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Abstract. We will present a counter example to the conjecture that the class of boolean SQS-skeins
is defined by the equation q(x, u, q(y, u, z)) = q(q(x, u, y), u, z). The SQS-skeins satisfying this
equation will be seen to be exactly those SQS-skeins that correspond to Steiner quadruple systems
whose derived Steiner triple systems are all projective geometries.
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1. Introduction

An SQS-skein, which is also called Steiner Temar, idempotent totally symmetric
3-quasigroup, or Steiner 3-quasigroup, is an algebra (5; q) of type (3) satisfying
the equations:

q(x, x,y) = y
q(x, y, z) = q(x, z, y)
q(x, y, z) = q(y, z, x) and

q(x, y, q(x, y, z)) = z

SQS-skeins arise as a coordinatization of Steiner quadruple systems (see [5])
and have been extensively studied by Armanious in [1]. It is known that the
smallest nontrivial subvariety is the class of all boolean SQS-skeins. An SQS-
skein (5; q) is called boolean if there exists a boolean group (S; + , 0) such that
q(x, y, z) = x + y + z.

In [7], [8], and [9] it is stated without proof that the class of all boolean
SQS-skeins is characterized by the equation

We will show that this is incorrect. Obviously, an SQS-skein is boolean if and
only if it satisfies

(Equation (2) corresponds to the associative law in the boolean group.) Every
boolean SQS-skein must therefore also satisfy (1). In none of the three papers
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[7], [8], and [9] has the converse been shown; in fact, in [1] Armanious used (2)
to define boolean SQS-skeins instead of (1) and stated that he was unable to
prove or disprove the existence of a nonboolean SQS-skein satisfying (1).

We will now construct an SQS-skein $16 = (H; q) that satisfies (1), but not (2).

2. An example

Let if be a four-dimensional vector space over GF(2) and let q be the ternary
operation on H given by:

It is straightforward to verify that (H; q) is indeed an SQS-skein. (Note that only
one of the defining equations requires some work.) It does not satisfy (2) since:

It is also easy to check that (1) holds. We have (omitting a few steps):

This example, which we will in future refer to as S16. justifies the introduction
of a new term.

Definition. An SQS-skein (S; q} is called semiboolean if it satisfies the equation:

We will see in the next section that the term semiboolean is appropriate.
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3. Properties

The following lemma is a straightforward consequence of the defining equations.
It justifies the choice of the term semiboolean.

LEMMA 1. If (S; q) is a semiboolean SQS-skein, then for every 0 e S the algebra
(S; +, 0) with x + y = q(x, y, 0) is a boolean group.

An immediate consequence is:

COROLLARY 2. // (S; q) is a finite semiboolean SQS-skein then |S| = 2r for some
nonnegative integer r.

It is well known that an SQS-skeins is boolean if and only if it is of nilpotence
class 1. (A general definition of the concept of nilpotence can be found in [4].)
Since [16] is not boolean, it can therefore not be of nilpotence class 1. We will
show that it is of nilpotence class 2. For this purpose we require the following
fact (for a proof of a more general statement see [4]):

LEMMA 3. Let V be a permutable variety with Mal'cev term p(x, y, z), let (A, fi) =
11 be an algebra in 2J and let C(H) denote the center of U Then a C(U) b if and
only if

for all f € Q, all c = (c1, ..., cn) € An (n being the arity of /) and all binary term
functions r1(x , y), ..., rn(x, y).

For SQS-skeins this lemma becomes:

COROLLARY 4. Let 6 = (S;q) be an SQS-skein. Then a £ ( o ) b if and onfy if for
all c1, c2, c3 e S:

Proof. Since SQS-skeins have only the two term binary functions r1 (X, y) = x and
r 2 ( X , y) = y and the ternary operation q itself is a Mal'cev polynomial, Lemma 3
implies that oC(o)b if and only if the following three statements hold:
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It is straightforward to verify that (3) implies (4) and (5). d

Let us now consider the center of s16 . By Corollary 4 it is easy to verify that

if and only if w1 = w2 = w3 = 0, i.e., the center of f16 is the kernel of the
projection onto the first three components. Since the image of this projection is
obviously boolean, we have shown that #16 is nilpotent of class 2.

Since our example is semiboolean and nilpotent (of class 2), we are faced with
the two questions:

(1) Is every semiboolean SQS-skein nilpotent?
(2) Is every SQS-skein of nilpotence class 2 also semiboolean?

While the first question is still open, the answer to the second question is
negative. We can construct a 16-element SQS-skein U16 = (A; q) that is nilpotent
of class 2 but not semiboolean:

Let A = GF(2)4 and q be a ternary operation A defined by:

It is again easy to verify that U16 = (A; q) is an SQS-skein and of nilpotent class
at most 2. u16 is not semiboolean (and therefore not boolean) since:
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Figure 1. The Steiner quadruple system corresponding to the SQS-skein f ) 1 6 .

i.e., there are non-semiboolean SQS-skeins of nilpotence class 2. Note that the
Steiner quadruple system corresponding to U6 has already been described in [2]
and it can easily be obtained from the affine eight-element Steiner quadruple
system using a recursive construction given in [3]. In none of these papers has
the algebraic importance of ilie been recognized.

4. Steiner quadruple systems

Given a Steiner quadruple system (P,5), we can define a ternary operation q
on P by: q(y, x, x) = q(x, y, x) = q(x, x,y) = y and q(x, y, z) = fourth point
on the block through x, y and z for all x = y = z = x in P. The algebra (P; q)
is then an SQS-skein. Vice versa, if (P; q) is an SQS-skein and B is the set of
all four-element subalgebras of (P; q) then (P, B) is a Steiner quadruple system.
This describes a one-to-one correspondence between Steiner quadruple systems
and SQS-skeins. The system corresponding to S16 is given in Figure 1.

It is possible to characterize the semiboolean SQS-skeins by a design-theoretic
property of the corresponding Steiner quadruple system. If (P, B) is any Steiner
quadruple system, u € P and C = {{x, y, z} \ x, y, z e P\{u} and {x, y, z, u} e
B}, then (P\{u), C) is a Steiner triple system and it is called a derived Steiner
triple system of (P, B). With this concept, we obtain the following theorem:
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Figure 2. A subplane in a projective geometry over GF(2).

THEOREM 5. Let (8 = (S;q) be an SQS-skein with the corresponding Steiner
quadruple system (S, B). <5 is semiboolean if and only if all derived Steiner triple
systems of (5, B) are projective geometries over GF(2).

Proof. Suppose all derived Steiner triple systems of (S, B) are projective
geometries over GF(2). Let u, x, y, z e 5. If |{u,x,y,z}| < 4 or {u, x, y, z}
forms a subalgebra of 6 then q(x, u, q(y, u, z)) = q(q(x, u, y), u, z) since every
four-element SQS-skein is boolean. Otherwise, in the derived triple system
(5\{u}, C) x, y, and z are noncollinear. The subplane generated by x, y, and z
has seven elements and is shown in Figure 2. It is straightforward to verify that
in fact:

i.e., G is semiboolean.
If 6 is semiboolean, consider the sloop corresponding to the derived Steiner

triple system (S\{u), C). The semiboolean law implies immediately that the
sloop satisfies the associative law and it is well known that the Steiner triple
system corresponding to such a sloop is a projective geometry over GF(2) (see
[5])- D

Note that the existence of nonboolean Steiner quadruple systems whose derived



SEMIBOOLEAN SQS-SKEINS 153

Steiner triple systems are projective geometries over GF(2) was already known
(see [10, p. 294]).

The results presented in this paper are also included in the Ph.D. thesis [6]
of the author.
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