a*i,j), so that an alternating-sign
matrix can be recovered from its skewed summation. Thus, the alternating-sign
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matrix A defined above has

as its skewed summation.
Our goal is to show that the domino tilings of the Aztec diamond of order

n are in 1-to-1 correspondence with pairs (A, B), where A e An B e An+1, and
A, B jointly satisfy the compatibility relation introduced in [17]. We will do this
by means of the height functions defined in Section 2.

Given a tiling T of the order-n Aztec diamond, we construct matrices A' and
B' that record HT(V) for v odd and even, respectively (where v = (x, y) e G is
even or odd according to the parity of x + y + n + 1). We let

Note that the matrix elements on the boundary of A' and B' are independent of
the particular tiling T. Also note that in both matrices consecutive elements in
any row or column differ by exactly 2. Therefore, under suitable normalization
A' and B' can be seen as skewed summations of alternating-sign matrices A and
B. Specifically, by setting a*ij = (a'ij - 1)/2 and by = by/2, we arrive at matrices
A*, B*, which, under the inverse of the skewed summation operation, yield the

for 0 < i, j < n and

for 0 < i, j < n + 1; thus, the tiling of Figure 6 gives the matrices
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Fig. 6. An Aztec tiling converts into two alternating-sign matrices.

Conversely, A and B determine A' and B', which determine HT, which determines
T.

There is an easy way of reading off A and B from the domino tiling T, without
using height functions. First, note that the even vertices in the interior of the
Aztec diamond of order n are arranged in the form of a tilted n-by-n square.

matrices A, B that we desire:



Also note that each such vertex is incident with 2, 3, or 4 dominoes belonging
to the tiling T; if we mark each such site with a 1, 0, or -1 (respectively), we
get the entries of A, where the upper-left corner of each matrix corresponds to
positions near the left corner of the diamond. Similarly, the odd vertices of the
Aztec diamond (including those on the boundary) form a tilted (n + 1)-by-(n + 1)
square. If we mark each such site with a -1, 0, or 1 according to whether it is
incident with 2, 3, or 4 dominoes of the extended tiling T+, we get the entries
of B. (We omit the proof that this construction agrees with the one we gave
earlier, since it is only the first one that we actually need.)

The legality constraint (ii) from the Section 2 tells us that for 1 < i, j < n,
the internal entries bij of the matrix B' must be equal to
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Thus, in all but one of the six possible cases for the submatrix

shown in Table 1, the value of by is uniquely determined; only in the case

arising from ay = 1 does bij have two possible values, namely, 2k - 2 and 2k + 2.
It now follows that if we hold A fixed, the number of (n + 1)-by-(n + 1)

alternating-sign matrices B such that the pair (A, B) yields a legal height function
is equal to 2N+(A) where N+(A) is the number of +11s in the n-by-n alternating-
sign matrix A. That is,

Switching the roles of A and B, we may by a similar argument prove
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where N(·) gives the number of —1's in an alternating-sign matrix. Replacing
n by n - 1 and B by A in (2), we get

On the other hand, N+(A) = N-(A) + n for all A e An, so (1) tells us that

Combining (3) and (4), we derive the recurrence relation

Table 1. From domino tilings to alternating-sign matrices

aij

0

0

0

0

1

-1

b'ij

2k + 2

2k + 2

2k

2k

2k -2 or 2k + 2

2k



as a corollary to their Theorem 2. The result also appears in [17].)
In the remainder of this section we discuss tilings and alternating-sign matrices

from the point of view of lattice theory. Specifically, we show that the tilings of
an order-n Aztec diamond correspond to the lower ideals (or down-sets) of a
partially ordered set Pn, whereas the n-by-n alternating-sign matrices correspond
to the lower ideals of a partially ordered set Qn, such that Pn consists of a copy
of Qn interleaved with a copy of Qn+1. (For terminology associated with partially
ordered sets, see [20].)

We start by observing that the set of legal height functions H on the order-n
Aztec diamond is a poset in the obvious component-wise way, with H1 > H2

if H 1 (V) > H2(v) for all v € G. Moreover, the consistency conditions (i) and
(ii) are such that if H1 and H2 are legal height functions, then so are H1 V H2

and H1 A H2, defined by (H1 V H2)(v) = max(H1(v), H2(v)) and (H1 A H2)(v) =
min(H1(v), H 2 (v)) ; thus, our partially ordered set is actually a distributive lattice.

An, the set of n-by-n alternating-sign matrices, also has a lattice structure.
Given A1, A2 e An, we form their skewed summations A*1, A*2 and declare
A1 > A2 if every entry of A1* is greater than or equal to the corresponding entry
of A*2. This partial ordering on alternating-sign matrices is intimately connected
with the partial ordering on tilings: If T1, T2 are tilings, then T1 > T2 if and only
if A1 > A2 and B1 > B2, where (Ai, Bi) is the pair of alternating-sign matrices
corresponding to the tiling Ti (i = 1, 2).

For each vertex v = (x, y) of the graph G associated with the order-n Aztec
diamond (with x, y e Z, |x| + |y| < n + 1), let m = HTmin(V) and M = HTmax(v),
so that m, m + 4, ..., M are the possible values of HT(V), and introduce points
(x, y, m), (x, y, m + 4), .. . , (x, y, M - 4) e Z3 lying above the vertex v = (x, y).
(Note that if (x, y} is on the boundary of G, m = M, so the set of points
above (x, y) is empty.) Let P denote the set of all such points as v ranges
over the vertex-set of G. We make P a directed graph by putting an edge from
(x, y, z) e P to (x', y', z') e P provided z = z' + 1 and |x —x| + |y — y'| = 1; we
then make P a partially ordered set by putting (x, y, z) > (x1, y', z') if there is
a sequence of arrows leading from (x, y, z) to (x', y', z').

To each height function H we may assign a subset IH C P, with IH =
{(x, y, z) e P : z < H(x, y)}. This operation is easily seen to be a bijection
between the legal height functions H and the lower ideals of the partially ordered
set P. Indeed, the natural lattice structure on the set of height functions H
(with H1 < H2 precisely if H1(v) < H2(v) for all v e G) makes it isomorphic to
the lattice J(P) of lower ideals of P, and the rank r(T) of a tiling T (as defined
above) equals the rank of HT in the lattice, which in turn equals the cardinality
of IHT.
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which suffices to prove our formula for AD(n). (Mills, Robbins, and Rumsey
[12] prove
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Note that for all (x, y, z) e P, x + y + z = n + 1 mod 2. The poset P
decomposes naturally into two complementary subsets peven and podd, where a
point (x, y, z) e P belongs to Peven if z is even and Podd if z is odd. The
vertices of Peven form a regular tetrahedral array of side n, resting on a side (as
opposed to a face); that is, it consists of a 1-by-n array of nodes, above which
lies a 2-by-(n - 1) array of nodes, above which lies a 3-by-(n - 2) array of nodes,
and so on, up to the n-by-1 array of nodes at the top. The partial ordering of P
restricted to Peven makes Peven a poset in its own right, with (x, y, z) covering
(x', y', z') when z = z' + 2 and |x - x'| = |y - y'| = 1. Similarly, the vertices of
podd form a tetrahedral array of side n -1; each vertex of Podd lies at the center
of a small tetrahedron with vertices in peven. Podd, like peven, is a poset in itself,
with (x, y, z) covering (x', y', z1) when z = z' + 2 and |x - x'| = |y - y'| = 1.

Our correspondence between height functions HT and pairs (A, B) of alter-
nating-sign matrices tells us that An, as a lattice, is isomorphic to J(Pn

odd), and
An+1 is isomorphic to J(Pn

even). Indeed, under this isomorphism, A e An and
B e An+1 are compatible if and only if the union of the down-sets of Peven

and Podd corresponding to A and B is a down-set of P = Peven U Podd. (This
coincides with the notion of compatibility given in [17].) If we let Qn denote the
tetrahedral poset Podd (so that Peven is isomorphic to Qn+1), then we see that
Pn indeed consists of a copy of Qn interleaved with a copy of Qn+1.

As an aid to visualizing the poset P and its lower ideals, we may use stacks
of marked 2-by-2-by-4/3 bricks resting on a special multilevel tray. The bottom
face of each brick is marked by a line joining midpoints of two opposite edges,
and the top face is marked by another such line, skew to the mark on the bottom
face (see Figure 7). These marks constrain the ways in which we allow ourselves
to stack the bricks. To enforce these constraints, whittle away the edges of the
brick on the top and bottom faces that are parallel to the marks on those faces
and replace each mark by a ridge, as in Figure 8; the rule is that a ridge on the
bottom face of a brick must fit into the space between two whittled-down edges
(or between a whittled-down edge and empty space). The only exception to this
rule is at the bottom of the stack, where the ridges must fit into special furrows
in the tray. Figure 9 shows the tray in the case n = 4; it consists of four levels,
three of which float in midair. On the bottom level the outermost two of the
three gently sloping parallel lines running from left to right should be taken as
ridges and the one in between should be taken as a furrow. Similarly, in the
higher levels of the tray the outermost lines are ridges and the innermost two
are furrows. We require that the bricks resting on the table must occupy only
the n obvious discrete positions; no intermediate positions are permitted. Also,
a brick cannot be placed unless its base is fully supported by the tray, a tray and
a brick, or two bricks.

In stacking the bricks, one quickly sees that in a certain sense one has little
freedom in how to proceed; any stack one can build will be a subset of the
stack shown in Figure 10 in the case n = 4. Indeed, if one partially orders the
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Fig. 7. A cube with marked top and bottom.

Fig. 8. A beveled cube.

bricks in Figure 10 by the transitive closure of the relation "is resting on," then
the poset that results is the poset P defined earlier and the admissible stacks
correspond to lower ideals of P in the obvious way. Moreover, the markings
visible to an observer looking down on the stack yield a picture of the domino
tiling that corresponds to that stack.

4. Monotone triangles

Let A" be the skewed summation of an n-by-n alternating-sign matrix A. Notice
that the ith row (0 < i < n) begins with an i and ends with an n - i, so that
reading from left to right we must see i descents and n - i ascents; that is,
there are exactly i values of j in {1, 2, ..., n} satisfying a'i<:j = a i , j_1 - 1, and
the remaining n - i values of j satisfy a'i,j = ai,j _1 + 1. Form a triangular array

Fig. 9. The tray in which the cubes sit.
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Fig. 10. Cubes stacked in the domino-tiling fashion.

whose ith row (1 < i < n) consists of those values of j for which a'i,j = a'i,j-1 -1;
e.g., for

we get the triangle

Note that j occurs in the ith row of the monotone triangle exactly if the sum of
the first i entries in column j of the alternating-sign matrix is 1.

A monotone triangle of size n is a triangular array of natural numbers with
strict increase from left to right along its n rows and with nonstrict increase from
left to right along its diagonals, as in the array above. If the bottom row of a
monotone triangle is 1 2 • • • n, we call the array a complete monotone triangle. It
is not difficult to show that the preceding construction gives a bijection between
the n-by-n alternating-sign matrices and the complete monotone triangles of
size n. Moreover, the +1 's in the alternating-sign matrix correspond to entries
in some row of the triangle that do not occur in the preceding row. (This
correspondence, as well as the notion of a monotone triangle, was introduced in
[13].)
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It follows from the foregoing that AD(n) is the sum, over all complete
monotone triangles of size n, of 2 to the power of the number of entries in the
monotone triangle that do not occur in the preceding row. Since a monotone
triangle of size n has exactly n(n + 1)/2 entries, we may divide both sides of the
equation AD(n) = 2n(n+1)/2 by 2n(n+1)/2 and paraphrase it as the claim that the
sum, over all complete monotone triangles of size n, of 1/2 to the power of the
number of entries in the monotone triangle that do occur in the preceding row
is precisely 1.

Define the weight of a monotone triangle (of any size) as 1/2 to the power of
the number of entries that appear in the preceding row, and let W(a1, a2, ..., ak)
be the sum of the weights of the monotone triangles of size k with bottom row
a1 a2 • • • ak. (For now we may assume a1 < a2 < • • • < ak, although we will relax
this restriction shortly.) Our goal is to prove that W(1 2, ..., n) = 1 for all n.

To this end, observe that we have the recurrence relation

for r > s then (6) holds for all integers r, s, t. Hence, by starting from the base
relation W(a1) = 1, (5) can be applied iteratively to define W(-) as a function
of a1, a2, ..., an regardless of whether a1 < a2 < • • • < an or not.

Notice that if f(x) = xm, then

126

for all n, where E* is the modified summation operator

the number of factors of 1/2 that contribute to the coefficient of W(b1, b2, • • •, bn-1)
is exactly the number of bi's that also occur among the ai,'s. Observe that the
operator E* resembles definite integration in that

for r < s < t. Indeed, if we extend E* by defining

for all r and
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is a polynomial in s and t of degree m + 1 of the form

More generally, if f(x, y, z, ...) is a polynomial in x, y, z, ... with a highest-order
term cxmym'zm"..., then

is a polynomial in s, t,y,z,... of degree (deg f)+1 with highest-order terms

We will now use (5) and (6) to prove the general formula

(This immediately yields W1l, 2 , . . . , n) = 1, which, as we have seen, implies
AD(n) = 2n(n+1)/2.)

The proof is by induction. When n = 1, we have W(a1) = 1, so that (7) is
satisfied. Suppose now that we have

for all b1, b2 • • • ) bn-1. Since W(b1, b2, ..., bn-1) is a polynomial of degree
(n - l)(n - 2)/2 with a highest-order term

the recurrence relation (5) and the observations made in the proceding paragraph
imply that W(a1, a2, ..., an) is a polynomial of degree

with a highest-order term

To complete the proof, we need show only that W(a1, a2, ..., an) is skew
symmetric in its arguments, for this implies that it is divisible by (a2 - a1)(a3 -
01) ••• (an - an_1), a polynomial of the same degree (namely, n(n - 1)/2) as
itself, and a comparison of the coefficients of leading terms yields (7).
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It suffices to show that interchanging any two consecutive arguments of W
changes the sign of the result. For convenience, we illustrate with n = 4:

The skew symmetry of W(b1, b2, b3) kills off one of the two terms:

implying that the term vanishes. Hence,

as claimed. Similarly, W(a1, a2, a4, a3) = -W(a1, a2, a3, a4). A slightly more
complicated calculation, involving a sum of four terms of which three vanish, gives
W(a1, a3, a2, a4) = -W(a1, a2, a3, a4). The argument for the skew symmetry of
W(a1, a2,..., an) is much the same for n in general, although the notation is
more complex; we omit the details.

Having shown that W is skew symmetric in its arguments, we have completed
the proof of (7), which yields the formula for AD(n) as a consequence.

We have given our own proof of (7) in order to keep this article self-contained,
but we should mention that the formula is equivalent to Theorem 2 in [13] and
is a special case of the main result of [22], It can also be derived from identity
(5.11) of [11, p. 120] by setting t= -1 and making the observation immediate
from [11, p. 104] that PA(x1, ..., xn; -1) = s u ( x 1 , ..., xn) IIi<j(xi + xj) whenever
A, u, are partitions satisfying A = u + (n - 1, n - 2, ..., 0). We thank one of the
referees for bringing some of these connections to our attention.
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Some further remarks are in order. First, it is noteworthy that

is an integer provided a1, ..., an are integers; this can be proved in a messy but
straightforward manner by showing that every prime p must divide the numerator
at least as many times as it divides the denominator. Alternatively, one can show
that this product is equal to the determinant of the n-by-n matrix whose i, j'th
entry is the integer

(see [15] and [18]).
Second, formula (7) has a continuous analogue: If we take V(x) = 1 for all

real x and inductively define

then essentially the same argument shows that

This has the following probabilistic interpretation: Given n real numbers x1 <
X2 < • • • < xn, let Xi,i = Xi for 1 < i < n, and for all 1 < i < j < n let Xi,j be a
number chosen uniformly at random in the interval [xi, Xj]. Then the probability
that Xi,j < Xi+1,j and Xi,j < Xi,j+1 for all suitable i, j is

We do not know a more direct proof of this fact than the one outlined here.
Third, the usual (unstarred) summation operator does not satisfy a relation

such as (6), so the method used here will not suffice to count unweighted
monotone triangles. (Mills, Robbins, and Rumsey [13] offer abundant evidence
that the number of complete monotone triangles of size n is

but no proof has yet been found.) However, the operators
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Fig. 11. Paths in Aztec diamonds.

and

do satisfy an analogue of (6), and one can exploit this to give streamlined proofs
of some formulas in the theory of plane partitions; details will appear elsewhere.

Fourth, we should note that the function W(a1, a2, ..., am) has significance
for tilings of the Aztec diamond of order n, even outside the case with m = n
and ai = i for 1 < i < m. Suppose m < n and am < n, and let II be the
path in the graph G that starts at (-m, n - m) whose 2j - 1st and 2jth steps
head south and east, respectively, if j € {a1, . . . , an} and otherwise head east
and south, respectively, for 1 < j < n, ending at the vertex (n - m, -m); Figure
11(a) shows II when n = 4, m = 2, (a1, a2) = (2, 3). It is not difficult to show
that the number of domino tilings of the portion of the Aztec diamond that lies
above H is 2m(m+1)/2W(a1, a2, ..., am).

Fifth (and last), we should note that the role played by the matrix A at the
beginning of the section (in expressing AD(n) in terms of a weighted sum over
complete monotone triangles of size n) could have been played just as well by
the matrix B, giving rise to an alternative formula expressing AD(n) as the sum,
over all complete monotone triangles of size n + 1, of 2 to the power of the
number of entries above the bottom row that do not occur in the succeeding
row. However, by dividing by 2n(n+1)/2, we reduce the claim AD(n) = 2n(n+1)>/2 to
the same claim as before (the sum of the weights of all the fractionally weighted
complete monotone triangles of any given size is equal to 1). This gives a
second significance of W(- • •) for tilings of the Aztec diamond. Specifically,
suppose m < n + 1 and am < n, and let 77 be the path in the graph G that
starts at (-m, n + 1 - m) whose 2j - 1st and 2jth steps head east and south,
respectively, if j e {a1,..., an} and otherwise head south and east, respectively,
for 1 < j < n + 1, ending at the vertex (n + 1 - m, -m); Figure 11(b) shows
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II when n = 4, m = 2, (a1, a2) = (2, 3). It can be shown that the number
of domino tilings of the portion of the Aztec diamond that lies above II is
2m ( m - 1 ) / 2W(a1 ,a2 , . . . ,am).
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