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Abstract. Suppose that each edge of a connected graph G of order n is independently operational with probability
p; the reliability of G is the probability that the operational edges form a spanning connected subgraph. A useful

expansion of the reliability is as pn-1 5dj=0 Hi(l — p ) i , and the Ball-Provan method for bounding reliability
relies on Stanley's combinatorial bounds for the H-vectors of shellable complexes. We prove some new bounds
here for the H-vectors arising from graphs, and the results here shed light on the problem of characterizing the
H-vectors of matroids.
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1. Introduction

Let G be a connected undirected graph, with possibly multiple edges and loops, of order n
and size m (i.e. with n vertices and m edges). Rel(G, p) denotes the reliability of G, that
is, the probability that G is connected, where each edge of G is independently operational
with probability p. Much work has been done on calculating and approximating Rel(G, p)
(whose determination is #P-complete); see for example [9] for a survey. Rel(G, p) is always
a polynomial in p (the reliability polynomial of G) and can be expressed in a variety of
ways (each with its own advantages to the estimation of reliability [9]):
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Tutte's seminal paper [15] on the dichromatic polynomial employed partitions of graphic
matroids using internal and external activities of edges; when extended to matroids, Tutte's
observations establish that every matroid is partitionable (see also [9, 3]). The H-vector of
any matroid has no internal zeros, and the last nonzero term is Hr, where r is the dimension
of the matroid minus the number of coloops (see [3, 7]); this last term is the absolute value
of the Euler characteristic of the matroid [3].

Stanley [13] completely characterizes the H-vectors of shellable complexes. Let(H0, . . . ,
Hd) be the H-vector of such a complex. Fix k e {0 d — 1}. The k-canonical form of
a positive integer r is the integer-valued vector (ak, a k - i , . . . , a j ) , where

where each Ui is a facet of C. It is well known (c.f. [9, 3]) that any shellable complex is
partitionable, and in the case of a partitionable complex,

is a purely (d — 1)-dimensional complex (a denotes the set of all subsets of a); a pure
complex C is partitionable if its simplices can be partitioned into intervals

H-vectors have received considerable attention in polytope theory, in particular in connec-
tion with the Upper Bound Theorem.

The H-vector can also be interpreted in the following sense. For any sets L and U with
L C U, the interval [L, U] is {S : L C S C U}. A pure complex C is shellable if its facets
can be ordered as a 1 , . . . , am where for any k e {2 , . . . , m],

(A. denotes the edge connectivity of G). All the sequences (Si), (Fi,), (Ni,), (Hi) and (Ci)
consist of nonnegative integers (c.f. [9]). These sequences have combinatorial significance.
Ni is the number of subsets of edges of size i that form a spanning connected subgraph of
G. Ci is the number of cut sets of size i. Fi- is the number of subsets of edges of size i
whose removal do not disconnect G.

In fact, some results on the combinatorial properties of simplicial complexes play a role
in reliability, so we introduce some salient notation. A complex C on a 'ground' set S is a
non-empty collection of subsets of S that is closed under containment. The subsets of S that
belong to C are called face s or simplices, and the maximal faces are called facets or bases.
The face vector (or simply the F-vector)of C, (Fi), is the sequence in which Fi- is the number
of faces of cardinality i in C. A complex C is pure if all facets are of the same cardinality.
The dimension of a pure complex is the cardinality of any facet (this definition is one greater
than the dimension often defined for pure complexes, but we find this definition simpler
here). For a pure complex C of dimension d with F-vector (F 0 , . . . , Fd), the H -vector [2,
14], (H0, . . . , Hr) has terms given by
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NON-STANLEY BOUNDS FOR NETWORK RELIABILITY 15

and

(such a representation exists for all r and k and is unique), r(i/k), the (i, k)th upper
pseudopower of r,is then defined to be

it is not hard to see that r(i,k) is a nondecreasing function of r, r(i+2/i) =
( r<i+1/i>(,-+2/i+1) i and r = (r(i7;))070. Then a necessary [12] and sufficient [13] con-
dition for a nonnegative integer vector ( H o , . . . , Ha) to be an H-vector of some shellable
complex is that

and

for (i = 1 , . . . , d — 1. We call such bounds Stanley bounds.
Stanley bounds do not put any lower bounds for the tail of an H-vector in terms of the

initial sequence.
One of the best techniques for estimating reliability is the Ball-Provan method [1] (see

also [9]), which relies on Stanley's bounds for the terms in the H-vectors of shellable
complexes (as applied to cographic matroids). For a connected graph G, let F(G) be the
complex on the ground set E(G) of edges of G whose simplices are the subsets of E(G)
whose removal does not disconnect G; .F(G) is in fact the cographic matroid of G, and if
G has n vertices and m edges, then F(G) has dimension m — n + 1. The sequences (Fi)
and (Hi) from the F and H forms of the reliability polynomial of G are in fact the F-vector
and H-vector of the pure complex .F(G), and we simply call these the F- and H-vectors of
the graph G. We thus see at once that (Hi) is a sequence of nonnegative integers. It is this
connection that allowed Ball and Provan to apply Stanley's bounds to estimate reliability
efficiently.

One can improve upon the Stanley bounds, as applied to network reliability, in a number
of ways. First, one can employ algorithms that calculate bounds on coefficients given a
specific input graph. Second, one can employ transformations that have a predictable effect
on the H-vector; when such transformations reduce the graph to a simply analyzed structure
(such as a series-parallel graph), one can extract bounds on the original H-vector from that
of the reduced graph. This approach is taken, for example, in [8] and [4]. The third method
is to develop inequalities among the terms of the H-vector that hold for any cographic
matroid. It is the third of these approaches that we examine in this paper. We develop
here new bounds for H-vectors of cographic matroids, and apply the results to bounding
reliability. Bjorner [3] states that little is known about characterizing the H-vector of
matroids. Some of the results in this paper shed light on this problem as they extend also
to new general inequalities on the H-vectors of matroids.

We use the following notation. A graph G = (V(G), E(G)) may have loops or multiple
edges; a simple graph has no loops or multiple edges. The order of G is its number of
vertices, and the size of G is its number of edges. Given an edge e of G that is not a



In the next section we derive new bounds for weighted sums of terms of the H-vectors
of both graphs and matroids, primarily through a combinatorial interpretation of the Hi's
as counting spanning trees (or bases of a matroid) with a certain property. The following
section produces inequalities among the Hi's for graphs, with a precise determination in
each case of when equality holds. In the two final sections, we focus on the last non-zero
term of the H-vector, which has been called the domination number of a graph, and provide
non-Stanley bounds there as well.

2. Non-Stanley H-bounds from external activity

An explicit partition of a cographic matroid (see [3, 9]) is as follows. Let x be a fixed
linear order of the ground set £ of a matroid M. In particular, for the cographic matroid
of a connected graph G let x be a fixed linear order of E(G), let T denote the set of all
spanning trees of G, and for an edge e of G, call e externally active with respect to T if
e & T but e is the least edge of the unique cycle in T + e. NEA(jT) denotes the edges of G
not in T that are not externally active with respect to T. Then

is apartition of the cographic matroid of G. Thus Hi = |{T e T: |NEA(r)| = i}\.

loop, G — e denotes the graph formed from G by deleting edge e, and G • e denotes the
graph formed from G by contracting edge e (and deleting e). An edge e of a connected
graph G is a bridge if G - e is disconnected. G is a block if it is 2-connected, that is G
is connected and the removal of any vertex also leaves a connected graph. The girth of
a graph G, y(G), is the length of its smallest cycle (if G is acyclic, we set y(G) = oo),
and the circumference of G is the length of the longest cycle. If G and H are graphs then
we write G = H if by contracting bridges and deleting loops the two graphs can be made
isomorphic. The K1-bond of graphs G and H is formed from vertex disjoint copies of G
and H by identifying a vertex of each; we write G o H for any such graph. A cycle of
length n > 2 is denoted by Cn (C2 is a set of two parallel edges). A 0-graph consists of
two vertices of degree 3 joined by three internally disjoint paths. A multiple of a graph G
is a graph G' on the same vertex set formed by replacing each edge of G by a nonempty
set of parallel edges. For k > 1, kG is the multiple of G formed by replacing each edge of
G by k parallel edges. We refer the reader to [16] for standard terminology on matroids.
Finally, we denote the last nonzero term in the H-vector of a graph G by Hd (d = d(G)
is the dimension of the associated cographic matroid if the graph is loopless, and if G is
not loopless, d is the dimension of its cographic matroid minus the number of loops in
G); in either case, G is said to have dimension d. (Loops have no effect on reliability and
so are easily treated, either by defining dimension as above or by permitting the H-vector
to have trailing zeros. We adopt the first approach here to simplify the statement of later
results.)

It is clear from Rel(G, p) = (1 - p) Rel(G - e, p) + p Rel(G • e, p) that for all
i = 1 , . . . , d ( G ) ,
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NON-STANLEY BOUNDS FOR NETWORK RELIABILITY 17

In [11] the following inequality for H-vectors of matroids was shown by algebraic
methods:

As a corollary, this inequality holds for H-vectors of graphs as well. It is easy to see that
equality holds for graphs G for all k if G is a multiple of a tree, since the H-vector of a
set of parallel edges is symmetric, and hence so (by products) is the multiple of any tree.
We prove that equality only holds in these cases, and extend Hibi's result with a purely
combinatorial argument that considers external activity.

Theorem 1 Let G be a loopless graph of dimension d with a cycle of length t > 2, and
let the H-vector of G be (H0 Hd). Then for any k < d - 1,

Proof: Let e1 -< e2 x • • • -< em be a fixed linear order of E - E(G). We let T<, i , j(G)
denote the set of spanning trees T of G such that there are exactly i externally active edges
in (G, x) and exactly j externally active edges in (G, x), the reverse ordering; in other
words, there are exactly i edges e of G not in T for which e is the least edge in the unique
cycle of T + e, and there are exactly j edges e of G not in T for which e is the greatest
edge in the unique cycle of T + e. Since 0 < i, j < d and G is loopless, i + j < d. Also
note that as Hi is the number of spanning trees T such that exactly i edges of G — T are not
externally active with respect to T (and hence exactly d - i edges of G — T are externally
active with respect to T),

since the H-vector is independent of the ordering of the graph. Thus



and

and if G has a subgraph G' consisting of two vertex-disjoint cycles of lengths n1 and n2,
then

and

we can then pull these up through the ranks to improve the gap between £^;=o Hi and

Y.i=d-k Hi-
The previous theorem extends to matroids in the following way. An element e of a

matroid M is externally active with respect to basis B of M if e 6 E - B and e is the
smallest element of the unique circuit in B + e = B U {e}. We let NEA.M,<(B) denote the
set of edges of E — B that are not externally active with respect to B. Then

forms a partition of M*, the dual matroid of M (see, for example, [2] or [10]). A similar
argument to the proof of Theorem 1 proves an strengthening of Hibi's results on matroids:

The results can be improved. For example, if G has a 0-subgraph G' with edge lengths
l1, £2, and L3, then

and substituting this into (1), we derive

for any ordering -< on the graph. Let 0 < k < d — 1. Let the edges not in G' be f 1 , . . . , fd-1.
Order the edges of G such that f 1 , . . . , fk are smaller than those of G', which are in turn
smaller than f k + 1 , . . . , fd-1 • It is easy to verify that if T e T<:ij (G") is a spanning tree of
a spanning subgraph G" of G and e is an edge of G not in T, then by setting e smaller than
all edges of G", T e T.^+1 j(G" + e); and conversely if we set e larger than all edges of
G". Thus we see inductively that

Now for any unicyclic subgraph (i.e. a subgraph with exactly one cycle) G' of G with a
cycle of length t > 2,
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Theorem 2 Let M be a matroid of dimension d without coloops, and suppose that M
has a codrcuit of length t > 2. Let the H-vector of M be ( H 0 , . . . , Hd). Then for any
k<d- 1,

We return to graphs. It is easy to see that £ HI is simply the number of spanning
trees of G (and hence is computable in polynomial time from the well known Matrix Tree
Theorem). By considering all possible linear orderings of the edges we can obtain a new
equation involving £/#,.

Theorem 3 For any connected loopless graph G of dimension d,

where T is the set of all spanning trees of G, and for a spanning tree Tof G and an edge
e of G not in T, c(T, e) is the length of the unique cycle in T + e.

Proof: For each spanning tree T of G, each edge e of G not in T and each linear order
a of E(G), let f(T, e, a) be 1 if e is not externally active with respect to T under the
ordering cr, and 0 otherwise. Now for a fixed tree T and edge e e E(G) — T, for how many
orderings a is e externally active with respect to T? There are

positions for the edges of the unique cycle of T + e with respect to a; there are

ways to arrange the remaining edges, and there are

ways to arrange the edges of the cycle so that e is externally active. Thus we have

On the other hand, by reversing the order of summation, we get



Theorem 6 If a connected loopless graph G of dimension d has order n, t spanning trees,
girth at least g and circumference at most c then

and

By a similar argument, we prove the following:

Proof: For a given linear order a of E(G) and spanning tree T of G, let EAa(T)
denote the set of externally active of G with respect to T and the ordering a, and let
NEAa(T) = E(G) -T- EA^T). Let f(e1, e2, T, a) = 1 if e1, e2 e NEAa(T), and let
f(e1, e2, T, o-) = 0 otherwise. Consider the sum

For a given spanning tree T e T and edges ei, e2 6 E(G) — T, for how many CT'S are
e1, e2 & NEAa(T)? There are two cases for T + e1 + e^.

Corollary 5 If a matroid M with no coloops has order n (i. e. its base set has n elements),
t bases and smallest and largest lengths of cocircuits g and t respectively, then

Again, the arguments yield a result on the H-vectors of matroids.

In particular, if G is simple then

Corollary 4 If a connected loopless graph G of dimension d has order n, t spanning
trees, girth at least g and circumference at most c then

so we have
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Case 1 (T + e1+ e2 contains two edge disjoint cycles). Let the two cycles be C\ and C2

with lengths l\ and £2 respectively. Note that g < t\, ti < c. Now the number of orders
of E(C1) U E(C2) such that e1, e2 are not externally active is

where m(T, e1, e2) = t1 + l2 is the number of edges in C1 U C2.

Case 2 (T + e1 + e2 contains a 0-graph). Let the 0-subgraph of T + e1 + e2 be denoted
by © and have vertex disjoint paths P1, P2, P3 of lengths L1, £2, L3 respectively. For i = j,
g < it + lj < c. Without loss we can assume that e\ € P\ and e2 e P2. Now the number
of orders of E(&) such that e1, e2 are not externally active is

where m(T, e1, e2) = l1 + l2 + £3 is the number of edges in ©.
Now we have

In Case 1,

and in Case 2,



and

Considering instead externally active pairs of edges, we can also show the following
result (the details are omitted).

Theorem 7 If a connected loopless graph G of dimension d has order n, t spanning trees,
girth at least g and circumference at most c then

and

We point out one other inequality (though not related to external activity) of H-vectors
of cographic matroids, which was proved in [7] in conjunction with an investigation of the
roots of reliability polynomials.

so we have

By reversing the sums,

and

Thus
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Theorem 8 For any H-vector (H0 Hd) of a connected loopless graph, any real
number b > 1 , and any integer j e {0,..., d],

These inequalities are strict if b >

We derive the following result.

Corollary 9 If ( H 0 , . . . , Hj) is the H-vector of a connected loopless graph with exactly
t spanning trees, then for all i < d,

Proof: Consider the sum

By the previous theorem, this sum has sign (—1)'+1 or 0, and hence

and since Y^j=o Hj = t, we have

The Stanley bound and the elementary properties of pseudopowers mentioned in the first
section ensure that Hi-2j > Hi

(1-2j)/i), to complete the proof. D

This corollary is of use in bounding individual terms in the H-vector of a graph knowing
only the number of spanning trees. One striking example is obtained by examining the
H-vector of the 1979 Arpanet (see [8]). That network has 272,816,563,831 trees, and the
best lower and upper bounds found by network transformations for H11 are 13,884,089,682
and 185,684,104,966 respectively. Corollary 9, on the other hand, ensures that H11 cannot
exceed 103,425,922,079; this eliminates 47.8% of the gap between the old lower and upper
bounds. Naturally, knowing lower bounds on coefficients Hi for i > 12 in this case can be
used to obtain a tighter inequality yet.



as dim(G — e) = dim(G) — 1 > 1 since G has no bridges.

(we recall that G • e denotes the contraction of edge e in G).
If dim(G • e) >2 and G • e is not the K1 -bond of two cycles, one of which has length 2,

then by induction on n,

unless G = CpoCq where p = 2. Equality holds iff G is a one of

kK2 (k > 2),
kK2 o C1 (k, l > 3)
C1 (l > 3) with other edges parallel to one of the edges of C1,
C2 o C2 o C2, or
C3oC3

(see Fig. 1).

Proof: Without loss, G is loopless and 2-edge connected, as the contraction of any bridge
leaves the H-vector unchanged, but reduces the number of bridges. We proceed by induction
on n = | V(G)|. Assume that G = Cp o Cq where p = 2.

If n = 1, the result is trivial as dim(G) = 0, so we can assume n > 2. Let e = xy be an
edge of G (e is not a bridge), and let number of edges of G parallel to e (i.e. that have x
and y as their ends). Now

Theorem 10 If G is a graph of dimension at least 2 then

3. Other general non-Stanley bounds

Recall that the H-vector of any graph has no internal zeros, and the last nonzero term is Hd,
where d is the dimension of the graph. It is clear that H1 > 1 = HQ when the dimension
is at least 1, and in fact if G has order n and l bridges, then H1 = n — 1 — l. We now
characterize when H2 > H1, and in particular when equality holds.

24 BROWN AND COLBOURN
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Figure 2.

In fact, equality can hold here if and only if H2(G • e) = H1(G • e) and H1 (G - e) = 1,
i.e. G — e (up to contraction of bridges) is a set of at least 2 parallel edges, so G is of one of
the two forms in Fig. 2, i.e. G is the K 1-bond of a cycle of length at least 3 with one of its
edges replaced by a set of at least 3 multiple edges, or a cycle of length at least 3 with one
of its edges replaced by a set of at least 2 multiple edges (in the figure, C1 and P1 denote a
cycel and path of length l respectively).

The H-vectors are respectively (1, l , l , . . . , l , l-1) and (1 , l , . . . , l , l ) . By assumption,
G is not of the forbidden form, so equality holds in this case if and only if G if one of the
graphs in Fig. 2.

The remaining cases are

(i) dim(G • e) = 2 and G • e is of the forbidden form, or
(ii) dim(G • e) < 1.

We begin with Case (i). There are essentially 3 choices for which vertex is -e (see Fig. 3).

Subcase 1. G is of one of the forms in Fig. 4 (since G is not of the forbidden form and G
has no bridges).

In (a)-(d), it is easy to verify that H2(G) > H 1 (G) , with equality if and only if G is
the K1-bond of 3 cycles of length 2. In case (e), H2(G) > H1(G) (unless l = 2 and
u ,(x, y) = 1, but this implies that G is the K1-bond of a 2-cycle and a 3-cycle, a contradic-
tion), so here H2(G) > H1(G).

Subcase II. G is of one of the forms in Fig. 5.

Figure 3.



Figure 6.

In (a), H2(G)> HI (G) (with equality if and only if t = 2 and G is the KI -bond of three
2-cycles). In (b), H2(G) > H1(G) (unless t = 2 and u ( x , y) — 1, which implies G is
the K1-bond of a 2-cycle and a 3-cycle, a contradiction). Thus here H2(G) > H1 (G), with
equality if and only if G is the K1 -bond of two 3-cycles.

Subcase ///. G is of one of the forms in Fig. 6.
In(a)or(b) ,H2(G)>H1(G).
We turn now to case (ii). First assume that dim(G • e) = 1. As G • e is 2-edge connected,

G • e is a cycle (with a loop at -e), so G is of one of the the forms in Fig. 7.
In (a) the H-vector is (1, £ , € , . . . , l, (. - 1), so H2(G) = HI (G). In (b), we have seen

that its H-vector is (1, €, £ , . . . , £ ) , so H2(G) = H1(G).

Figure 5.

Figure 4.
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Figure 7.

If dim(G • e) = 0, then G is a group of at least 3 parallel edges, so H2(G) = H1 (G) = 1.
In fact, equality holds if and only if G is of one of the forms in Fig. 1. D

We turn our attention now to the second last term, Hd-1• The Stanley bounds imply an
upper bound for Hd in terms of Hd-1, but for shellable complexes, Hd may be arbitrarily
small. We show below that for cographic matroids, Hd is bounded below by H d - 1 / d .

Theorem 11 Let a connected graph G have dimension d. Then

and equality holds if and only if (except for loops) G = kT, where T is a tree and k = 1
or 2.

Proof: We proceed by induction on m = |E(G)|. If m = n - 1, then G is a tree, so d = 0
and

so equality holds.
Now assume m > n — 1. Without loss, G has no bridges (as if e is a bridge, then G and

G • e have the same H-vectors but G • e has one fewer edge, so we are done by induction).
Similarly, we can assume that G is loopless. Let e e E(G). Then

Now dim(G — e) = dim(G) — 1=d — 1 since e is not a bridge or loop, so by induction
on the number of edges,

From (2) and (3),

Let e be parallel to u other edges of G; it is not hard to see that



Now by induction on m, we derive from (8) and (9) that

and the inequality is proved.

and

Now

and so by considering the coefficient of pm = pd+n-1 = p2(n-1)+2d ' on both sides, we get

since as G is loopless with no bridges, d = m — (n — 1 ) > 0 and H d - 1 ( G — e) > 0 as
dim(G -e) = d-1.

Case 3. u = 1. Since no edge of G satisfies Case 1 or 2, G = 2F for some simple graph
F. Now F has no loops as G has no loops, so

Thus in either case 1 or 2, by (4), (6) and (7) we get

Case 2. u > 2.
Then dim(G • e) < d - 2 by (5), so Hd-1 (G • e) = Hd(G . e ) = 0 , and thus

Case 1. M = 0.
Then dim(G • e) = d by (5), so by induction on m,
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Now if G is a connected and loopless graph for which equality holds in (*), then from
above either G is a tree, or G = 2F for some simple graph F and we must have equality
in all the steps leading up to (10). That is,

which implies

so G is a tree. It is not hard to see that in this case G has dimension n — 1 and H-vector
(1 (n-1) (n-1) \ /n — 1 \ -ix j,«(1,( j ),( 2 ) , . . . , ( ^ _ 2 ) , 1 ) , and thus

and equality holds.

On the other hand, Hd-1 cannot be smaller than H1. This inequality follows from
Proposition 7.5.3 in [3]; the case of equality is examined next.

Theorem 12 For any graph G of dimension d > 2, Hd-1 > H1, and equality holds if
and only if d —  o2r the underlying simple graph is a tree.

Proof: We proceed by induction on m = |E(G) | . If m = n - 1, the result is trivial, so
assume that m > n — 1. We can assume that G is loopless and bridgeless. Now for any
edgee

so if dim(G • e) = d, that is, e is not parallel to another edge, then

asdim(G - e) = d- 1.
The only remaining case is that every edge is parallel to at least one other edge. Now if

G is not twice some tree, then there is an edge e of G such that G — e has no bridges. Also,
d = 2 is trivial, so we can assume d > 3, so by induction

If G = 2T for some tree T, then Hd-1 = n - 1 = H1, so we are done.
For equality to hold, we need either d = 2 or d > 3 and either (i) e is not parallel to

any other edges and Hd-2(G — e) = 1, which implies by induction H1(G — e) = 1, so
G - e is a tree with one other edge parallel to some edge of G, and this implies d = 2, a
contradiction, or (ii) every edge is parallel to another edge, at least one edge e is such that



where equality holds if and only if k = 2 and H1 (G) = H2(G) = 2, i.e. G = K3 o K3.
Now assume G is a block. If e — xy is an edge of G such that G — e has no bridges, then

since G • e has dimension d as G is simple (and hence H^(G • e) > 0). Otherwise, G — e
has a bridge, say f = wz. If e and / are non-adjacent, then G • e is simple, so

with equality if and only if d = 1 or G = K3o K3).

Proof: We proceed by induction on the size of G. We may assume that G has no bridges.
If d = 1 then the result trivially holds, so we can assume that d > 2.

First assume that G has blocks G1, . . . , Gk with k > 2. Let the dimension of G,- be di,
which is at least 1 as G has no bridges. Then G simple implies that H1 (Gi) = | V(G i)| - 1
>2,

Theorem 13 Let G be a connected simple graph of dimension d > 1. Then

G — e has no bridges and equality holds for G - e. By induction applied to G - e, either
d = 3 or the underlying simple graph of G — e is a tree. In either case, G must be a multiple
of a tree (as the extra edge e must be parallel to some other), and we are done.

Finally, as mentioned earlier, the H-vector of any graph whose underlying simple graph
is a tree is symmetric, and hence if the dimension is at least two, then H1 = Hd-1. d

4. New bounds on the domination number

The domination number (c.f. [4]) is the last non-zero term of the H-vector, namely Hd,
where d is the dimension of the graph; as noted earlier, Hd is also a topological invariant of
the matroid, the absolute value of its Euler characteristic. While some results are known for
domination, we prove here some new bounds. These have implications to the Ball-Provan
method for bounding network reliability.

Note that Hd(G) = Hd'>(G'), where G' is the underlying simple graph of G and d' is its
dimension.
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since d - 1 > 1 implies that G - e has a cycle of length at least 3, and hence Hd-1 (G-e) >
H\(G - e) > 2. Finally, lie and / are adjacent, say x = w (and as G is simple, y ^ z)
then as G is a block, x is of degree 2 in G. If yz & E(G), then G • e is simple and we proceec
as in the previous case. If yz e E(G), then G — x has no bridges and the underlying simple
graph of G • e is G - x, and so

and for equality to hold, G must have order 3, i.e. G = K3; this implies that d = 1, a
contradiction. Thus we are done. D

(See also Proposition 7.5.3 in [3]).

Corollary 14 Let G be a connected loopless graph of dimension d > 1. Then

Hd(G) = 1 if and only if G is a multiple of a tree

and
Hd(G) = 2 if and only if G is =• to a multiple of K3.

Proof: Let G' be the underlying graph of G, and let d' = dim(G'). Without loss, G'
has no bridges. If G' is a block that is not K1 or K3, then from Theorem 13, Hd(G) =
Hd,(G') > H1(G') > 3. If G' has blocks Gi of dimension dt > 1 (< = 1 , . . . , r > 2) with
Gi = K3 if and only if i < l, then

This completes the proof.

We are now ready to prove a new lower bound for the domination number of a graph in
terms of its dimension.

Theorem 15 Let G be a simple graph. Then

Proof: We can clearly assume d > 2 (as for d = 1, G is a cycle of length at least 3) and
that G has no bridges. We proceed by induction on d. If G has blocks G1 , . . . , Gk (k > 2)



as d > 2 and g > 3.

where we use Theorem 15 to go from line 2 to line 3.
Thus we can assume that G is a block. If G • e is simple for some edge e of G, i.e. e is

not in a triangle of G, then as G - e and G • e are of girth at least g and g — 1 respectively,

Proof: We proceed by induction on the size of G. Clearly we can assume that d > 1, and
since Hd(Cn) = n — 1, we can assume in fact that d > 2. We can also as usual assume that
G has no bridges.

If G is not a block, i.e. G = G1 o G2, then without loss y(G1) > y (G 2 ) . Let Gi have
dimension di > 1. Then y(G1) > g and we have

Finally, we strengthen our results in terms of the girth of the graph.

Theorem 17 Suppose that G is a simple connected graph of dimension d and girth g,
g > 3. Then

Corollary 16 If G' is the underlying simple graph of a connected graph G, then

unless Ha(G • e) = 1. By Corollary 14, this implies that G • e is a multiple of a tree. In
this case, as G is a simple block, one can verify that G must be K2 + K n - 2 , which has
Hd(G) = 2n-2, and d = n - 2. The result follows as 2n - 2 > 2(n - 2) for n > 3. D

Thus we can assume that G is a block. If e is an edge of G, then

with Gi of dimension di > 1, then
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Figure 8.

The only remaining case is that G is a block and every edge of G belongs to a triangle.
Thus g = 3, and if e is any edge of G,

by Theorem 15 unless the underlying simple graph of G • e is K3 o K3. As G is a block
with every edge in a triangle, one can verify that the only possibilities for G are shown in
Fig. 8. In each case the inequality holds, so we are done. D

5. Non-Stanley bounds for graphs of low dimension

According to the Stanley bounds, the best upper bounds for Hd of a shellable complex of
fixed dimension d is

with equality obtained by taking a uniform matroid. However, for cographic matroids, the
results are different.

Theorem 18 If G is a connected graph of dimension d <2, then

and equality holds if and only if d = 0, or d = 2 and G is a 0-graph with 3 equal length
paths.

Proof: If d < 2 then H2(G) = 0, so the result is trivial. Assume now d = 2. We can also
assume G has no bridges, as contracting a bridge leaves the H-vector unchanged. Thus
every vertex has degree at least 2. Let G have order « and size m(sod = m - n+ 1) with
x vertices of degree > 3. Then
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Figure 9.

Thus either x = 1 and the only vertex of degree greater than two has degree 4, or x = 2
and the two vertices of degree greater than two have degree 3. It follows that G is of one of
the two forms shown in Fig. 9.

In (a), G = CaoCb(a,b > 1) has H-vector (1, a + b - 2, ab - a - b + 1). Now for
fixed a + b (and hence fixed H1 (G) = a + b — 2), ab — a — b + 1 is maximized when ab
is maximized, i.e. when a = b = Q£^. Therefore,

In (b), G (a 0-graph with paths of lengths a, b, c, each os size at least 1) has H-vector
(1, a + b + c — 2, ab + ac + be — a — b — c + 1). Now for fixed a + b + c (and hence
for fixed H1 (G) = a + b + c - 2), ab + ac + be — a — b — c+ 11 is maximized when
ab + ac + be is, i.e. when a = b = c = HiW+i Thus

In fact, equality holds only in (b), and then only if a = b = c, i.e. G is a 0-graph with 3
equal length paths. D

Such a bound lifts to produce non-Stanley bounds for all fixed dimensions. For example,

Corollary 19 If G is a connected graph of dimension d < 3, then

with equality if and only if d = 0.

Proof: We proceed by induction on n, the number of vertices of G. Clearly, we can
assume d = 3 and that G has no bridges. If n = 1 we are done, so we can assume that



In fact, if equality were to hold, then we must have equality holding everywhere above,
so in particular, H2(G - e) = ^(Hi(G - e) + 2)2 + (H 1(G - e) + 2) + 1). From the
previous theorem, this means G — e is a 6 -graph with 3 equal length paths of length a > 1.
Also, dim(G • e) = 3, so (as e was arbitrary), G must be a simple graph. Now a = 1 implies
that G is a bundle of parallel edges, so H2(G) = W,(G) = 1 and ^ (H 3

1 (G) + 3H1
2(G) +

5H1(G) + 3) = 4/3, so strict inequality holds. Thus a > 2 and G is of one of the forms in
Fig. 10.

If we choose f instead of e in (a) or (b), G — e (after contracting bridges) is not a
0-graph. If we choose f instead of e in (c), then G - f is a 0-graph with path lengths
1, a >2,a > 2, so we can see in any event, we can choose an edge e so that H2(G — e) <
i(H1

2(G - e) + H1(G - e) + 1). Thus (provided d > 1) equality never holds in the
corollary. D

We expect that the results for lower dimensions can be drawn up to higher dimensions to
improve bounds between terms that are close to one another in the H-vector of a graph.

Figure 10.
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Now H1(G - e) < H1(G) = n - 1 and #i(G • e) = H 1 (G) - 1 = n - 2, so

n > 2. Now if e e E(G), then
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