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Abstract. This is the continuation of an article from the previous issue. In this part, we focus on the
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5. The thin P- and Q-polynomial schemes

In this section we give some ways to determine whether a given scheme is thin
or dual-thin with respect to a given vertex. We are mainly interested in the
P-polynomial and/or Q-polynomial cases, but some results are proved under
weaker conditions. Let Y = (X, {Ri}0<i<D) denote any commutative scheme,
and let g denote a permutation matrix in Matx(C). Recall g is an automorphism
of Y whenever (y, z), (gy, gz) are in the same associate class of Y for all
y, z e X. Equivalently, g is an automorphism of Y whenever g commutes with
each element of the Bose-Mesner algebra of Y. Let Aut(F) denote the set of
automorphisms of Y. Recall the commutator [a, /?] = aft - J3a.

THEOREM 5.1. Let Y = (X, {Ri}0<i<D) denote any commutative association
scheme with D > 3, associate matrices A0, A1, ..., AD and primitive idempotents
E0, E 1 . . . , ED. Fix any x e X, and let E* = E*(x), A* = A*(x) (0 < i < D), T =
T(x) be as in (51), (56), and Definition 3.3. Then the following statements (i)-(v)
hold.

(i) The following (a), (b) are equivalent for all integers h, i, j, k(Q < h, i, j,
k < D):

*Part I of this paper appears in Journal of Algebraic Combinatorics, Vol. 1, No, 4, December 1992
and part II appears in Vol. 2, No. 1, March 1993. References for parts II and III appear in part I.
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(a) E*AhE*AkE* = E*AkE*AhE*
(b) For all y, z e X with (x, y), (x, z) e Ri, the number of w e X with

(x, w) e Rj, (y, w) € Rh, (w, z) € Rk equals the number of w' € X with
(x, w') e Rj, (y, w') e Rk, (w', z) e Rh.

(Part (i) provides a way to interpret parts (iii), (v) below),
(ii) We have the implications

where

• TH: Y is thin with respect to x.
• C: E*TE* is commutative for all integers i (0<i<D).
• S: E*TE* is symmetric for all integers i (0 < i < D).
• G: For all y, z e X such that (x, y), (x, z) are in the same associate class

of Y, there exists g e Aut(Y) such that

To get TH*, C*, and S*, replace "thin" by "dual-thin" and E* by Ei in TH, C,
and S.

(Hi) Suppose Y is P-polynomial with respect to the ordering A0, A1, ..., AD. Then

where

(iv) Suppose Y is Q-polynomial with respect to the ordering E0, E1, ..., ED. Then

where WS* denotes the statement obtained from WS by replacing E*, A^» by
EJ,, A* for all integers i/> (0 < V < D).

(v) Suppose Y is P-polynomial with respect to the ordering A0, A1,..., AD, and
Q-polynomial with respect to the ordering E0, E1, ..., ED. Then for each integer
i (1 < i < D), the statements
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all hold if i e {1, D}, and are all equivalent if 2 < i < D - 1 . For each integer
i ( 1 < i < D ) , the statements

all hold if i e {1, D}, and all are equivalent if 2 < i < D — 1. Now consider
the statements

• VWS: Lines (214)-(218) hold for all integers i (2 < i < D - 1).
• VWS*: Lines (219)-(223) hold for all integers i (2<i<D- 1).

Then TH, C, S, WS, VWS, TH*, C*, S*, WS*, VWS*, are all equivalent.

The bulk of this section is devoted to proving Theorem 5.1. We will prove
parts (i), (ii), then a technical lemma, then parts (iii), (iv), then three more
technical lemmas, and finally part (v).

Proof of (i). The numbers being equated in (b) are the corresponding entries of
the two sides in (a).

Proof of (ii).

TH —* C: By part (ii) of Lemma 3.4, we may express the standard module
V as an orthogonal direct sum of irreducible T-modules. Now fix any integer
i (0 < i < D), and apply E* to each module in this sum. In each case the
image is an E*TE*-module, with dimension at most 1 by TH. Now E*V
is a direct sum of one-dimensional E*TE*-modules. But E*V is a faithful
E*TE*-module, so E*TE* is commutative by our comments at the end of
Section 1.
C -» TH: Suppose dim.E*W > 2 for some irreducible T-module W and
some integer i (0 < i < D). Then on the one hand, E*W is an irreducible
E*TE* -module, for if E*W properly contains a nonzero E*TE*-module U
then TU = W by the irreducibility of W, and

a contradiction. On the other hand, E*TE* is commutative, so each irreducible
E*TE*-module has dimension 1 by our comments at the end of Section 1.
This gives a contradiction, so TH holds.



S -* C: Fix an integer i (0 < i < D), and pick any a, b e E*TE*. Then a, b,
and ab are symmetric, so

Now E*TE* is commutative, so C holds.
G -> S: Fix an integer i (0 < i < D), pick any a e E*TE*, and pick
any y, z € X. It suffices to show ayz = azy. Assume (x, y), (x, z) € Ri,
otherwise ayz, azy are both 0. By G, there exists some g e Aut(Y) such that
gx = x, gy = z, and gz = y. But g commutes with everything in the Bose-
Mesner algebra M, and everything in the dual Bose-Mesner algebra M*(x),
hence everything in T, so g commutes with a. Now

and we are done.

We have now proved (212). The proof of (213) is similar, so we have proved
part (ii) of Theorem 5.1. D

Definition 5.2. With the notation of Theorem 5.1, assume Y is P-polynomial
with respect to the ordering A0, A1, ...,AD. For each n e 1Z, (0 < n < D), let
Tn denote the subalgebra of T generated by matrices

Also, for all integers i, n (0 < i < D, 0 < n), set

LEMMA 5.3. With the notation of Theorem 5.1, assume Y is P-polynomial with
respect to the ordering A0, A1, ..., AD. Then the following six statements are
equivalent for all n € 1Z (0 < n < D).

. WS': [(E*A*E*)+, (E*A<E*)-] € E*Ti-f+1E* for all integers i, {, C tt €
{1, 2}, n < i < D + 1 - £, 3 - C < < < 2i - 2n + 1).

TERWILLIGER180
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• WS": [(E*A«E*)+, (E*A<E*)-] = 0 for all integers i, £, C (£€{l ,2} ,n<
i < D + 1 - f, 3 - £ < C < 2i - 2n + 1).

• WS"': (E*A2E*)+, (E*A^E*)- (1 < C < 2i - 2n + 1) mutually commute,
for each integer i ([n] <i < D).

• THn: dim E*W < 1 for all irreducible Tn-modules W and all integers i ([n] <
i<D).

• Cn: E*TnE* is commutative for all integers i ([n] <i< D).
• Sn: E*TnE* is symmetric for all integers i ([n] <i < D).

Proof of Lemma 5.3. The proof is by induction on 77 = D, D-1, D-1 — Observe
each of the six statements is trivially true if 17 = D, so assume n < D. Since
we have the implication xn -» xn+1 for each x € {WS' WS", WS"', TH, C, S},
it suffices to prove WS', WS'', WS'", THn, Sn, Sn are equivalent under the
assumption that WS' WS", W S " ' , THn + 1 , Cn+1, and Sn+1 all hold.

WS' -> WS": Fix integers i, f, < satisfying the bounds in WS' Then i - § +
1 > n + 1, so E*Ti-§+1E* C E*Tn+1E*, implying the commutator in WS', is
symmetric by Sn+1. But this commutator is antisymmetric by construction , so
it equals 0.
WS'' -> WS"': Fix an integer i ([n] < i < D). Then we must show
(E*,A*E*)-, (E*A(E*)- commute for all integers v, C (2 < v, C < 2i - 2n + 1).
We will do this by induction on i = [n], [n] + 1, .... Observe the commutator
of these two matrices equals

This will be 0 if the middle terms

mutually commute. But this is the case, since the first and third terms in (226)
commute by induction, and the second term in (226) commutes with the other
two by WS".
WS"' -» THn : The proof will involve two claims.

Claim 1. Pick any integer i ([n] < i < D), and suppose w is a common
eigenvector for

Then
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is a common eigenvector for

whenever (228) is not 0.

Proof of Claim 1. Assume (228) is not 0, otherwise there is nothing to prove
Observe (E*A2E*)- is included in (227), so

for some A e C. In fact A ̂  0, for otherwise

contradicting the assumption that (228) is not 0. Now pick any integer £ (1 <
C < 2i - 2n - 1). Observe (E*Ac+2E*)- is included in (227), so

Also observe ( E * A 2 E * ) + , ( E * A ^ E * ) - commute by WS"', so

and E * A E * w is an eigenvector for ( E * A ^ E * ) - . This proves Claim 1.
Now let W denote an irreducible Tn-module such that E*W ^ 0 for some

integer i ([n] < i < D).

Claim 2. There exist integers j, k ([n] n< j < k < D) and nonzero vectors
Wi e E*W (j < i < k) such that
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Moreover, W = Span{wj, w j + 1 , . . . , wk}.

Proof of Claim 2. Set

Suppose for the moment that k < [n] , so that k = n - 1, and pick any nonzero
wk € E*W . Then (229)-(233) holds with j = k, and the claim is proved. Now
assume k > [n]. Now the matrices (E*A(E*)- (1 < C < 2k - 2n + 1) mutually
commute by VWS"', and we observe they are contained in Tn, so they have a
common eigenvector w := wk € E*W. Now (233) holds. Define the vectors
wi ([n] < i < k - 1 ) by

and set

Now (229), (230) hold. By Claim 1 and induction on i - k, k - 1,..., each
wi (j,[n] < i < k) is a common eigenvector for the matrices

Pick any integer i (j, [n] < i < k). Then E*AE* = (E*AE*)- is included in
(234), so (231) holds. Now assume i > j + 1, so in particular i > n + 1. Then
(E*A2E*)- is included in (234), so

Replacing i by i + 1 in the lines above, we obtain (232). Now

is a Tn-module by (229)-(233), and hence equals W by the irreducibility of W.
This proves Claim 2, and THn is immediate.

THn -» Cn: Observe Tn is closed under conjugate-transpose by (224), (225),
so by the discussion at the end of Section 1, we may express the standard
module V as an orthogonal direct sum of irreducible Tn-modules. Now fix any
integer i ([n] <i< D), and apply E* to each module in this sum. In each
case the image is an E*TnE*-module, and has dimension at most 1 by THn.
Now E*V is a direct sum of one dimensional E*TnE*-modules. But E*V is a
faithful E*TnE*-module, so E*TnE* is commutative.
Cn -» Sn: By a monomial in Tn, we mean a matrix of the form
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where n, i0, i1, .,., in are integers (0 < n, [n] < i0, i1, ..., in < D) , with

and

The monomial is balanced if i0 - in. The integer n is the length of the
monomial. It suffices to show that every balanced monomial in Tn is symmetric.
Let

be any balanced monomial in Tn. Then u is immediately seen to be symmetric
if n < 1, so assume n > 2. By induction on n, we may assume each balanced
monomial in Tn with length less than n is symmetric. First assume ij = i0 for
some integer j (1 < j < n - 1), and set

Then u1, u2 are balanced, contained in Tn, and have length less than n, so
u1, u2 are symmetric by induction. But u1, u2 commute by assumption, so

and u is symmetric. Now assume ij ^ i0 for all integers j (1 < j < n - 1).
Then

or

by (235), so
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Now set

Now u4 is balanced, is contained in Tn, and has length less than n, so u4 is
symmetric by induction. But now

so u is symmetric.
Sn —> WS': The commutator in WS' is actually 0, since it is antisymmetric
by construction, and contained in the symmetric space E*Tn,E*. This proves
Lemma 5.3.

Proof of part (iii) of Theorem 5.1. In view of part (ii) of Theorem 5.1, it suffices to
show TH -» TH*, C -> S, S -> WS, and WS -» S. The first implication is from
part (v) in Lemma 3.9. The second implication is just Co —> S0 in Lemma 5.3.
The third implication holds, since E*AE*AkE* is the transpose of E*AkE*AE*.
The last implication will follow if we can show WS —» WS', since WS' —> S0 = S
by Lemma 5.3. To do this, fix integers i,f, ( such that

Then a direct calculation yields

But the expression in (236) is some linear combination of the matrices

by (71), and hence is 0 by WS. Now WS' follows from (237). This proves part
(iii) of Theorem 5.1.

Proof of part (iv) of Theorem 5.1. Similar to part (iii).
To prove part (v) of Theorem 5.1, we need some lemmas concerning a P- and

Q-polynomial scheme Y with diameter at least 3. For notational convenience,
we will take Y to be the scheme given in Theorem 4.1. The cases I, IA, II, IIA,
IIB, IIC, III refer to part (iv) of Theorem 4.1.
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LEMMA 5.4. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1. Pick any
x € X, and write A* = A*(x). Then

where

Proof of (i). One may routinely verify (242)-(247) for each of Case I, IA, II,
HA, IIB, IIC, III (or see [71]). Indeed /9 = q + q-1 (in Case I, IA), ft = 2 (in
Case II, HA, IIB, IIB, IIC), and /3 = -2 (in Case III). Now let C denote the
expression on the right side of (239). Expanding the commutator in (238), one
observes this commutator equals C. To show C = 0, we observe

and show

Fix the integers i, j (0 <i,j< D), and recall by (46) that



THE SUBCONSTITUENT ALGEBRA OF AN ASSOCIATION SCHEME 187

Evaluating EiCEj using this, we find

But

by Lemma 3.2 and Definition 3.10,

by (246), and certainly

so EiCEj = 0 by (250). We now have (249), and hence (238), (239). Lines
(240), (241) hold by a dual argument, so Lemma 5.4 is proved.

LEMMA 5.5. Let the scheme Y = (X, {Ri}0<i<D) be as in Theorem 4.1, and let
0, 7, 7*, 8, Q* be as in Lemma 5.4. Fix any x e X, and write E* = E*(x) (0 <
i < D). Then

(i)

where

and h0, hD are indeterminates.

where
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ana en, e, are indeterminants.

where

(iv) Let h*, e*+, e*-, g*+, g*- denote the constants obtained from (252), (254), (255),
(257), (258) by replacing &* by 6j (0 < j < D). Then the equations (251),
(253), (256) still hold after replacing 7, Q, A, hi, e+, g+ and E* (0 < j < D) by
7*, Q", A*, h*, e*+, g*+, and Ej (0 < j < D), respectively.

Proof of (i)-(iii). Pick any integers i, j (0 < i, j < D, 0 < i - j < 2), where
i - j = 0 (in part (i)), i - j = 1 (in part (ii)), and i - j = 2 (in part (iii)). Now
multiply both sides of (239) on the right by E* and on the left by E*. Writing
the result as a linear combination of monomials, we get (i)-(iii). In part (i),
one finds one needs /3 + 1 ^ 0 to carry this out. But this holds, for otherwise
we are in Case I or Case I A, with q + g-1 + 1 = / 9 + 1  = 0, forcing q3 = 1 and
contradicting (16).

Part (iv) is obtained by a similar argument, so Lemma 5.5 is proved.

LEMMA 5.6. Let the scheme Y — (X, {Ri}0 < i < D) be as in Theorem 4.1, and let
hi,h*, e+, e*+, g+, g*+ be as in Lemma 5.5. Then

To get e*+, e*-, g*+, g* - , replace Bj by 0j (0 < j < D) in the above formulae. In
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particular,

Proof. In each of (254), (255), (257), (258), equate the expression on the right
with the corresponding expression above. In each case, the resulting equation is
equivalent to (242) or (243). The last assertion is immediate from (7).

We now return to the proof of Theorem 5.1.

Proof of part (v) of Theorem 5.1. Line (216) holds for i = 1, since both sides are
0, and (215) is certainly true for i = D . For the first part of (v), it now suffices
to show (214)-(218) are equivalent for all integers i (1 < i < D) . Fix such an
integer i. Now lines (217), (218) are equivalent by (251), (259). Using

we find by (251) that

Now (214), (218) are equivalent, since

and 1 + hD is indeterminant. Similarly

so (215), (217) are equivalent, and

so (216), (218) are equivalent. Now (214)-(218) are all equivalent. The lines
(219)-(223) can be treated in a similar manner, so consider the last assertion
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of part (v). The statements TH, C, S, WS, TH*, C*, S*, WS* are equivalent by
parts (i)-(iv) of Theorem 5.1, and the implications S -> VWS, S* -> VWS* are
immediate, so it suffices to show VWS -> TH and VWS* -> TH*.

VWS -+ TH: Assume VWS. Then it suffices to show WS' (in the language
of Lemma 5.3), since WS' -> TH1 by that Lemma, and since TH1 -> TH by
Lemma 3.6. Thus it suffices to pick integers i, f, C satisfying

and show

Case (£, C) = (1, 2) or (2, 1). Immediate from (217), (218).

Case (£, C) = (1, 3). Assume for the moment that 0 = 0 in (242). Then by the
statement below (247), we are in Case I or Case IA, with q + q-1 = /? = 0. But
then q2 = -1 and then q4 = 1, so D = 3 by (16). But now (265) can be seen
to hold using A3 e Span{E0, I, A, A2}, so we may assume ft ^ 0. Now multiply
both sides of (253) on the left by E*AE*, and solve for E*AE*AE*AE*AE*.
We conclude this matrix is a linear combination of the symmetric matri-
ces E*AE*AE*AE*AE*, E*A2E*A2E*, E*AE*AE*AE*, plus a matrix
(which we will denote by K) contained in E*Ti-1E*. Now observe

since E*Ti-1E* is closed under transpose. Thus (265) holds, and we are done
in the present case.

Case £ = 2n for some integer n > 3 — £. This case will follow if we can show

Observe e- ^ 0 by (261), so we may solve for E * A E * A 2 E * in (253). Inspecting
the other terms in (253), we find (266).

Case C = 2n + 1 for some integer n > 3 - £ . This will follow if we can show
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Observe g- ? 0 by (263), so we may solve for E*AE*A2E* in (256). Inspecting
the other terms in (256), we find (267). We are now done in the present case.

The above four cases exhaust the possibilities in (264), so we have proved
VWS -» TH. The implication VWS* -> TH* is obtained by a dual argument,
so we have now proved part (v) of Theorem 5.1.

COROLLARY 5.7. Suppose the scheme Y = (X, {R i}0 < i < D) in Theorem 5.1 is
P-polynomial with respect to the ordering A0, A1 , . . . , AD of the associate matrices,
and Q-polynomial with respect to the ordering E0, E1 , . . . , ED of the primitive
idempotents. Further assume the intersection numbers satisfy

or the Krein parameters satisfy

Then Y is thin.

Proof. Pick any x € X, and write A* = A*(x), E* = E*(x) (0 < i < D). Now
(268) implies VWS by (219), since E*AE* = 0 whenever pi = 0 (0 < i < D) by
(64). Similarly (269) implies VWS*, since EiA*Ei = 0 whenever gi = 0 by (65).
In either case, Y is thin by part (v) of Theorem 5.1. This proves Corollary 5.7.

n

6. Examples of thin P- and Q-polynomial schemes

In this section we exhibit the known thin P- and Q-polynomial schemes with
diameter at least 6. For each example, we give the irreducible T(x)-modules.
If the scheme has more than one P- and Q-polynomial structure, we view each
structure as a separate scheme. Information on the examples can be found in
the books of Bannai and Ito [3] and Brouwer, et al. [11]. See also [23], [63],
[74], and the references below. We suppress the details of our calculations.
1Y and Y represent, respectively, the bipartite half and antipodal quotient of a
P-polynomial scheme Y. (Bannai and Ito [3, p. 316]).

Example 6.1.

Let D denote an integer at least 3. Then for each example below, Y =
(X, {R i}0 < i < D) is a thin P- and Q-polynomial scheme. The constants 91, r1, r2, s, s*,
and the case given in parenthesis, refer to LS(Y), as indicated in (82)-(88).

(1) The Johnson scheme J(D, N)(2D < N) [22], [52], [61], [71], [73], [75].
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(2) The Odd graph OD+1 [9], [50], [76].
J(D, 2D + 1) has another P-polynomial structure R0, RD, R1, RD-1,... in
terms of the original one.

(3) J(2D, 4D) [67].

(4) J(2D + 1, 4D + 2) [67].

(5) The generalized Johnson scheme JP n (D, N)(2D < N) [25].
X — all D dimensional subspaces of a fixed N dimensional vector space
over the finite field GF(pn),

X = all subsets of {1,2,..., N} of order D,
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where

(6) The dual polar spaces of rank D [16], [64].
Let U denote a finite vector space with one of the following nondegenerate
forms:

A subspace of U is called isotropic whenever the form vanishes completely
on that subspace. In each of the above cases, the dimension of any maximal
isotropic subspace is D.

where

X = set of all maximal isotropic subspaces of U.
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(7) 2A2D-1(p
n)' [41].

2 A 2 D - 1 (p n ) has another Q-polynomial structure E0, ED, E1, ED - 1 , ... in
terms of the original one above.

where

(8) 1D2D(pn).

(9) 1D2D+1(p
n).

where

(10) Hemmeter's scheme HemD(pn) [12].
Let X denote the vertex set of the scheme CD-1(pn) (p odd), and let
X+ := {x+|x e X } , X - := { x - | x e X} denote two copies of X.
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For all integers i (0 < i < D - 1), and for all x, y e X
with (x, y) e Ri:

where

(11) 1Hem2D(pn)- Same data as 8.
(12) 1Hem2D+1(pn). Same data as 9.

The bipartite half of Hemmeter's scheme is known as Ustimenko's scheme
[40].

(13) The Hamming scheme H(D, q) (q > 2) [27], [52], [61], [71], [73],

(14) H(D,2)' (D even) [76],
If D is even, H(D, 2) has another P-polynomial structure R0, RD-1, R2.
RD-3, ... and another Q-polynomial structure E0, ED - 1 , E2, ED - 3 , . . . in
terms of the original ones. With respect to the original P-polynomial
structure and the new Q-polynomial structure, or with respect to the new
P-polynomial structure and the original Q-polynomial structure:

(With respect to the new P-polynomial structure and the new Q-polynomial
structure, we get the original scheme).

(15) 1H(2D, 2) [52], [71], [73].

X = ail D-tuples of elements from the set {1, 2,. . . , q},
(x, y) 6 Ri iff x,y differ in exactly i coordinates (x, y e X),
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(16) 1H(2D + 1, 2) [52], [71], [73].

1H(2D + 1, 2) has another P-polynomial structure R0, RD, R1, RD-1, ...
and another Q-polynomial structure E0, E2, E4, . . . , E3, E1 in terms of the
original ones.

(17) 1E(2D + 1, 2)' [76].
With respect to the new P-polynomial structure and the original Q-polynomial
structure:

(18) 1H(2D + 1, 2)" [67].
With respect to the original P-polynomial structure and the new Q-polynomial
structure:

(19) 1H(2D + 1, 2)'" [72].
With respect to the new P-polynomial structure and the new Q-polynomial
structure:

(20) H(2D, 2) [72].
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We note H(2D + 1, 2) is isomorphic to 1H(2D + 1, 2).
(21) 1H(4D, 2) [67].

(22) 1H(4D + 2,2) [67].

(23) Ordinary 2D-cycle.

(24) Ordinary (2D + 1)-cycle.

Proof. It is well known that the above schemes are P- and Q-polynomial. A
recent reference is [11, p253]. Also, the given schemes are thin. Indeed, the
examples other than 10, 11, and 12 can be shown to satisfy condition G of
Theorem 5.1. Example 10 is thin by Corollary 5.7, and Examples 11, 12 can be
shown to satisfy condition VWS of Theorem 5.1.

Example 6.1, continued. Let the scheme Y = (X, {Ri}0<i<D) be as in Example
6.1. Fix any x € X, and let W denote an irreducible T(x)-module with diameter
d > 1. Then W is strong. Let p, v, e denote the endpoint, dual endpoint, and
auxiliary parameter of W, respectively, and recall
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by (93), (98), (204). Then additional restrictions are given below. The parameters
a i (W) (0 < i < d), b i(W) (0 < i < d - 1), c i(W) (1 < i < d) of LS(W) are also
given.

(1) J(D, N).

(2) OD+1.

(3) J(2D, 4D).

If v = D - d:

If v = D - d - 1 :
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(4) J(2D + 1, 4D + 2).

If e = D-d -2u :

If e = D - d - 2 u + 2:

(5) Jq(D,N).

where
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(6) Dual polar spaces.

(7) 2A2D-1(pn)'.

(8) 1D2D(pn).

If u = D - d:
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If u, = D-d-1:

(9) 1D2D+1(pn).

If e = 2v-D + d:

If e = 2v-D + d-2:
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(10) HemD(pn).

(11) 1Hem2D(pn)- Same as (8).
(12) 1Hem2D+1(pn). Same as (9).
(13) H(D, q).

(14) H(D, 2)'
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(15) 1H(2D, 2).

If u = D - d:

If u = D - d - 1 :

(16) 1H(2D + 1, 2).

If D - d is even:

If D - d is odd:

(17) 1H(2D +1, 2)'.
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(18) 1H(2D + 1, 2)".

If D - d is even:

If D - d is odd:

(19) 1H(2D + 1, 2)'".

If D - d is even:

If D - d is odd:

(20) H(2D, 2).
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If v = D - d:

If v = D-d-1:\\

(21) 1H(4D, 2).

If v = D-d;

If v = D - d - 1 :

(22) lH(4D + 2,2).
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If e = d - D:

If e = d-D + 2:

(23) Ordinary 2D-cycle.

If ( u , v , d , e ) = (1 ,1 , D-2,0):

(24) Ordinary (2D + 1)-cycle.

If (n, v, d, e) - (1, 1,D-1, 1):



THE SUBCONSTITUENT ALGEBRA OF AN ASSOCIATION SCHEME 207

Note 6.2. As indicated in [11, p195], there are 5 known infinite families of P-
and Q-polynomial schemes with unbounded diameter D, that are not listed in
Example 6.1. They are (i) the Doob schemes (IIC, r = 12, s = s* = -4) [11,
p27], [24], (ii) the schemes Hq(D, N)(N > D) of bilinear forms (I, s = s' =
r, = 0, r2 = q=-N-1) [3, p306], [23], [35], (iii) the schemes Altq(N) (D = [N])
of alternating forms (I, a = s* = r1 = 0, r2 = g-D-1 (if N is even), r2 =
q-D-3 (if N is odd))[3, p307], [37], (iv) the schemes Herq(D) of Hermitean
forms (I, s = s* = r1 = 0,r2 = -q - D - 1) [3, p308], [42], and (v) the schemes
Quadq(N)(D = [N+1]) of quadratic forms (I, s = s' = r1 = 0, r2 = q-D-3 (if N
is even), r2 = q-D-1 (if N is odd) [3, p308], [26], [32], [33], [34], The schemes
(i)-(v) are not thin if D > 3, since they can-be shown to violate condition VWS
in Theorem 5.1.

Every known P- and Q-polynomial scheme with diameter at least 6 is listed
in (i)-(v) above or in Example 6.1 [11, p253].

7. Directions for further research

In this section we give some conjectures and problems concerning a commutative
association scheme Y = (X, {Ri}0<i<D) with diameter D > 3. We refer the
reader to Definitions 3.5, 3.7 and 3.10 for the meaning of thin, P-polynomial,
and Q-polynomial, respectively.

Conjecture 1. Suppose Y is thin and imprimitive. Then the subschemes and
quotient schemes of Y are thin. (See [3, p134, p140] for the definitions of
imprimitive, subscheme, and quotient scheme).

For 2, 3 below, assume Y is P-polynomial, thin, but not Q-polynomial.

Conjecture 2. If D is sufficiently large, then either

(2a) Y is bipartite, and the bipartite half 1Y is thin and Q-polynomial, or
(2b) Y is antipodal, and the antipodal quotient Y is thin and Q-polynomial.

Problem 3. Find all examples that come under (2a), (2b) above.

For 4-6 below, assume Y is P- and Q-polynomial, but not thin.

Conjecture 4. Y has only one P-polynomial structure and only one Q-polynomial
structure. Furthermore, pk = qk for all integers i, j, k (0 < i, j, k < D).

Problem 5. Fix any x € X, and find the structure of those irreducible T(x)-
modules that are not thin. If W is such a module, how big can the dimensions
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of the E*(x)W (0<i<D) be?

Conjecture 6. For each x e X, there exists a nonthin irreducible T(x)-module
with endpoint 1, and a nonthin irreducible T(x)-module with dual endpoint 1.

For 7-11 below, assume Y is thin, P- and Q-polynomial.

Conjecture 7. Either

(7a) The endpoint of W is at most the dual endpoint of W, for all x e X and
all irreducible T(x)-modules W, or

(7b) the endpoint of W is at least the dual endpoint of W, for all x € X and all
irreducible T(x)-modules W. (See (72), (79) for the definition of endpoint
and dual endpoint).

Conjecture 8. Every irreducible T(x)-module with diameter at least 1 is strong,
for every x € X . See Definition 4.4 and Theorem 4.10.

Conjecture 9. For all integers u, v, d, e satisfying (270), (271), and all x € X,
let mult[u, v, d, e](x) denote the multiplicity with which the irreducible T(x)-
module with endpoint u, dual endpoint v, diameter d, and auxiliary parameter
e appears in the standard module V. If there is no such module, set mult
[u, v, d, e](x) = 0. If Conjectures 7, 8 hold, we further conjecture that mult
[u, v, d, e](x) is determined by n, v, d, e and the intersection numbers of Y (and
hence is independent of x).

Conjecture 10. Fix any x e X and consider the ring

R := {a|a e T(x), the entries of a are all integers}.

Then R contains (is generated by?) E*(x), Ai (0 < i < D). Now let W denote
a strong irreducible T(x)-module, with endpoint u, dual endpoint v, diameter d,
and auxiliary parameter e. For each a e R, the eigenvalues of the restriction of
a to W can be computed in terms of u, v, d, e, and the intersection numbers
of Y. Since a has integer entries, these eigenvalues must be algebraic integers.
This "feasibility condition" restricts (u, v, d, e) beyond (270), (271) for many
Y. We conjecture ai(W) (0 < i < d) and C i (W)b i - 1 (W) (1 < i < d) (which
are eigenvalues of a = E * ( x ) A E * ( x ) and a = E * ( x ) A E * ( x ) A E * ( x ) ,
respectively), are rational integers.

Problem 11. Find all the thin P- and Q-polynomial schemes Y with sufficiently
large diameter (see [27], [41], [50], [52], [66], [71], [72], [75], [76]). If necessary,
assume some combination of Conjectures 7, 8, 9, 10.

For 12-15 below, assume Y is P-polynomial.
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Conjecture 12. Fix any vertex x e X, write E* = E*(x) (0 < i < D), T = T(x),
and assume

where Tn (n e 1Z, 0 < n < D) is the subalgebra of T from Definition 5.2. Then
either Y is Q-polynomial, or else Y is antipodal, and the antipodal quotient Y
is Q-polynomial (see Lemma 5.5).

Conjecture 13. Suppose the intersection numbers of Y satisfy p0 = 1 (so that
Y is antipodal). Then Y is thin.

Conjecture 14. Suppose the intersection numbers of Y satisfy pi
 i+1 = p 0 - ( p 1 +

1)pi (0 < i < D - 1) . Suppose further that there does not exist vertices
x, y, z, w € X with (x, y), (y, z), (z, w),(w, x), (y, w) e Rl, (x, z) € R2 (i.e., K
is the point graph of a regular near polygon [11, p199]). Then Y is thin.

Conjecture 15. Suppose Y is primitive, but not a Hamming scheme (part 13
in Example 6.1) or an ordinary cycle. Suppose further that G = Aut(Y) acts
distance-transitively on X (see[11, p136] for a definition of distance-transitive).
Then according to Praeger, Saxl, and Yokoyama [58], either

(i) G is almost simple (i.e., S C G C Aut(S) for some nonabelian finite simple
group S), or

(ii) G is affine (i.e., G has an elementary abelian normal subgroup which is
regular on X).

We conjecture that (i) holds if and only if Y is thin.

Problems 16-17 refer to the algebra T defined in Section 1.

Problem 16. Find the commutative association schemes Y where T is a finite
dimensional vector space over C. Let us say these schemes are of finite type. We
conjecture that if Y is P- and Q-polynomial with

or
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then Y is finite type. (See Corollary 5.7).

Conjecture 17. Referring to the previous problem, suppose Y is of finite type.
Then T is semisimple.

Note. A distance biregular graph is a certain generalization of a P-polynomial
scheme [21], [31], [55], [57], We expect most of the results of this paper can be
extended to these objects.

It is requested that progress on the above conjectures and problems be reported
to us.


