
Journal of Algebraic Combinatorics 5 (1996), 5-11
© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Spectra of Some Interesting Combinatorial
Matrices Related to Oriented Spanning Trees
on a Directed Graph

CHRISTOS A. ATHANASIADIS cathan@math.mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Received October 19, 1994; Revised December 27, 1994

Abstract. The Laplacian of a directed graph G is the matrix L(G) = 0(G) — A(G), where A(G) is the adjacency
matrix of G and O(G) the diagonal matrix of vertex outdegrees. The eigenvalues of G are the eigenvalues of
A(G). Given a directed graph G we construct a derived directed graph D(G) whose vertices are the oriented
spanning trees of G. Using a counting argument, we describe the eigenvalues of D(G) and their multiplicities
in terms of the eigenvalues of the induced subgraphs and the Laplacian matrix of G. Finally we compute the
eigenvalues of D(G) for some specific directed graphs G. A recent conjecture of Propp for D(Hn) follows, where
Hn stands for the complete directed graph on n vertices without loops.
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1. Introduction

Consider a directed graph G = (V, E) on a set of n vertices V, with multiple edges and
loops allowed. An oriented rooted spanning tree on G, or simply an oriented spanning
tree on G, is a subgraph T of G containing all n vertices of G and having a distinguished
vertex r, called the root, such that for every v e V there is a unique (directed) path in T
with initial vertex v and terminal vertex r. Thus T is a rooted tree in the usual sense, if
we disregard the orientation of its edges. Propp considered a directed graph D(G) whose
vertices are the oriented spanning trees of G. The edges of the new directed graph D(G)
are constructed as follows: Let T be a vertex of D(G) with root r and v € V. Given an
edge e e E directed from r to v, let T(e) be the tree obtained from T by adding the edge
e = rv and deleting the edge of T with initial vertex v. Note that the root of T(e) is v.
Then add a directed edge in D(G) from T to T(e).

The idea of the construction of D(G) appeared for the first time implicitly in the proof of
the Markov chain tree theorem by Anantharam and Tsoucas [ 1 ], where the authors needed to
lift a random walk in G to a random walk in the set of arborescences of G, which coincides
with the set of oriented spanning trees when G is strongly connected. On the other hand,
Propp's motivation for defining D(G) came from problems related to domino tilings of
regions. The "re-rooting move", described above to define the edges of D(G), is analogous
to a certain operation on domino tilings, called an "elementary move" in [4]. In fact, under
an appropriate coding, the elementary moves can be viewed as a special case of a type of
move very similar to the re-rooting move. An even more general operation is described in
[7]. Proposition 2.5, stated in Section 2, is the analogue of the fact that any domino tiling
of a simply connected region can be obtained from any other tiling of the same region by a



sequence of elementary moves. Thus D(G) encodes the ways one can reach any oriented
spanning tree on G from any other, assuming that G is strongly connected, by performing
re-rooting moves.

The main problem we pose here and answer in the following section is to describe
the eigenvalues of the adjacency matrix of D(G) in terms of information contained in our
original graph G. The motivation for posing this question comes from a conjecture of Propp
[6] asserting that if G is the complete directed graph Hn on n vertices without loops, then
the eigenvalues of the Laplacian matrix of D(G) are all integers. In fact Propp conjectured,
based on computational evidence, that these eigenvalues are integers ranging from 0 to n
and that the multiplicities of 0, 1, n - 1 and n are 1, n2 - 2n, 0 and nn-1 - (n - 1)n-1
respectively. In the third section we will prove Propp's conjecture and we will find the
multiplicities of other eigenvalues.

In the remaining of this section we introduce some basic background and notation.
By an l-walk, or l-path, in a directed graph G = (V, E) we will always mean a directed

l-walk, that is an alternating sequence (HO, e1, u 1 , . . . , e1, u1) of vertices and edges of G
such that for each 1 < i < 1, edge ei has initial vertex ui-1 and terminal vertex ui. The
walk is said to be closed if u0 = u1. If S is a nonempty subset of the vertex set V, we denote
by GS the induced subgraph of G on the vertex set S, that is the directed graph obtained
from G by deleting the vertices not in S and all edges incident to them. A subgraph of G
is obtained from GS, for some S, by deleting some of its edges. Finally, an oriented forest
on G with root set S is a collection of vertex-disjoint oriented spanning trees on subgraphs
of G which use all the vertices of G and whose roots are the elements of S.

Fix an ordering of the vertex set V = ( v 1 , v 2 , . . . , vn) of our directed graph G. The
adjacency matrix of G, denoted by A(G), is the n x n matrix whose (i, j) entry is the number
of edges of G directed from vi,- to Vj. The eigenvalues of A(G) are called the eigenvalues
of G and do not depend on the ordering chosen.

The Laplacian of G is defined to be the matrix L(G) = O(G) - A(G) where O(G) is
the diagonal matrix whose ith entry on the diagonal equals the outdegree of vi, that is the
number of directed edges emanating from vi. Both the adjacency and Laplacian matrix we
have introduced for a directed graph are natural analogues of the corresponding matrices
for undirected graphs. For an exposition of many of the known results about Laplacians of
undirected graphs see [5]. Note that the Laplacian matrix is independent of the number of
loops of G on each vertex. The main result we will use about Laplacians is the following
extended version of the matrix tree theorem. A proof and a generalization can be found
in [2].

Theorem 1.1 For S C G denote by L(G)\s the submatrix of L(G) obtained by deleting
the rows and columns corresponding to the vertices in S, Then det(L(G)|s) is the number
of oriented forests on G with root set S.

Finally we mention that all our definitions and theorems can easily be extended in the
general setting of weighted directed graphs with weights from the field of complex numbers,
that is directed graphs with a nonzero complex number assigned to each edge. For example
in Theorem 1.1 we would have to replace the number of oriented forests with the sum of
their weights, where the weight of a forest is the product of the weights of its edges, and
adjust the definitions of L(G) and A(G) in the obvious way. We prefer here to keep the
simplicity of the classical case.
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Proof: An l-walk in D(G) is determined by an oriented spanning tree TO on G with root
r, which will be the initial vertex of the walk, and an l-walk W = (u0, e1, u 1 , . . . , e1, u1)
in G with initial vertex MO = r. Let a = (u0, u1, • • •, u1)• The sequence a determines the
roots of the trees TO, T 1 , . . . , T1 to be visited during the walk in D(G) and the edges of W
determine the trees themselves. For the walk to be closed, that is T1 = T0, we should also
have u1 = r.

Now let's fix a closed l-walk W in G together with the sequence a, as above, and let's
count the number of oriented spanning trees T0 on G with root r = u0 which yield a closed
walk in D(G) when applying W. At each step of the walk from Ti-1 to Ti, we add a directed
edge ei from ui-1 to ui and delete the edge emanating from ui. Therefore, at the end of our
walk T1, a vertex of G appearing for the last time in a as ui-1, 2 < i < 1, will be directed

We are ready to state our central result:

Theorem 2.2 For a directed graph G on the vertex set V we have

for small x. Since clearing denominators we obtain a polynomial equation, this has to hold
for all x. Thus if y is any nonzero complex number, we can multiply the equation above by
1 — yx and set x = 1/y to conclude that y appears among the a, as many times as among
the bj. D

for all positive integers 1. Then r = s and the ai- are a permutation of the bj.

Proof: Multiplying (1) by x1 and summing over / gives

2. The main theorem

It is well known that the (i, j) entry of the matrix A(G)' equals the number of l-walks in
G which start at vertex u, and end at vertex Vj. Thus the number of closed l-walks in G,
which we will denote by w(G, l), equals the trace of A(G)' and hence the sum of the lth
powers of the eigenvalues of G. For the weighted case, of course, we should count a walk
according to its weight, that is the product of the weights of its edges.

Thus a common technique to count walks in G is to compute its eigenvalues. Our approach
here will be the opposite. We will count the number of closed walks in G combinatorially
and then read off its eigenvalues from the answer. This will be possible thanks to the
following elementary and well known fact.

Lemma 2.1 Suppose that for some nonzero complex numbers ai, bj, where 1 < i < r
and 1 < j < s we have
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to ui with ei and the vertices of G not appearing in a will be directed as in T0. It follows
that the number of trees T0 which will yield a closed l-walk in D(G) when we apply W is
the number r(G, U) of oriented spanning forests on G with root set U = {u0, u1, • • •,  ul}.
Finally, since W is a closed l-walk in the graph Gu visiting all of its vertices, we have

where g(G,l) stands for the number of closed l-walks in a graph G visiting all of its vertices.
The inclusion-exclusion principle gives

Hence, after using (4) to compute g(Gu, l) and changing the order of sumation, (3) becomes

Using Theorem 1.1 to compute r (G, U) together with some elementary linear algebra yields
(2). D

From Theorem 2.2 and Lemma 2.1 we immediately conclude the following corollary.

Corollary 2.3 The nonzero eigenvalues of D(G) are included in the nonzero eigenvalues
of the induced subgraphs of G. Moreover if y = 0, then the multiplicity of y as an
eigenvalue of D(G) is

where m G s ( y ) stands for the multiplicity of y as an eigenvalue of Gs-

Corollary 2.4 For all complex numbers y = 0 we have

We digress at this point to show directly that 0 is a simple eigenvalue of the Laplacian of
D(Hn), meaning that its multiplicity is 1. Recall that a directed graph is said to be strongly
connected if for any distinct vertices u and v there exists a (directed) walk in the graph
from u to v. Note that the multiplicity of 0 as an eigenvalue of the Laplacian of any digraph
G which is the disjoint union of strongly connected digraphs, is the number of connected
components of G. Indeed, a basis of the corresponding eigenspace is the set of vectors
with entry 1 on the vertices of G belonging to a given connected component and 0 on the
rest. Hence, in particular, if D(G) is strongly connected then L(D(G)) has 0 as a simple
eigenvalue. In general, D(G) might be disconnected even though G is connected. The
same is not true, however, with strong connectedness. The following proposition, proved
independently for the first time by Propp, shows that D(Hn) is indeed strongly connected.

Proposition 2.5 If G = (V, E) is strongly connected then so is D(G). In particular, the
Laplacian of D(G) has 0 as a simple eigenvalue.



Proof: The induced subgraphs of Hn are isomorphic to Hm for some 1 < m < n and
the eigenvalues of Hm can easily be shown to be m — 1 with multiplicity 1 and — 1 with
multiplicity m — 1 . Hence, by Corollary 2.3, the nonzero eigenvalues of D(Hn are included
in the set {— 1, 1, . . . , n — 1}. Moreover the eigenvalue m — 1,2 < m < n has multiplicity

while — 1 has multiplicity

where we have evaluated the last sum by classical elementary methods. The multiplicities
we have so far add up to nn-1 so 0 is not an eigenvalue of D(Hn) and the proposition
follows. n

Proof: Given two oriented spanning trees T0 and T1 on G with roots r0 and r1, we want
to find a walk in D(G) from TO to T1. Such a walk is determined by a walk in G from r0

to r1. Thus we start at r0 and follow the unique path in T1 from r0 to r1. Then we pick the
furthest vertex v in G away from r1 and follow the shortest walk in G fromr1 to v. This
can be done by strong connectedness of G. Now we follow the unique path in T1 from v to
r1 and continue in the same way with the second furthest vertex in G away from r1, until
only r1 remains. At this point we stop.

This walk has the property that the last time a vertex u other than r1 is visited by our
walk, it is followed by its successor in T1, and hence it induces a walk in D(G) from TO
to T1. D

3. Applications and the proof of Propp's conjecture

Recall that the complete directed graph Hn is the graph on the vertex set V = [n] =
{1, 2 , . . . , n } with exactly one directed edge from i to j for each i = j and i, j e V. The
number of vertices of D(Hn) is the number of rooted spanning trees on [n], which is well
known to equal nn-1. We now apply the method of the previous section to give an extension
and proof of Propp's conjecture.

Proposition 3.1 The adjacency matrix A(D(Hn)), where n > 2, has eigenvalues — 1,
1 , . . . , n — 1. The multiplicity of i is
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Corollary 3.2 The Laplacian matrix L(D(Hn)), where n > 2, has eigenvalues 0, 1 , . . . ,
n — 2, n. The multiplicity of i is

Proof: It suffices to use Proposition 3.1 and the fact that L(D(Hn)) = (n - 1)I -
A(D(Hn)). D

As a variation of the above result we give the following proposition. Its proof consists
of a similar computation and is omitted.

Proposition 3.3 Let Mn (r) denote the directed graph on the vertex set [n] with r directed
edges from i to j for all i, j e [n]. Then the nonzero eigenvalues of D(Mn(r)) are
r,2r,..., nr with

As a final example of the applicability of Corollary 2.3 we consider the complete bipartite
directed graph H r , S , where r, s are positive integers. Its vertex set is the disjoint union of
two sets [r] = { 1 , . . . ,r} and [s]' = {1' , . . . , s'} with r and s elements respectively and for
each pair of vertices (a, b) one of which is in [r] and the other in [s]', there is one edge
directed from a to b.

Proposition 3.4 The nonzero eigenvalues of D ( H r , s ) are ^fpq and —^fpq for 1 < p < r,
1 < q < s and the characteristic polynomial of its adjacency matrix equals

where t is a nonnegative integer depending on r, s and

Note that m(p, q) is to be interpreted as 1 if r = p = 1, q = s, 0 if r = p = 1, q < s and
similarly for the case s = q = 1.

Proof: There are (r
p) (s

q) subgraphs of Hr,s isomorphic to Hp,q for 0 < p < r , 0 < q < s ,
the ones with p = 0 or q = 0 having only zero eigenvalues. It is easy to see that the nonzero
eigenvalues of H p , q , where p and q are positive, are ^fpq and —J~pq (for example by
counting closed walks), each with multiplicity one. Therefore Corollary 2.3 gives the set
of eigenvalues proposed as the nonzero eigenvalues of D(H r , s). Moreover the multiplicity
of ^fpq and —^fpq contributed by the Hp,q induced subgraphs is
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using elementary row and column operations. This yields the suggested value of m(p, q)
and completes the proof of the proposition. D

4. Some further questions

The method of counting closed walks that we have considered here was successful in
determining the eigenvalues of the adjacency matrices of the digraphs D(G). It does not
seem to be strong enough to give other information about these matrices, such as their
eigenvectors or the structure of their Jordan canonical forms. Since adjacency matrices of
directed graphs are not necessarily symmetric, in general they are not diagonalizable and
hence they can have nontrivial Jordan canonical forms. We would thus like to conclude by
posing the problem of describing the eigenspaces of these matrices, as it is possible to do for
the 0-eigenspace of a Laplacian, and their Jordan canonical forms, in terms of information
about the original graph G.

The Jordan block structure of the Propp matrices L(D(Hn)) has been computed for n = 2,
3, 4 by A. Edelman [3]. For n = 3 the eigenvalue 3 has one 1x1 and two 2x2 Jordan
blocks and for n = 4 the eigenvalue 4 has four 1 x 1 , twelve 2x2 and three 3x3 Jordan
blocks. The rest of the eigenvalues for these values of n were found to be semisimple.

Finally we remark that it would be interesting to find other directed graphs whose eigen-
values can be computed more easily by the method of counting closed walks than by
straightforward linear algebra techniques.
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The above determinant equals

where A = (s -1)I(r_p)x(r_p), D = (r - 1)I(s-q)x(s-q), B = -J(r_p)x(s-q) and C =
— J ( s - q ) x ( r - p ) and J denotes a matrix with all entries equal to 1. This determinant can
easily be shown to equal


