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Abstract We continue the study of the Newton polytope Pm,n of the product of all maximal minors

of an m x n-matrix of indeterminates. The vertices of Pm,n are encoded by coherent matching fields
A = (A z) , where z runs over all m-element subsets of columns, and each Az is a bijection z —> [m].
We show that coherent matching fields satisfy some axioms analogous to the basis exchange axiom
in the matroid theory. Their analysis implies that maximal minors form a universal Grobner basis
for the ideal generated by them in the polynomial ring. We study also another way of encoding
vertices of Pm,n for m < n by means of "generalized permutations", which are bijections between
(n - m + 1)-element subsets of columns and (n - m + 1)-element submultisets of rows.
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1. Main results

In this paper we continue the study of the Newton polytope Pm,n of the product
of all maximal minors of an m x n matrix of indeterminates, which had begun
in [1]. This study has several algebraic-geometric and analytic motivations and
applications, which were discussed in [1]. But the results and methods in this
paper are mostly combinatorial, and the proofs use only a bit of convex geometry.
Here we prove some of the conjectures made in [1] including Conjecture 5.7
(Theorem 1 below). As shown in [1, §7], this implies the following important
property of maximal minors.

THEOREM 0. [1, Conjecture 7.1]. The set of all maximal minors of a generic
m x n matrix X = (xij) is a universal Grobner basis for the ideal generated by them
in the polynomial ring C[xij].

This paper is essentially self-contained and can be read independently of [1].
To state our main results we reiterate some terminology and notation from [1].
We fix two integers m and n with 2 < m < n. Let Rm x n be the space of real
m x n matrices. We abbreviate [n] := {1, 2,..., n}. Throughout the whole paper
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we identify and denote by the same symbol a subset O c [m] x [n] of matrix
indices and the corresponding indicator matrix Z(i,j)eOEij, where the Eij are
matrix units.

For every m-element subset z e [n] we call a matching with support a any
bijection Az : z —>[m]. By slight abuse of notation, we use the same symbol Az

for the graph of a matching {(i, j) e [m] x [n] : j e z, i = A z ( j ) } (and also for
its indicator matrix). A matching field of format mxn is a choice of a matching
Az for each m-element subset z c [n]. Given any matching field A = (A z) , we
let v(A) = ZzAz denote the sum of its indicator matrices. The polytope Pm,n
can be combinatorially defined as the convex hull in Rmxn of the matrices v(A)
for all matching fields A (see[l, §1]).

A matching field A is called coherent if v(A) is a vertex of the polytope Pm,n.
By [1, §1], coherent matching fields can be described as follows. Define the
scalar product on Rmxn by (U, V) = Zi,juijvij. Then a matching field A = (A z )
is coherent if and only if there exists a real matrix C = (Cij) such that (C, Az) >
(C, A'z) for every a and every matching A'z : z -> [m] different from Az. In this
case we say that C supports A. The set of matrices C which support A is the
normal cone of Pm,n at the vertex v(A).

It was shown in [1, Proposition 2.2] that every coherent matching field satisfies
the following linkage axiom:

For every i 6 [m] and every (m + 1)-element subset T c [n] there exist two
distinct j, j' E T such that the matchings AT\J and AT\j' agree outside the ith
row, i.e.,
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Following [1, §5] we associate to every matching field A = (A z ) and every subset
R C [n] of cardinality n - m + 1 a mapping Op : R ->[m] by the following rule:

where R := [n]\p. As in the case of matchings, we use the same symbol Op for
its graph {(i, j) E [m] x [n]: j E R, i = O R ( j ) } (and also for its indicator matrix).

We are now in a position to state our first main result. We say that a subset
Z C [m] x [n] is transversal to a matching field A = (A z ) if Z n Az = 0 for all z.

THEOREM 1. [1, Conjecture 5.7]. Let A = (Az) be a matching field of format
m x n satisfying the linkage axiom. Then a subset Z c [m] x [n] is transversal to A
if and only if Z D Or for some (n - m + 1)-element subset R c [n].

As indicated in the introduction to [1], the linkage axiom is an analog to
the basis exchange axiom in the theory of matroids. In the course of the proof
of Theorem 1 we sharpen this analogy by presenting two other "matroid-like"
characterizations of matching fields which satisfy the linkage axiom.

THEOREM 2. The following conditions on a matching field A = (A z ) are equivalent:
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(c) For every two distinct m-element subsets z, z' of [n] having a common column
jo such that A z ( j 0 ) = Az'(j0) there exists an m-element subset z" c a U z'\j0

such that Az" C Az U Az'.

Theorem 2 will allow us to prove the following converse of Theorem 1.

THEOREM 3. Let A = ( A z ) be a matching field of format m x n. Suppose that
every minimal with respect to inclusion subset of [m] x [n) transversal to A coincides
with some OR. Then A satisfies the linkage axiom.

Theorems 1-3 will be proven in §2.
From now on we set p := n - m + 1. If p = 1 i.e., m = n, then a matching

field A is simply a bijection between the set of columns and the set of rows
of a square matrix. It was suggested in [1, §6], that the vertices of Pm,n for
the general m and n can be encoded by some bijections between the sets of
"generalized columns" and "generalized rows" of a rectangular matrix. To be
more precise, let C be the set of all p-element subsets of [n], and R the set of
all nonnegative integer vectors a = (a1, ..., am) with Ziai = p. Clearly, C and

R have the same cardinality (n
p) = ( n

m-1)- Every matching field A gives rise

to a mapping w = WA : C —> R defined by
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(a) A satisfies the linkage axiom.
(b) For every two distinct m-element subsets z, z' c [n] there exists j' E z'\z with

the following property: if A z ' ( j ' ) = i and j = A - 1
z(i) then the matchings Az\ju{j'}

and Az agree outside the ith row, i.e.,

THEOREM 4. // A is a coherent matching field then WA : C —> R is a bijection.

This result establishes Conjecture 6.11 from [1] for coherent matching fields.

THEOREM 5. A coherent matching field A is uniquely determined by the bijection
WA : C -> R.

We will give two different proofs of Theorem 5. The first one shows that for
every matching field A (not necessarily coherent) the point v(A) := Zz Az e Pm,n

is recovered from the mapping WA : C —> R as follows:
We identify a subset R c [n] with its indicator vector (R1,... ,Rn), where Rj = 1

if j e R, and Rj = 0 if j E R. For every a e R, R E C we denote by A . R an
m x n matrix whose (i, j)-th entry is equal to aiRj. We associate to a mapping
w : C —> R the matrix



In the second proof of Theorem 5 we assume that A is coherent and show
that all the sets OR can be recovered by the bijection WA : C —> R. The set R
is a set of all integer points of a "thick" simplex with vertices pe1, pe2,...,pem,
where e1,..., em are standard basis vectors in Rm. We make R a graph with
a and a' joined by an edge if and only if a - a' = ei - ei' for some indices
i = i'. By a path from a to a' we mean a chain (a(0) = a, a(1),..., a(d) = a')
of minimal possible length such that a(k - 1) and a(k) are joined by an edge
for k = 1,..., d; here d is the distance between a and a' in R.

THEOREM 7. Let w = WA : C —> R be a bijection corresponding to a coherent
matching field A. Let R E C, i E [m], and let (a(0), a(1),..., a(d)) be an arbitrary
path from w(R) to pei in R. Then
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Let 1mxn denote an m x n matrix with all entries equal to 1.

THEOREM 6. Let A be an arbitrary matching field (not necessarily coherent), and
WA: C —> R be the corresponding mapping. Then

Theorem 7 provides some necessary conditions for a bijection w : C —> R to be
of the form WA for a coherent matching field A. Namely, the RHS of (7) must
be independent of the choice of a path (a(0),a(1),...,a(d)), and the subsets
O -1

R(i) defined by means of (7) must satisfy

for all R E C and distinct i, i' e [m]. It turns out that these necessary conditions
are sufficient in the case n - m + 1. More precisely, we have the following
theorem.

THEOREM 8. Suppose that n = m + 1, i.e., p = 2. Then the following conditions
on a bijection u: R—> C are equivalent :

(a) A bijection u has the form w-1
A for some coherent matching field A of format

m x (m + 1).
(b) For every two distinct i, i' e [m]
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It would be interesting to investigate how far the conditions (8) are from being
sufficient for general m and n.

As a by-product of our proof of Theorem 4 we will derive the following
alternative description of the polytope Pm,n. For each nonnegative integer
vector B = (B1, ...,Bm) with sum n let SB denote the polytope of nonnegative
m x n matrices having row sums B1,..., Bm and all column sums equal to 1.

THEOREM 9. The polytope Pm,n coincides with the Minkowski sum ZB =B, the
summation over all integer vectors B = (B1,..., Bm) with ZiBi = n and all Bi > 1.

Theorems 4-9 will be proven in §3.

2. Proof of Theorems 1-3

Proof of Theorem 2. We will use two equivalent versions of the linkage axiom
established in [1].

LEMMA 10. [1, Theorem 2.4 and Proposition 2.13]. The following conditions on
a matching field A = (A z ) are equivalent:

(a) A satisfies the linkage axiom.
(a') For every (m +1)-element subset T c [n] there exists a tree T with the set of

vertices T and the set of edges labeled bijectively by [m], such that for every
j0 E T the matching AT\j0 sends each j e T\j0 to an index i such that the
unique path from j to j0 in T starts with the edge labeled by i.

(a") For every (m + 1)-element subset T c [n] and any three different elements j\,
j2, J3 e T : if AT\j1(J2) = AT \ j 3 ( j 2 ) then AT\j1(j3) = AT \ j 2( j3) .

To prove Theorem 2 we will establish the implications (a') => (b) => (c) => (a").

Proof of (a') => (b). Let A = (A z ) be a matching field satisfying (a')-

LEMMA 11. [1, Proposition 5.6]. Each subset OR in (2) is transversal to A

In order to prove that A satisfies (b) we choose two distinct m-element
subsets z, z' c [n]. We have to show that there exists j' E z'\z which satisfies
(3). Choose arbitrary j0 e z\z' and consider the (n - m + l)-element set
R := z U { j0}, where z = [n]\z. By Lemma 11, OR n Az' = 0. Choose a point
(i, j') E OR n Az'. Now take T := z U {j ' } and consider the tree T provided
by (a'). By definition of OR, we have A T \ j 0 ( j ' ) = i; therefore, the edge i in
T passes through the vertex j'. Let j be the second end of this edge. Again
using (a') we see that AT\j'(j) = i, and that AT\J and AT\j' agree with each other
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outside the ith row. But this is exactly the property (3) because T\j' = z and
T\j = z\j U {j'}.

Proof of (b) => (c). We proceed by induction on p ( z , z ' ) := card(Az'\Az). Clearly,
p(z,z') > 2, so we start with the case when P(z,z') = 2. Then the set T := z Uz'
consists of m + 1 elements, and we have a = T\J',z' = T\j for some j, j' E T,
and A z ( k ) = A z ' ( k ) for k e T\{j0, j, j'}. Applying the property (b) to the subsets
z and z' and taking into account that in this case z'\z consists of one element j',
we obtain that AT\j0(j') = A z ' ( j ' ) , and A T \ j 0 (k) = A z ( k ) for k E z\j0 . Therefore,
the subset z" := T\J0 satisfies (c), as desired.

Now suppose that p(z,z') > 3, and assume that (c) holds for all pairs z0,z'
with P(z0,z') < p ( z , z ' ) . Apply (b) to z and z', and let j' e z'\z,j E z, i E [m]
be the elements satisfying (3). Set z0 := z\jU{j'}. By (3), Az0(j') = i = Az'(j'),
and A z 0 (k) = A z (k ) for k E z\j. This implies, in particular, that Az0 c Az U Az'.
If j = j0 then the subset z" = z0 satisfies (c), and we are done; so assume that
j = j0. By construction, P ( z 0 , z ' ) < p(z ,z ' ) , so by inductive assumption we can
find z" c z0 U z'\j0 such that Az" c Az0 U Az'. But then Az" C Az U Zz', and we
are done.

To complete the proof of Theorem 2 it remains to observe that the property
(a") is a special case of (c) for z = T\j1,z' = T\j3, j0 = J2. n

Proof of Theorem 1. Let A = (A z ) be a matching field which satisfies the linkage
axiom, and hence, by Theorem 2, also the property (c). Taking into account
Lemma 11 we have only to prove the following statement: If Z c [m] x [n]
is transversal to A then Z D OR for some (n - m + 1)-element subset R c [n].
Without loss of generality we can assume that (m, n) e E and Z is minimal
transversal to A with respect to inclusion. By minimality of S, there exists an
m-element subset z c [n] such that
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Consider the restriction of A to [m] x [n - 1], i.e., the matching field A' of
format m x (n - 1) formed by all matchings Az' with z' c [n - 1]. Let (OR')
be the corresponding family of subsets of [m] x [n - 1] constructed from A'
by means of (2); here R' runs over (n - m)-element subsets of [n - 1]. Let
Z' = Z U ([m] x[n- 1]). Then Z' is transversal to A'. Using induction on n we
can assume that Z' D OR' for some R' c [n - 1] (as a first inductive step we can
take n = m, in which case our statement becomes tautological).

Set O := OR' U {(m, n)}. We claim that O is transversal to A. By Lemma 11,
O is transversal to Az' for all z' c [n - 1]. It remains to prove that O N Az' = 0
for each z' containing n and such that A z '(n) = m. To show this we apply the
property (c) from Theorem 2 to z, z' and j0 = n. We obtain that there exists
z" c ([n — 1] n z) U z' such that Az" c Az U Az'. We have already seen that
O n Az" = 0, therefore
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But O n (([m] x [n - 1]) n Az) = 0 by (10), so O n Az' = 0, as claimed.
It remains to show that O = OR for R := R' U {n}. But this is clear because

for every j e R the matching AR U{j} can intersect O only in the element AR U { j } ( j )
(cf. [1, Lemma 5.4]). Theorem 1 is proven. D

Proof of Theorem 3. Suppose that a matching field A does not satisfy the linkage
axiom. Then the property (c) of Theorem 2 also fails, i.e., there exist two m-
element subsets z and z' of [n] and an index j E z N z' such that A z ( j ) = A z ' ( j ) ,
and that there is no matching Az" contained in Az u Az '([m] x {j}). Let
i = A z ( j ) , i' = A z ' ( j ) , and

3. Proof of Theorems 4-9

Proof of Theorem 4. We fix a coherent matching field A = (A z ) ; a matrix C= (Cij)
supporting A; and a vector a = (a1,..., am) E R. Since card(R) = card(C), to
prove our theorem it is enough to construct R E C such that wA(R) = a.

For each nonnegative integer vector B = (B1 , . . . ,Bm) with sum n, let EB

denote the polytope of nonnegative m x n matrices having row sums B1,...,Bm

and all column sums equal to 1. Let FB be the vertex of SB supported by C;
we assume C to be sufficiently generic so that FB is unique. Clearly, each FB is
a (0,l)-matrix, and we identify it with its support which is a subset of [m] x [n],
and also with the mapping [n] —> [m] whose graph is this subset.

For each i e [m] let b(i) denote the vector

LEMMA 12. For every two distinct indices i, i' = l , . . . ,m the ith row of FB(i) is
contained in the ith row of FB(i').

Proof. We associate to i and i' an edge-colored oriented graph Gi,i' with the
vertex set [m] and the color set [n] as follows: There is an edge from i1 to i2

colored by j whenever i1 = i2, (i1 , j) E FB(i) and (i2, j) E FB(i'). Lemma 12 is an
immediate consequence of the following lemma.

Our choice of z and z' implies that Z is transversal to A. Choose a subset
Z0 C E which is minimal with respect to inclusion transversal to A. Since
Z n Az = {(i, j ) } , Z N Az' = {(i', j)}, it follows that Z0 contains both {(i, j)}
and {(i', j)}. Therefore, Z0 is not one of the subsets OR, which proves Theorem
3. D
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Consider two subsets S = {(i1, j1), (i2, J2), • • •, (ip, JP)} and S' = {(i2, j1), (i3, j2),
• • • , (ip, Jp-1), (i1, Jp)} of [m] x [n]. These two subsets occupy the same rows and
columns, and we have S c FB(i), S' c FB(i'). But this contradicts the fact that both
FB(i) and FB(i') are supported by the same linear functional C. Indeed, without
loss of generality we can assume that (C, S) < (C, S'). But then FB(i) + S' - S is
a point in the polytope SB(i) with (C, FB(i) + S' - S) > ( C , F B ( i ) ) , which contradicts
our choice of FB(i).

We define the valency of a vertex i0 in Gi,i' as the number of edges going out
of i0 minus the number of edges going into i0. Since the graph describes passing
from FB(i) to FB(i'), all the vertices have valency 0, except i having valency -1
and i' having valency 1. Since Gi,i' has no oriented cycles, it can be only a chain
from i' to i. This completes the proof of Lemmas 12 and 13. D

Now let R ( i ) := F-1
B(i)(i) be the set of columns occupied by the ith row of FB(i),

and let R = Um
i=1R(i). By Lemma 12, the subsets R(i) are mutually disjoint. Since

card(R(i)) = ai, it follows that card(R) = p, i.e., R E C.
Put O := Um

i=1({i} x R(i)). To prove Theorem 4 it suffices to show that O = OR,
which implies that wA(R) = a.

LEMMA 14. There exists a tree T with the vertex set [m] whose edges are labeled
bijectively by R := [n]\R, such that:

(a) For every i € [m]
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LEMMA 13. The graph Gi,i' is an oriented chain from i' to i.

Proof. First we show that Gi,i' has no oriented cycles. Suppose there is an
oriented cycle

(b) For every j0 e Ri

here the notation "i' -> i" means that the unique path from i' to i in T starts with
the edge labeled by j.

Proof.

(a) By Lemma 12, O c FB(i) for each i e [m], and the difference FB(i)\O is the
graph of a bijection A'[m]\i : [m]\i —> R. Passing to transpose matrices, we
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represent the family of bijections (A'[m]\i), i = 1,.. . ,m as a matching field of
format (m-1) x m with the row set R and the column set [m]. This matching
field is coherent because it is supported by the transpose of C. Therefore,
it can be described as in Lemma 10 (a'), which is exactly our statement,

(b) Put z = R U {j0}. Clearly, the RHS of (12) is (the graph of) a matching
A'z : z -> [m]. By (a), A'z C FB(i). It follows that A'z = Az; otherwise,
FB(i) - A'z + Az would be a point of the polytope SB(i) having a bigger value
of the supporting form C than FB(i). D

Comparing (12) with (2), we see that if j0 e R(i) then O R ( j 0 ) = i. Therefore,
O = OR, which completes the proof of Theorem 4. D

Proof of Theorem 9. Let C be a generic linear form on the space of matrices. Let
A - (A z ) be a coherent matching field supported by C, and for each nonnegative
integer vector b = (B1,..., Bm) with ZiBi = n and all Bi > 1, let FB be the vertex
of SB supported by C. It is enough to show that the vertex v(A) := ZzAz of
Pm,n coincides with the vertex ZBFB of ZBSB. This is a consequence of the
following lemma.

LEMMA 15. For every (i, j) e [m] x [n] there exists a bijection between the set of
all m-element subsets z c [n] such that j e z and Az(j) = i, and the set of all B
as above such that (i, j) E FB.

Proof. Choose z E j such that A z ( j ) = i. Take R = z U {j} e C and define
a = WA(R) E R. Let B = B(i) be a vector associated to a by means of (11).
Using the description of FB and Az given by Lemma 14, we obtain the following
relation:
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This implies that (i, j) e FB, and hence the mapping z -> B is a desired bijection.
Lemma 15 and Theorem 9 are proven. D

Proof of Theorems 5 and 6. As usual, we will identify subsets of [m] x [n] with
their indicator matrices. By definition,

Let us represent each one-element set { ( A z ( j ) , j)} in the sum as a difference
{Az(j)} x (z U {j}) - {Az(j)} x z. We can write then V(A) = M1 - M2, where



Therefore, for every i and j the (i, j)-th entry of M2 is equal to the number of

(n-m)-element subsets z c [n] which contain j, i.e., to (n-1
n-m-1) = (n-1

m).
This completes the proof of Theorem 6. To prove Theorem 5 it remains to
observe that a coherent matching field A is uniquely determined by the vertex
v(A). D

Proof of Theorem 7. Let a = (a1,..., am) = wA(R). Then the distance d from
a to pei is equal to p - ai, and the first vector in a path from a to pei has the
form a(1) = a + ei - ei' for some i' = i. Let R' = W-1

A (a(1)). By induction on d,
to prove Theorem 7 it is enough to show that
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We will show that M1 = M(wA), M2 = (n-1
m)1mxn.

If we put R = z U {j}, then by (2) we have A z ( j ) = O R ( j ) . Therefore, the
summation for M1 can be rewritten as

Remembering the definition of WA we see that the inner sum in (14) is wA(R) • R,
so M1 = M(WA), as desired.

As for MI, substituting i = A z ( j ) we can rewrite the summation as

Let B(1),... ,B(m) be a family of vectors associated to a by means of (11). By
(13), O - 1

R(i) is the set of columns occupied by the ith row of FB(i). Now apply
the same statement to a family B'(1), • • •, B'(m) associated by the same rule (11)
to the vector a(1). By definition, B'(i) = B(i'), so we obtain that O -1

R '(i) is the
set of columns occupied by the ith row of FB(i'). Now (15) follows at once from
the description of FB(i) and FB(i') given by Lemma 14. Theorem 7 is proven. D

Proof of Theorem 8. The implication (a) => (b) is clear because for n = m + 1,
the condition (9) is simply another way of saying (8). So we suppose that a
bijection u : R —> C satisfies (9), and we wish to show that u = w-1

A for some
coherent matching field A of format m x (m + 1).

Consider the edge-colored graph T with the set of vertices [m + 1] and the set
of colors [m], where two vertices j and j' are joined by an edge colored with i
whenever u(2ei) = {j, j'}. Clearly, T has m edges, each color appearing exactly
once.

LEMMA 16. Suppose that s>2, and j1, j2, ..., js are distinct elements of [m+ 1]
such that jk and jk+1 are joined in T by an edge colored with ik for k = 1, ..., s -1.
Then



Since u is a bijection, the only opportunity left is u(ei1 + eis-1) = {j1,js}, as
desired. D

By Lemma 16, every two vertices in T are connected by at most one chain;
hence, T has no loops. Since T has m + 1 vertices and m edges, we conclude
that T is a tree. Consider the matching field A of format m x (m + 1) associated
to the tree T as in Lemma 10 (a')- Then A is coherent by [1, Theorem 2.41.
Comparing Lemma 16 with the formulas (2) and (4) above, we see that u = w-1

A ,
which completes the proof of Theorem 8. D
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for all 1 < k < k' < s - 1.

Proof of Lemma 16. We proceed by induction on s. For s = 2 the equality (16)
is simply the definition of the graph T, and for a = 3 it follows at once from
(9). So we can assume that s > 4, and that (16) holds for all pairs (k, k') except
(1,s — 1). By (9), the two-element set u(ei1 + eis-1) has nonempty intersection
with each of the sets u(2ei1 - {j1,j2} and u(2eis-1) = { j s - 1 , js}. Therefore,
u(ei1 + eis-1) has the form {j, j'}, where j E {j1, j2}, j' E [ j s - 1 , js}· But our
inductive assumption implies that


