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Abstract. We will present a counter example to the conjecture that the class of boolean SQS-skeins
is defined by the equation g¢(z, u, ¢(y, u, 2)) = q(q(z, u, y), 4, ). The SQS-skeins satisfying this
equation will be seen to be exactly those SQS-skeins that correspond to Steiner quadruple systems
whose derived Steiner triple systems are all projective geometries.
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1. Introduction

An SQS-skein, which is also called Steiner Ternar, idempotent totally symmetric
3-quasigroup, or Steiner 3-quasigroup, is an algebra (S;q) of type (3) satisfying
the equations:
9z, z,9) =y
Q(E, Y z) = Q(m» 2y y)
q(z, y, 2) = q(y, 2, ) and
oz, y, 9(z, y, 2)) = 2
SQS-skeins arise as a coordinatization of Steiner quadruple systems (see [5])
and have been extensively studied by Armanious in [1]. It is known that the
smallest nontrivial subvariety is the class of all boolean SQS-skeins. An SQS-
skein (S;gq) is called boolean if there exists a boolean group (S; +, 0) such that
g(z,y,z2) =+ y+ 2.
In [7), 8], and [9] it is stated without proof that the class of all boolean
SQS-skeins is characterized by the equation

q(z, u, ¢(y, u, 2)) = 9(q(z, u, ¥), u, 2). ¢))

We will show that this is incorrect. Obviously, an SQS-skein is boolean if and
only if it satisfies

‘I(wa U, Q(yv u, z)) = Q((L‘, Y, z)‘ (2)

(Equation (2) corresponds to the associative law in the boolean group.) Every
boolean SQS-skein must therefore also satisfy (1). In none of the three papers
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[7], [8], and [9] has the converse been shown; in fact, in [1] Armanious used (2)
to define boolean SQS-skeins instead of (1) and stated that he was unable to
prove or disprove the existence of a nonboolean SQS-skein satisfying (1).

We will now construct an SQS-skein $,6 = (H;g) that satisfies (1), but not (2).

2. An example

Let H be a four-dimensional vector space over GF(2) and let ¢ be the ternary
operation on H given by:

o+ + 2

x) % Z] o+ Yy + 2o

al [22],1%1],] % - T3 tys+ 2z
T3 Ys 23 ) N 2
z4 Ya 24 gt Yys+t 2+ |z2 Y2 22
x3 Y3 23

It is straightforward to verify that (H;g) is indeed an SQS-skein. (Note that only
one of the defining equations requires some work.) It does not satisfy (2) since:

0\ /0 0\ s1\ /0 1
1) (o o) (o) (o))} [
qulaql»O,O 1o
0/ \O 0/ \0/ \O 1

1 0\ /1y /0

1 11{0})1(0

lo[=9lo {00

0 0/ \0/ \O

It is also easy to check that (1) holds. We have (omitting a few steps):

o+ t+ 2
Lo+ Y + 29
z3+ ys + z3
Q(mauvq(yaua Z))= Ttz Y T U 2 =q(q(w,u,y),u,z))
Tytystzat|zot 29 Yo ug|t+ [To Uz 22
z3+23 Y3 uz| |Tauszs

This example, which we will in future refer to as $;g, justifies the introduction
of a new term.

Definition. An SQS-skein (S;q) is called semiboolean if it satisfies the equation:

9(z, u, 9y, u, 2)) = q(q(z, u, ), u, 2)

We will see in the next section that the term semiboolean is appropriate.
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3. Properties

The following lemma is a straightforward consequence of the defining equations.
It justifies the choice of the term semiboolean.

LEMMA 1. If (S;q) is a semiboolean SQS-skein, then for every O € S the algebra
(S;+, 0) with ¢ + y = q(z, y, 0) is a boolean group.

An immediate consequence is:

COROLLARY 2. If (S;q) is a finite semiboolean SQS-skein then |S| = 2" for some
nonnegative integer r.

It is well known that an SQS-skeins is boolean if and only if it is of nilpotence
class 1. (A general definition of the concept of nilpotence can be found in [4].)
Since $6 is not boolean, it can therefore not be of nilpotence class 1. We will
show that it is of nilpotence class 2. For this purpose we require the following
fact (for a proof of a more general statement see [4]):

LEMMA 3. Let % be a permutable variety with Mal’cev term p(z, y, z), let (A, 2) =
M be an algebra in U and let {(M) denote the center of L Then a () b if and

only if
f(P('rl(av b), ™ (b’ b)v cl)’ veey p(rn(a., b), "‘n(ba b)» Gn))
= p(f(rl (as b)a ERER] rn(ay b))1 f(rl (by b)9 e vrn(ba b))1 f(C))
forall f€ R, all c=(cy, ..., cn) € A" (n being the arity of f) and all binary term
functions ri(z, y), ..., rao(z, y).
For SQS-skeins this lemma becomes:
COROLLARY 4. Let & = (S;q) be an SQS-skein. Then a{(®)b if and only if for

all ¢1,¢3,c3€ S:

q(q(a) b’ C]), €2, C3) = Q(a'v ba q(ch 2, 03))

Proof. Since SQS-skeins have only the two term binary functions r (z, y) = = and

r2(z, y) = y and the ternary operation g itself is a Mal’cev polynomial, Lemma 3
implies that a{(8)b if and only if the following three statements hold:

q(q(a,b,¢1), 2, ¢3) = q(a,b,q(c1,c2,¢3)) for all ¢1,c2,c3€ S 3)

q(g(a, b, ¢1),9(a, b, c2),c3) = g(cy,¢2,¢3) for all ¢,c2,c3€ 8  (4)

Q((I(a, ba cl)v Q(a, b) C2), q(a’a ba C3) = Q(a, ba q(Cl, €, 63)) for all €1,2,C3 € S (5)
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It is straightforward to verify that (3) implies (4) and (5). o

Let us now consider the center of £, . By Corollary 4 it is easy to verify that

w O
N IS l:(f)}((ﬁm)
Wy 0

if and only if w; = w; = w3 = 0, i.e., the center of %5 is the kernel of the
projection onto the first three components. Since the image of this projection is
obviously boolean, we have shown that $,¢ is nilpotent of class 2.

Since our example is semiboolean and nilpotent (of class 2), we are faced with
the two questions:

(1) Is every semiboolean SQS-skein nilpotent?
(2) Is every SQS-skein of nilpotence class 2 also semiboolean?

While the first question is still open, the answer to the second question is
negative. We can construct a 16-element SQS-skein 4,4 = (4; ¢) that is nilpotent
of class 2 but not semiboolean:

Let A = GF(2)* and ¢ be a ternary operation A defined by:

Tty + 2

T Y1 z typt 2z

T2 7] ) = 3ty + 23
Mo lu] s T2 Y
T4 Y4 24 Zqg+ Ys + 24 + T11 21 9313 3/13 zls

It is again easy to verify that ;s = (4;q) is an SQS-skein and of nilpotent class
at most 2. l;¢ is not semiboolean (and therefore not boolean) since:

1 1 0 1 0 1 1 1 1\
1

1/

OO
O;HH
O;OO
O;HH
o»-:n-o
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0123 049D l129na 1ADE 27AF SAEF S 9BF
0145 04AE 134E l1BCE 29CF 4 56F SABC
0167 04BF 13S5F l1BDF 29DE 457E SCEF
0189 058D 136C 234D 2BCD 4589 67809
0oi1aB 059¢C 137D 235C 2BEF 45CD 6 7TEF
01CcD OSAF 138A 236F 3452 467D 6 9AD
OlEF OSBE 1398 237E 3469 4 68A 6 9BC
0246 068E 1468 2389 348F 4 6CE 6ABF
0257 O069F 1472 23AaB 34BC 4788 6CDF
028A 06AC 148D 2458B 3579 47CF 79AC
029B 06BD 149C¢C 2479 358E 49AF 79BD
02CE O078F 156A 248E 35BD 4 9BE 7TABE
02DF O0709E 1578 24AC 367A 4ABD 7CDE
0347 07AD l158¢ 25609 368D 4DETF 8 9AaB
0356 07BC 159D 258F 36BE 56717C 89CD
0388B 124F l168F 25A0D 378C¢ 5688B 8 9EF
039na l125E 169E 2678 37BF S 6DE 8ACE
03CF 126D 178E 268¢C 39CE 578A S8ADF
03DE 127C¢C 179F 26AE 39DF STDF 8BCF
048C 1288B l1ACF 278D 3ACD S 9AE 8BDE
Figure 1. The Steiner quadruple system corresponding to the SQS-skein $3;4.

i.e., there are non-semiboolean SQS-skeins of nilpotence class 2. Note that the
Steiner quadruple system corresponding to ;5 has already been described in [2]
and it can easily be obtained from the affine eight-element Steiner quadruple
system using a recursive construction given in [3]. In none of these papers has
the algebraic importance of il;5 been recognized.

4. Steiner quadruple systems

Given a Steiner quadruple system (P, B), we can define a ternary operation g
on P by: ¢(y, z, z) = ¢(z, y, «) = q(z, =, y) = y and ¢(z, y, z) = fourth point
on the block through z, y and z for all z # y # z # = in P. The algebra (P;q)
is then an SQS-skein. Vice versa, if (P;q) is an SQS-skein and B is the set of
all four-element subalgebras of (P;g) then (P, B) is a Steiner quadruple system.
This describes a one-to-one correspondence between Steiner quadruple systems
and SQS-skeins. The system corresponding to £, is given in Figure 1.

It is possible to characterize the semiboolean SQS-skeins by a design-theoretic
property of the corresponding Steiner quadruple system. If (P, B) is any Steiner
quadruple system, u € P and C = {{z, y, 2} | z, y, z € P\{u} and {z, y, 2, u} €
B}, then (P\{u}, C) is a Steiner triple system and it is called a derived Steiner
triple system of (P, B). With this concept, we obtain the following theorem:
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q(z,u,y)

q(y,u, z)

q(m! U, z)

q9(e(z, v, ), u, 2) = p = q(z,u,9(y, 4, 2))
Figure 2. A subplane in a projective geometry over GF(2).

THEOREM 5. Let & = (S;q) be an SQS-skein with the corresponding Steiner
quadruple system (S, B). ® is semiboolean if and only if all derived Steiner triple
systems of (S, B) are projective geometries over GF(2).

Proof. Suppose all derived Steiner triple systems of (S, B) are projective
geometries over GF(2). Let u, z,y,2 € S. If |{uw,z,9,2}| < 4 or {u, z, y, z}
forms a subalgebra of & then ¢(z, u, ¢(y, u, 2)) = q(q(z, u, ¥), u, 2) since every
four-element SQS-skein is boolean. Otherwise, in the derived triple system
(S\{u}, C) =z, y, and z are noncollinear. The subplane generated by z, y, and 2
has seven elements and is shown in Figure 2. It is straightforward to verify that
in fact:

Q(ma u, ‘I(y’ u, z)) = q(‘l(""’ u, y)a u, z)v

i.e., ® is semiboolean.

If & is semiboolean, consider the sloop corresponding to the derived Steiner
triple system (S\{u}, C). The semiboolean law implies immediately that the
sloop satisfies the associative law and it is well known that the Steiner triple
system corresponding to such a sloop is a projective geometry over GF(2) (see
[5D). o

Note that the existence of nonboolean Steiner quadruple systems whose derived



SEMIBOOLEAN SQS-SKEINS 153

Steiner triple systems are projective geometries over GF(2) was already known
(see [10, p. 294}).

The results presented in this paper are also included in the Ph.D. thesis [6]

of the author.

References

10.

. M.H. Armanious, “Algebraische Theorie der Quadrupelsysteme,” Dissertation, Technische Hoch-

schule Darmstadt, Federal Republic of Germany, 1980.

. M.H. Armanious, “Existence of nilpotent SQS-skeins of class n,” Ars Combin. 29 (1990), 97-105.
. J. Doyen and M. Vandensavel, “Nonisomorphic Steiner quadruple systems,” Bull Soc. Math. Belg.

23 (1971), 393-410.

. R.S. Freese and R.N, McKenzie, Commutator Theory for Congruence Modular Varieties. Cam-

bridge University Press, Cambridge, MA, 1987,

. B. Ganter and H. Werner, “Co-ordinatizing Steiner systems,” Ann. Discrete Math. 7 (1980), 3-24.
. A.J. Guelzow, “Some classes of E-minimal algebras of affine type: Nilpotent squags, p-groups and

nilpotent SQS-skeins,” Ph.D. Thesis, University of Manitoba, 1991.

. C.C. Lindner and A. Rosa, “Steiner quadruple systems ~ A survey,” Discrete Math. 21 (1978),

147-181.

. E. Mendelsohn, “On the groups of automorphisms of Steiner triple and quadruple systems,”

Conference on Algebraic Aspects of Combinatorics, Congressus Numerantium XIII, 1975, 255-264.

. R.W. Quackenbush, “Algebraic aspects of Steiner quadruple systems,” Conference on Algebraic

Aspects of Combinatorics, Congressus Numerantium XII1, 1975, 265-268.
L. Teirlinck, “Combinatorial properties of planar spaces and embeddability,” J. Combin. Theory
Ser. A 43 (1986), 291-302.



