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Abstract. We present representation theoretical interpretations of quasi-symmetric functions and nhoncommu
tative symmetric functions in terms of quantum linear groups and Hecke algelgas & We obtain in this

way a honcommutative realization of quasi-symmetric functions analogous to the plactic symmetric functions of
Lascoux and Saktzenberger. The generic case leads to a notion of quantum Schur function.
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1. Introduction

This paper, which is intended as a sequel to [6, 9, 21], is devoted to the representatio
theoretical interpretation of noncommutative symmetric functions and quasi-symmetric
functions. These objects, which are two different generalizations of ordinary symmetric
functions [9, 10], build up two Hopf algebras dual to each other, and have been showr
to provide a Frobenius type theory for Hecke algebras of ¥t q = 0, playing the
same ole as the classical correspondence between symmetric functions and characters
symmetric groups [7] (which extends to the case of the generic Hecke algebra).

Inthe classical case, the interpretation of symmetric functions in terms of representation
of symmetric groups is equivalent, via Schur-Weyl duality, to the fact that Schur functions
are the characters of the irreducible polynomial representations of general linear group:
Equivalently, instead of working with polynomial representation§&afn), one can use
comodules over the Hopf algebra of polynomial functions dsétn) [11]. This Hopf
algebra is known to admit interestiggdeformations (quantized function algebras; see [8]
for instance) to which Schur-Weyl duality can be extended for generic valugs tbe
symmetric group being replaced by the Hecke algebra.

The standard version of the quantum linear group is not definegfifo0. The theory of
crystal bases [16], which allows to “take the limit— 0" in certain modules by working
with renormalized operators modulo a lattice, describes the combinatorial aspects of th
generic case, and provides illuminating interpretations of classical constructions such &
the Robinson-Schensted correspondence, the Littlewood-Richardson rule and the plact
monoid [3, 17, 24, 26].
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However, another version exists [4] which plays an equivaleietfior generic values of
g, but in which one can specializgto 0. This specialization is quite different of what is
obtained with crystal bases, and leads to an new interpretation of quasi-symmetric functior
and noncommutative symmetric functions analogous to the interpretation of ordinary sym
metric functions as polynomial characters@if(n). Moreover, this interpretation allows
to give a realization of quasi-symmetric functions similar to the plactic interpretation of
symmetric functions (see Section 6.2). The plactic algebra is here replaced by one of it
quotients, and instead of ordinary Young tableaux one has to use skew tableaux of ribbc
shape, and dual objects called quasi-ribbons, for which Schensted type algorithms can |
constructed. In fact, most aspects of the classical theory can be adapted to this high
degenerate case. As this is an example of a non-semisimple case for which everything c:
be worked out explicitely, one can expect that this treatment could serve as a guide fc
understanding the more complicated degeneracies at roots of unity.

This paper is structured as follows. We first recall the basic definitions concerning non-
commutative symmetric functions and quasisymmetric functions (Section 2) and review the
Frobenius correspondence for the generic Hecke algebras (Section 3). Next we introdu
the Dipper-Donkin version of the quantized function algebra of the spate of matrices
(Section 4). We describe some interesting subspaces (Sections 4.5 and 4.6), and prove t
theg = 0O specialization of the diagonal subalgebra is a quotient of the plactic algebra,
which we call the hypoplactic algebra (Section 4.7). Next, we review the representatior
theory of the 0-Hecke algebra and its interpretation in terms of quasi-symmetric functions
and noncommutative symmetric functions, providing the details which were omitted in [7].
In Section 6, we introduce a notion of noncommutative charactekdam-comodules, and
prove that these characters live in the diagonal subalgebra. For ggndériccharacters of
irreducible comodules are quantum analogues of Schur functiong. £d¥, we show that
hypoplactic analogues of the fundamental quasi-symmetric funcipr{guasi-ribbons)
can be obtained as the characters of irreduciiglgn) comodules, and give a similar con-
struction for the ribbon Schur functions. These constructions lead to degenerate versior
of the Robinson-Schensted correspondence, which are discussed in Section 7.

2. Noncommutative symmetric functions and quasi-symmetric functions
2.1. Noncommutative symmetric functions

The algebra ohoncommutative symmetric functiof®j is the free associative algebra
Sym = Q(S;, &, ...) generated by an infinite sequence of noncommutative indetermi-
natesS, called thecompletesymmetric functions. One defin@=S5,S, --- S, for any
composition = (i1, i, ..., i;) € (N*)'. The family(S') is alinear basis dym. Although

it is convenient to defin&ym as an abstract algebra, a useful realisation can be obtained
by taking an infinite alphabef = {a;, a, ...} and defining its complete homogeneous
symmetric functions by

[[a-ta) =) t"s,(A (1)

i~1 n=0
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Although these elements are not symmetric for the usual action of permutations on th
free algebra, they are invariant under the Lascouxu&eriberger action of the symmetric
group [23], which can now be interpreted as a particular case of Kashiwara’s action of the
Weyl group on theéJq (sl,)-crystal graph of the tensor algebra [24].

The set of all compositions of a given integeis equipped with theeverse refinement
order, denoted<. For instance, the compositiodsof 4 such that] < (1, 2, 1) are exactly
(1, 2,1),(3,1), (1, 3) and (4). Thébbon Schur function$R,) can then be defined by

=Y R o R =) (-)0g,

J=I J=I

wheref(l) denotes théengthof | . The family(R,) is another homogeneous basisSym.

The commutative image of a nhoncommutative symmetric funckois the ordinary
symmetric functionf obtained by applying té& the algebra morphism which mafs to
the complete homogeneous functhgy(our notations for commutative symmetric functions
will be those of [28]). The ribbon Schur functid® is then mapped to the corresponding
ordinary ribbon Schur function, which will be denotedry

Ordinary symmetric functions are endowed with an extra productlled the internal
product, which corresponds to the multiplication of central functions on the symmetric
group. A noncommutative analog of this product can be defined, the character g of
being replaced by its descent algebra [35] (see also below) .

Recall that is said to be alescenbf o0 € G, if o(i) > o(i + 1). The set De&) of
these integers is called tiiescent sedf o. If | = (iq,...,I;) is @ composition of, one
associates withitthe subdetl) = {dy, ..., d,_1} of [1, n—1] defined bydx =iy + - - - + ik
fork € [1,r — 1]. Let D| be the sum irZ[&,] of all permutations with descent sBt(l ).

As shown by Solomon [35], thB, form a basis of a subalgebra®f&,] called thedescent
algebraof G, and denoted b¥,,. One can define an isomorphism of graded vector spaces

a:Sym=EPsym, > = =P =,

n>0 n>0

by settinga(R;) = D;. Observe that(S') is then equal tdD¢, i.e., to the sum of all
permutations o5, whose descent set is containedil ).

2.2. Quasi-symmetric functions

As proved in [29] (see also [9]), the algebra of noncommutative symmetric functions is
in natural duality with the algebra of quasi-symmetric functions, introduced by Gessel in
[10]. Let X = {X3, X2, ..., X, ---} be atotally ordered set of commutative indeterminates.
An elementf e C[X] is said to be equa5| symmetric functioif for each composition
K = (kg ..., kn) all the monom|als< x xk withi; <i» < -+ < i have the same
coefficient |nf The quasi- symmetrlc functlons form a subalge@@ymof C[ X].

One associates with a compositiba= (i1, ..., im) thequasi-monomial function

i1 im
2 KX

ji<-<jm
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The family of quasi-monomial functions is clearly a basisQg#ym Another important
basis ofQSymis formed byquasi-ribbon functionsvhich are defined by

Fi :ZML

1=<J

e.9.,F122 = M122 + Mi112+ M1211 + Mi1112. The pairing(-, -) betweenSym andQSym
[29] is then defined byS', M;) = &5 or equivalently by(R,, F;) = &. This duality is
essentially equivalent to the noncommutative Cauchy identity

I (H(l - X% aj)1> =Y RORI(A), (2)
|

i>1 \ j>1

and can also be interpreted as the canonical duality between Grothendieck groups asocia
to 0-Hecke algebras [7] (see Section 5).

3. Hecke algebras and their representations
3.1. Hecke algebras

The Hecke algebrady (q) of type Ay_1 is theC(q)-algebra generated by — 1 elements
(Ti)i=1,n—1 With relations

T2=(Q@-DTi +q for i e [1, N —1],
TiTiaTi =T aTiTiya forie[l, N-2],
TT =TT for |i —j| > 1

The Hecke algebr&ln (q) is a deformation of th€-algebra of the symmetric grou@y
(obtained forg = 1). For generic complex values qgf it is isomorphic toC[&y] (and
hence semi-simple) except whgn= 0 or whenq is a root of unity. The first relation is
often replaced by

TP=@-qHTi+1 3)

which is invariant under the substitutiogn— —q~! and is more convenient for working
with Kazhdan-Lusztig polynomials and canonical bases. However the convention adopte
here, i.e.,

T?=@-DT +q. (4)

is the natural one wheq is interpreted as the cardinality of a finite field aHd (q) as

the endomorphism algebra of the permutation representati@LQiF,) on the set on
complete flags [14]. Moreover one can speciatize- 0 in relation (4). In the modular
representation theory @Ly (Fy), the Hecke algebra corresponding to this specialization
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occurs whery is a power of the characteristic of the ground field. For this reason, among
others, it is interesting to consider the 0-Hecke algabgg0) which is theC-algebra
obtained by specialization of the generic Hecke algéiya@q) atqg = 0. This algebra is
therefore presented by

T2=-T for i e[1,N —1],
TiTigaTi=TigaTiTiyn foriefl,N-2]
Ty =TT for |i —j| > 1.

The representation theory ¢y (0) was investigated by Norton who obtained a fairly
complete picture [31]. Important specific features of the typare described by Carter

in [1]. The 0-Hecke algebra can also be realized as an algebra of operators acting on tt
equivariant Grothendieck ring of the flag manifold [22].

3.2. The Frobenius correspondence

We will see that the 0-Hecke algebra is the right object for giving a representation theoretica
interpretation of noncommutative symmetric functions and of quasi-symmetric functions.
To emphasize the parallel with the well-known correspondence between representations
the symmetric group and symmetric functions, we first recall the main points of the classica
theory.

Let Symbe the ring of symmetric functions and let

RIS] = €D RIGN]

N>0

be the ring of equivalence classes of finitely gener&§é y]-modules (with sum and
product corresponding to direct sum and induction product). We know from the work of
Frobenius that the character theory of the symmetric g®ypcan be described in terms

of the characteristic mapF : R[6] — Symwhich sends the class of a Specht moddle

to the Schur functios, . The first point is thafF is a ring homomorphism. That is,

FIU eVl 181k, ) = FQUD FIVD)

for a Gy-moduleU and a&y-moduleV. The second one is the character formula,
which can be stated as follows: for any finite dimensiagigkmoduleV, the value of the
chararacter o/ on a permutation of the conjugacy class labelled by the partitisrequal

to the scalar product

x () = (FNV), pu)

wherep, is the product of power suns,, - - - p, -
This theory can be extended to the Hecke algety#q) whenq is neither 0 nor a root
of unity. The characteristic map is independentpaind still maps the|-Specht module
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V,(q) to the Schur functiors,. The induction formula remains valid and the character
formula has to be modified as follows (see [2, 18, 19, 32, 36, 37]). Define for a partition
= (u1, 4o, ..., ur) of N the element

Wy = (‘71 o 'G/Lrl) (Uuﬁl T Um+url) T (GM1+“‘+Mr—l+l o 'UNfl)

(whereg; is the elementary transposition + 1)). The character formula fdtl (q) gives
the valuexlﬁ onT,, of the character of the irreducibée Specht modul&/; (q). It reads

X =ty (Tw,) = (FV@), Cu(@) = (51, Cu(@))
whereC,(q) =(q — 1)'®™ hi((q — 1)X) (in A-ring notation,h*((q — 1)X) denotes the

image of the homogeneous symmetric functiéiiX) under the ring homomorphispx +—
@ —1) py).

4. The quantum coordinate ring Ag(n)
4.1. Tensor representations ofky)

LetE = {ey, ..., &4} be afinite set and let
n
v=_@p cae
i=1

be theC(q)-vector space with basig ). Forv = g, ®---®&, € V®Nandi € [1, N — 1],
we definev® by setting

Vi :a<1®"'a<i71®eﬂi+1®e& ®a<i+2®“'®a<”'

Following [4, 5, 15], one defines a right actionldf (q) onV®N by

v-Ti =v7 if ki <Kkt
v-Ti =qv ifkizki+1,
V-Ti=qv+@—-Dv if k > k.

This is a variant of Jimbo’s action [15] itself defined by

v-T, =qv if ki =K1,

V- T :ql/zv"i if ki <Kk,
V-Ti=g2v +(@-Dv if k> ki
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Let (6)1<i<n be the basis o¥/* dual to the basige ) of V. The dual (right) action of
Hn (g) on (V*)®N is given by

Vi T = gv)e it ki < ki1,
v T = qv* if ki :ki+1,
VT = (V)T @@=V i k> K

Example 4.1 LetV = C(q) e1 ® C(q) . The matrices describing the right actionTaf
onV ® V and onV* ® V* in the canonical bases of these spaces are

puls

Il
coooo
oOr OO
ol @ o
oo oL
oL oo
o]
ol moO

0

0
10

q

|_\
folNeoNoNe)

We also need the left actions bl (q) on V&N and(V*)®N defined by

T-v=—qv-T'=-v-T+@-Dv,
Tovi=—qv-T'=—v*Ti+@Q-1Vv-.

Equivalently, fov = g, ® - -- ® &, € (V)®N andv* = g0 -0 € (V58N

Ti-v=-v, Ti-vi=—v* if ki =k,

T-v=—v1+@-Dv, T-vi=—qW)"+@-Dv* if k <k,
Ti-v=—qv7, Ti v = —(vH)7 if ki > Kij1.

4.2. The Hopf algebra §n)

The quantum group\(n) is the C(q)-algebra generated by tmé elements(X;j)1<i j<n
subject to the defining relations

XjkXil = g% Xjk fori < j, k<lI,
XikXil = Xil Xik foreveryi, Kk, I,
Xjl Xik — XikXj| = q-— 1)Xi|Xjk for i < j, k <lI.

This algebra is a quantization of the Hopf algebra of polynomial functions on the variety
of n x n matrices introduced by Dipper and Donkin in [4]. It is not isomorphic to the
classical quantization of Faddeev-Reshetikin-Takhtadzhyan [8], and although for generi
values ofg both versions play essentially the saroéeran essential difference is that the
Dipper-Donkin algebra is defined fgr= 0.

Aq(n) is a Hopf algebra with comultiplication defined by

n
A(Xij) = Z Xik @ Xkj.
k=1
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Moreover one can define a left coactidnf Aq(n) onVEN by

n
s@)=)_ X%j®e¢
L

J

and the following property shows thag,(n) is related to the Hecke algebras in a similar
way asGL, and the symmetric groups.

Proposition 4.2 [4] The left coactiors of Aq(n) on VN commutes with the right action
of Hn(q) on V®N, That is the following diagram is commutative

5®N

v/ ©N Aq(n) ®V®N
h ld®h
V®N Aq(n) ®V®N

5N

for every element ke Hy (q) considered as an endomorphism o'\

This property still holds fog = 0. Thus, for anyh € Hy(0), V&N h will be a sub-
Ag(n)-comodule ofvV®N. This is this property which will allow us to define a plactic-like
realization of quasi-symmetric functions. For later reference, note that the defining relation
of Ag(n) are

XjkXi =0 fori <j, k<l,
XikXil = Xi| Xik foreveryi, k, 1, (5)
Xjli Xik = XikXjl — Xil Xjk for i < j, k <l.

4.3. Some notations for the elements g

Each generatax;; of Ag(n) will be identified with a two row array and with an element of
V ® V* modulo certain relations as described below:

Xij =[”=e.®e’j*.

Fori=(ir,....i0),J = (jr..... Jr) € [L,n]",lete = &, ®---®86, ande’ =€/, ®---
® €] . One can then identify the monomigj = Xi,j, - - - X, j, of Aq(n) with the two row
array

i iy e
| PR T
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itself regarded as the class of the teng@® ej* e T"(V ® V*) modulo the relations

e® %* =g ® (ej* -T;) foreachr suchthat, > i,q,

e®e =60 (@E)” for eachr such thaf; =i, ;. ©
These relations are equivalent to
e®e =-T-e®(€)”" foreachr suchthaty < jria1. 7)
4.4. Linear bases of #4n)
Foreveryi = (i1,...,ir) € [1,n]", let] (i) € N" be defined by

I (i)p =Cardix, ke [1,r], ik = p}

for pe [1,n]. Forl, J € N", set

Aq(l, J) = Z C(q) xj.

Li)=1,1(j)=J

Observe thatAq(l, J))1, senn defines a grading ofy(n) compatible with multiplication.
A monomial basis compatible with this grading is constructed in [4]. The basis vectors,
which are labelled by matricdd = (mjj)1<i j<n € Mn(N) are

XM = (X;HIIX]'T]ZIZ e X]T]m) . (X:G’:'lxrrrznz e er;f:?n) e Aq(n)

It will be useful to introduce another monomial basid") of Aq(n), labelled by the same
matrices, and defined by

XM:( Min mZn_.'X

Xin Xon ran;]n)"'(xirlqugnfl XrTLnl) € Aq(n)

Proposition 4.3 For any q e C, the family(x™)ucum, v iS @ homogeneous linear basis
of Aq(n).

Proof: It is clearly sufficient to prove that each basis elemgptcan be expressed in
terms of thexN. Using the array and tensor notations, such an element can be represente

by
iy i ] .
XM—[... in o ...]—a@’q’

where j; is the maximal element of the second row of this array and whetei,. The
maximality of j; and relation (7) imply

—_Nl) i e
XMZ(_l)l(U)Taa®q:<( 1)Ic(j Ta)['l |.2 ]

i 2
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for some permutation. By induction on the length ofy, there exists some other permu-
tationt such that

o (=D'OT, g eee dip e koo ks

M= Id NI I NP I
Going back to the definition of the left action bfy(q) and to relations (6), this implies
thatxy is aZ[q]-linear combination of elements of the form

ip oo iy oo kg oo ke
n ---n --- 1 ... 11|
from which the conclusion follows immediately. m|

4.5. The standard subspace of(A)

The restrictions to the standard componenign) of the transition matrices between the
two basegxy) and(x™) have an interesting description.

Definition 4.4 Thestandard subspace,8) of Aq(n) is

S = A1 1 = P C@x

0B,
Wherexa = X160 (1) X26(2) * * * Xno(n) foro € Gn.
The following result is an immediate consequence of Proposition 4.3.

Proposition 4.5 One has

Sm = Cax’

oeG,
where X = X, qn - - X022 Xo (D)1

The elements of the transition matrices between the two basg¢s.s, and(x?),cs,
of §(n) are R-polynomials. Recall that the famil§R; ,(q)), ., Of R-polynomials is
defined by

(Tr) P =2(0)q" Y &(r) Reo(@T: € Ha(@)

<0

for o € &, (cf. [13]). The R-polynomial R, ,(q) is in Z[q], has degreé&(o) — I(r) and
its constant term is(o 7).
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Proposition 4.6 The base$x?) and(x,) are related by

X% = Z Rer.o (0)Xor and % = Z Re o (—=q)x“"

wherew = (n n—1---1) and where< is the Bruhat order.
Proof: In the notation of Section 4.3, we can write
XX =6 Q€ =€¢, Q€ =€ Q€ T,

=enn® (T & =ern® (Z £(7) Reo (@) Tf> €,

<0

=e€12.n® (Z R‘L’,a(q) e:;-[) = Z Rr,(r(q) Xot-

<0 <0
The second relation can be proved in the same way. |

Corollary 4.7 In Ag(n), one has

X7 =) e80T and % =) £0T)Xr.

<0 <0

4.6. Decomposition of left and right standard subspaces=at@

In the array notation, the standard subspace is spanned by arrays whose both rows ¢
permutations. If one requires one row to be a fixed permutatjame obtains the left and
right subcomodules of (n) which are independent offor generiag, but not forg = 0.

Definition 4.8 Theleft andright standard subspaces Aq(n), respectively denoted by
Lq(n) andRy(n), are defined by

L= P  C@xaiXep X

J=(j1,-.., jn)eN"

RiM= P  C@Xpn- X2, 1.

I=(1,....ir)eNT

We associate with a permutatione &, the subspaces &, (n)

Lg(n;o) = Z CDXs 1), 1 X0, 15 * * * Xo (), jn>
I=(j1r jn)END

Rio) = D C@Xipom* Xipo@Xiro-

I =(ig,.onnir )N

For generia, all the left (resp. right) subspaces are the same.
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Proposition 4.9 If g € Cis nonzero and not a root of unity

Lg(n;0) =Lg(n)  and Ri(n; o) = Ry(n).

Proof: Using the tensor notation of Section 4.3, we can write
& Q€ =€,,0€=€2.nQ€) To1=(e12.n®€)) - (IdQ Ty-1)

for everyJ € N", so thatLq(n; o) C Lq(n). Moreover the asumptions animply that
T,-1 is invertible. The previous relation can therefore be read as

enn®e =@ Q€ (Id® (T, )™,

from which we get that 4(n) C Lq(n; o). The second equality is obtained in the same
way. ]

Whenq = 0, the subspacdsy(n; o) and Ry(n; o) are not equal tdo(n) and Ry(n).
However, the proof of Proposition 4.9 shows thatn; o) C Lo(n) andRy(n; o) C Ry(n).
The subspacdsy(n; o) (resp. Ry(n; o) areright (resp. left) sultyg(n)-comodules of o(n)
(resp. Ro(n)), of which they form afiltration with respect to the weak order on the symmetric
group. To prove this, let us introduce some notations. We associate to an integer vect
| = (iq,...,in) of N" the two sets

Inv(l) ={(k,1),1<k<l<n-11ix>i},
Pogl) = {(k,),1<k<l<n-1ix<i}.

Proposition 4.10 For every permutationr € G,,, one has

Lo(n;0) = @ CXo).j1 " Xo).jns
J=(j1 ----- jn)
Inv(o)CInv(J)

Ro)= P  CXpom  Xinow-
I=(i1,....in)
Pogl)cPogo)

Proof: We only show the first identity, the second one being proved in the same way.
Lemma4.11 Letl > 1besuchthat(i) >o(i +1)and j < jju. Thenin Ag(n)

Xo(i),ji *** Xo+,jiy = 0.

Proof of the lemma: The result is obvious when= 1. Let then > 2 and suppose that
the result holds fok — 1. Two cases are to be considered.

1) o +1=1) >0 +. If ji—1 < i, one clearly has

Xo(iy,ji ** Xoli+),jin = Xo(i),ji " XoGH-1),jia 1 X+, jiy = 0.
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On the other hand, ifi11_1 > jiy, we can write
Xo)ji = KXo+ jin = Xo().ji = KXo+, i Xo(i+-1), jizi-
= Xo (i) ji  Xo (i H), jip—a X (+H =1, i -

We have herg; < ji,j_1 so that the right hand side is zero, as required.
2) o(i+1—-1) <o(i +1). Thuso(i) > o(i +1 — 1) and we just have to check the case
ji > Jivi—1. Then,jiy 1 < jiy sothat

Xo(i),ji = Xo i+, jin = Xo@),ji = Xo i+, jia Xo(+H-1), jizi—1
T X (i), i Ko=), i Xo (iH), jiyi-1s

which is indeed zero by induction. |

It follows from the lemma that

Lo(n; o) = Z CXoq).js** Xo).jns

J:(jl ----- Jn)
Inv(o)CInv(Jd)

and it remains to prove that the sum is direct. et (jy, ..., jn) € N" such that Inyo) C
Inv(J). Using the same argument as in the proof of Proposition 4.6 we can write

Xo@js " Xo),jn = € & €) =€, ,®€ =¢enn® € T,1)
= Z S(O'T) e12...n ® eJ-T

<0
where< is the Bruhat order o®, andJ - t = (j; ), - - -, jzm). This last formula clearly
shows that the familyX, 1) j, - - - Xo (), jo)inv(o)cinv(a) 1S free. O

We can now prove that the “left celld”o(n; o) form a filtration of the right comodule
Lo(n) with respect to the weak order.

Proposition 4.12 Leto € &, andleti e [1,n — 1] such thats(i) > o(i + 1). Then
Lo(n; o) is strictly included into lg(n; o o).

Proof: The inclusionLq(n; o) C Lo(Nn; o 07) is immediate. Thus it suffices to show that
this inclusion is strict. One can easily construct an element_q(n; o ;) of the formx =

- Xo(i+1).k X (i), - - - Using the formalism of Section 4.3, one checks iTai Id) - x =
—X # 0. On the other handT; ® Id) - Lo(n; 0) = 0. Thusx ¢ Lo(n; o). O

4.7. The diagonal subalgebra and the quantum pseudoplactic algebra

Definition 4.13 Thequantum diagonal algebray(n) is the subalgebra oAy (n) gener-
ated byxyy, ..., Xnn-
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The character theory ofq(n)-comodules described in Section 6 will show that the
noncommutative algebrag (n) contains a subalgebra isomorphic to the algebra of ordinary
symmetric polynomials, exactly as in the case of the plactic algebra.

Definition 4.14 Let A be atotally ordered alphabet. Thgantum pseudoplactic algebra
PPI;(A) is the quotient ofC(q) (A) by the relations

gaab— (q+1)aba+baa=0 fora<hb,
gabb— (q+ 1) baa+ bba=0 for a<b,
cab— acb— bca+bac=0 fora<b<c.

The third relation is the Lie relationd] c], b] = 0 where k, y] is the usual commutator
xXy—yx. Forq = 1, the first two relations become,[[a, b]] = [b, [b, a]] = 0 andPPl;(A)
is the universal enveloping algebra of the Lie algebra defined by these relations.

It should be noted that the classical plactic algebra is not obtained by any specializatio
of PPI3(A). The motivation for the introduction d?Ply(A) comes from the following
conjecture.

Conjecture 4.15 Let A= {ay, ..., a,} be a totally ordered alphabet of cardinality n.
For generic g the mapping : & — X;; induces an isomorphism between Pf) and the
diagonal algebraAq(n).

Our conjecture is stated for generic valuesgofi.e., whenq is considered as a free
variable, or avoiding a discrete set@h It is clearly not true for arbitrary complex values
of q. For example, fog = 1, the diagonal algebra;(n) is an algebra of commutative
polynomials. The diagonal algebracpt= 0 is also particularly interesting, and its structure
will be investigated in the forthcoming section.

4.8. The hypoplactic algebra

Let againA be a totally ordered alphabet. We recall that piectic algebraon A is the
C-algebraPI(A), quotient ofC{A) by the relations

aba= baa bba=bab for a < b,
acb=cab, bca=bac for a<b<c.

These relations, which were obtained by Knuth [20], generate the equivalence relatiol
identifying two words which have the sanfesymbol under the Robinson-Schensted cor-
respondence. Though Schensted had shown that the constructionfsyrabol is an
associative operation on words, the monoid structure on the set of tableaux has been mos
studied by Lascoux and Satzénberger [23] under the name ‘plactic monoid’. These au-
thors showed, for example, that the Littlewood-Richardson rule is essentially equivalent tc
the fact that plactic Schur functions, defined as sums of all tableaux with a given shape
are the basis of a commutative subalgebra of the plactic algebra. This point of view is nov
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explained by Kashiwara'’s theory of crystal bases [16, 17], which also leads to the definitior
of plactic algebras associated to all classical simple Lie algebras [24, 27]. Other interprete
tions of the Robinson-Schensted correspondence and of the plactic relations can be foul
in [3, 26].

Kashiwara’s crystallization process describes the generic situation modulo a certain lat
tice, but does not amount to putting= 0 in the defining relations of quantum groups,
which is generally impossible due to the symmetoies played by andg—!. The special-
izationg = 0in Aq(n) orin Hy (q) leads to a different combinatorics, and describes a truly
degenerate case, rather than combinatorial aspects of the generic situation. In particul:
the specialization of the diagonal algebra is a remarkable quotient of the plactic algebra th:
we shall now introduce.

Definition 4.16 The hypoplactic algebra HRIA) is the quotient of the plactic algebra
P1(A) by the quatrtic relations

baba= abah baca=abac fora<b <c,
cacb=acbc cbab=bacbh fora<b<c,
badc=dbca acbhd=cdab fora<b <c<d.

The combinatorial objects playing thele of Young tableaux are the so-called ribbons and
quasi-ribbons. We recall first thati@bon diagramis a skew Young diagram containing no
2 x 2 block of boxes. A ribbon diagram withboxes is naturally encoded by a composition
| = (i1, ...,ir) of n, called theshapeof the diagram, whose parts are the lengths of its
rows (starting from the top). For instance, the following skew diagram is a ribbon diagram
of shape3, 1, 3, 2, 3).

L

Let | be a composition. Ajuasi-ribbon tableawf shapel is then obtained by filling a
ribbon diagrant of shapel by letters ofAin such a way that

e each row of is nondecreasing from left to right;
e each column of is strictly increasing frontop to bottom

A word is said to be guasi-ribbon wordbof shapel if it can be obtained by reading from
bottom to topand from left to right the columns of a quasi-ribbon diagram of shiape
Observe that this convention allows to read the shape of a quasi-ribbon word on the wor
itself.

Example 4.17 The word u =aacbabbacis not a quasi-ribbon word since the planar
representation af obtained by writing its decreasing factors as columns is not a quasi-ribbon
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tableau, as one can see on the picture. On the other hand, thevwerdacbacdcdis
a quasi-ribbon word of shap8, 1, 3, 2). The quasi-ribbon tableau corresponding tis
also given below.

|a|aa |a|aa
b b
C|lb]a c|jcy|c
b c| d|d
aacbabbac aacbacdcd

The central result of this section is the following.

Theorem4.18 The classes of the quasi-ribbon words form a linear basis of the hypoplactic
algebra HPLA).

Proof: We first prove that every word of A* is equivalent to some quasi-ribbon word
with respect to the hypoplactic congruereelt is sufficient to prove this for standard words
(i.e., permutations), since the hypoplactic congruence is compatible with standardizatior
The standardizestd(w) of a wordw is the permutation obtained by the following process.
Readingw from left to right, label 12, . .. the successive occurrences of the smallest letter
a of w, then do the same with the next lettgrand so on. One obtains in this way a word

in distinct labelled letters; regarded as elements of the alphalet N endowed with the
lexicographic order. Then replace each labelled letter by the integ@rs.1, according

to its rank in the lexicographic order, as in the following example:

w = ababca— a;bayb,cia3 — std(w) = 142563

This standardization process, due to Schensted [34], is compatible with the plactic relation
[23]. One can also check that it is compatible with the quartic hypoplactic relations (usec
in connection with the usual plactic relations). The standardization of the first hypoplactic
relationbaba = abableads for instance tb;a;b,a, = a;b;asb, which is a consequence

of a plactic relationljac = bca) and of the last hypoplactic relationdab= acbd:

bj_albzaz = blbza]_az = a]_blazbg.

The other verifications are done in the same way. This implies therefore thav iff
std(u) = std(v).

Thus, if we assume that the theorem holds for standard wetdgy) is equivalent to
some standard quasi-ribbon wardCompatibility with the hypoplactic congruence imply
thatw = r’ wherer’ is the word obtained from by replacing each integére [1, n] by the
letter of A occupying theth position instd(w) L. But in a standard word, the hypoplactic
relations preserve the relative order of all pdits + 1). It follows that the image in’ of a
column of the ribbon diagram ofis still a strictly decreasing sequence of letters, sorthat
is still a quasi-ribbon word of the same shape aklencew is equivalent to a quasi-ribbon
word.
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Example 4.19 Let againw = ababca Then we havetd(w) = 142563 and
142563= 14253 = 124356

(the places where a rewriting rule has been applied are underlined). Idtdiag is
equivalentto the standard quasi-ribbon word 124356 of shap€3, 3). The compatibility
of the standardization process withimplies thatw = r’ = aababc The quasi-ribbon
representation af’ is

|a|a a

o

o]

We now turn back to the standard case. We have to prove that every permutagign of
(considered as a word over,[d]) is equivalent to some (standard) quasi-ribbon word over
[1, n]. The proof proceeds by induction ean Suppose that the result is true up to some
n > 1,andletw = uabe a permutation @b, 1 whereju| = nanda < [1, n+ 1]. Applying
the induction hypothesis 1o we can writew = ra wherer is a standard quasi-ribbon word
over [L n + 1] — {a}. Decompose asr = c;--- ¢ wherec; is the word obtained by
reading from bottom to top thigh column of the quasi-ribbon tableau associated with
Thusw = ¢; --- ga. Sincer is a quasi-ribbon word, the first colunephas to be of one of
the following two types:

1. ¢ =jj—1---1forsomej € [1, n+1]. Inthis case, the conclusion follows by applying
the induction hypothesist - - - ga.

2.¢c0=jj—1---i+1i—1---1for somej € [1,n+ 1]. In this case, the induction
hypothesis allows us to write - - - ¢i = d, - - - dy, whered; - - - dp, is the column de-
composition of some standard quasi-ribbon word. Sirigéhe minimal letter of this last
word, we must have, = d; i, and the conclusion is implied by the following lemma.

Lemma4.20 Letl<i < j <n.Then
(--i+1i—-21---H(n---j+1li)=@G—-21---D(j---DH(n---j + 1),

where x- - - y denotes the concatenation of the elements of the intexyal, which is the
empty word for x> y.

Proof of the lemma: We argue by induction on. Forn = 3, the two possible situations
covered by the lemma correspond exactly to the two standard plactic relations written as

= W

1 3 2 3_2
2 2’ 171 3
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The standard quartic hypoplactic relations are also special instances of the lemma:

4 2 3 4 1 3
2 3=1
1 1 2

4, .
3 2 4

Let nown > 4 and suppose that the lemma holds up to orderl. Suppose first that
i =1.If j + 1= n, the formula is obtained by application of a single plactic relation. So,
we can suppose that+ 1 < n. In this case, the result follows by successively applying a

plactic relation, the induction hypothesis and a hypoplactic relation as shown below

(---22Mn=21.--j+1D)=((---3y(h2D(n—-1---j+11
=({(---33Mm2Y(n-1---j+H=(---2Hh(nn-1---j4+11.
Consider now the case= 2. Suppose first that = 3. Forn = 4, the result to be
proved is exactly one of the standard hypoplactic relations. Thus we can assume that

Using successively the fact th@& 1) (n- - - 4 2) is plactically equivalenttgn - - - 3 1) (4 2,
a hypoplactic relation and then a plactic relation, we obtain

BDYIMN---42)=n---3D@2d=Nn---1)B2Y @A =(n---3D (2 4.
Applying twice the induction hypothesis, we can rewrite the right hand side as
N30 D=0 N---322H=1D)B2(n---9.

If j > 3, we reach the desired conclusion by first applying the induction hypothesis anc
then the fact that - - - 1 3 is plactically equivalent to 1 - - - 3 as described below

(83D j+12=(-- DB (M- j+1)
=@ (-32M ] +D.

The general case> 3 follows then by iterated applications of the induction hypothesis
as described below

(-i+li—1.2)(M--j+1i)=(--i+2i-21---2(n--- ] +1i1)
=(-1---2(-- DM j+1)=G0-1---(---i D -~ ]+
=G(-1---2D(---)(M--j+1. O

At this point, we have shown that every word Af is equivalent to some quasi-ribbon
word. To conclude the proof of the theorem, it remains to show that the hypoplactic classe
of quasi-ribbon words are linearly independent. Again, by the standardization argument, |
suffices to see that the famify, of all standard quasi-ribbon words of fixed lengtts free.

Thus we can suppose that= [1, n] for somen > 1. The point is now that the hypoplactic
relations are satisfied by the generators of the 0-diagonal algelirg. Hence one can
define a morphismp from HPI(A) onto Ap(n) by ¢(i) = X;; for everyi € A =[1,n].

Let w € &, be a standard quasi-ribbon word of lengttover [1, n]. By definition,
there exists a strictly increasing sequence k; < ky < --- < k1 = n+ 1 such that
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w==¢C---gwithg =k, —1---k fori € [1,1]. Consider the Young subgrou, =
Slkyko—1] X - -+ X S|k k,1—1] OF Sn. Applying Corollary 4.7 to each strictly decreasing
word ¢;, one obtains that

1 2 n
(p(w)z{f; e(o) |:0(1) o2 --- o‘(n)i|

in the notation of Section 4.3. Observe thais the unique permutation of maximal length
occuring in the sum. This property implies immediately théB,) is free in Ag(n). It
follows thatB, is itself free inHPI(A) as desired. O

LetC(o) be the unique compositidnsuch thaD (o) = D(I). By theevaluationev(w)
of awordw € A*, we mean the vector &w) = (Jw|a)aca € N” whose entries are just the
different numbers of occurences of each letter A in w.

As an interesting consequence of the proof of Theorem 4.18 and of Lemma 4.20, wi
obtain:

Proposition4.21 Letw be aword over atotally ordered alphabet l&t A be its evaluation

and letoc = std(w). The unique quasi-ribbon word to whiahis equivalent with respect to
the hypoplactic congruence is the unique quasi-ribbon word of evaluateomd of shape

C(o™.

Example 4.22 Consideragain = ababca Them = (3, 2, 1) andstd(w) = o = 142563.
Henceo 1 =136245 andC(c 1) = (3, 3). The unique quasi-ribbon word of evaluation
(3,2, 1) and of shap€3, 3) isaababc Thusw = aababcas already seen in Example 4.19.

The importance of the hypoplactic algebra comes from the following isomorphism, wich
follows directly from the previous considerations.

Theorem 4.23 The ring homomorphism defined bya — x;; is an isomorphism bet-
ween the hypoplactic algebra HR) and the crystal limitAg(n) of the quantum diagonal
algebra.

We have already seen that the quantum diagonal algep@@) is not isomorphic to the

guantum plactic algebra whene {0, 1}. We conjecture that these two degenerate cases
are the only exceptions.

5. Characteristics ofHy(0)-modules
5.1. Grothendieck rings associated with finitely generatgdmodules
Let Go(Hn(Q)) be the Grothendieck group of the category of finitely generatgdq)-

modules and leKq(Hy(Q)) be the Grothendieck group of equivalence classes of finitely
generated projectively (q)-modules. Whem is not 0 and not a root of unity, the Hecke
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algebraHy (q) is semi-simple and these two groups coincide. Moreover their direct sum for
alln > 0 endowed with the induction productis isomorphic to the 8ggof (commutative)
symmetric functions.

Whenq = 0, Hy (0) is not semi-simple. In particular, indecomposahblig(0)-modules
are not necessarily irreducible, and the Grothendieck rings

G=€P Go(Hn(®) and K =P Ko(Hn(0)

N>0 N>0

are notisomorphic. We will see thgand/C are respectively isomorphic to the rir@Synof
guasi-symmetric functions arg®ym of noncommutative symmetric functions. The duality
betweenSym andQSym(cf. Section 2.2) can therefore be traced back to a general fact in
representation theory.

5.2. Simple K (0)-modules

There are Y~ simpleHy (0)-modules, all of dimension 1 [1, 31]. To see this, itis sufficient

to observe thatT; ;1 — Ti 11 T;)2 = 0. Thus, all the commutatord;], T;] are in the radical

of Hy(0). But the quotient ofHy (0) by the ideal generated by these elements is the
commutativealgebra generated By — 1 elementdy, ..., ty_1 Subject toti2 = —t. ltis

easy to check that this algebra has no nilpotent elements, so th&t\t(® /radHy (0)).

The irreducible representations are thus obtained by sending a set of generatbastbits
complementto 0. We shall however label these representations by compositions rather th:
by subsets. Let be a composition oN and letD(l) the associated subset of [4 — 1].

The irreducible representatign of Hy (0) is then defined by

_[-1 ifi eD(),
‘p'(T‘)—{o ifi ¢ D(I).

The associatetty (0)-module will be denoted bZ,. These modules (whehruns over
all compositions ofN) form a complete system of simpléy (0)-modules.

The simple modules can also be realized as minimal left ideat$\@D). To describe
the generators, we associate with a compositiohN two permutations (I ) andw (1) of
Gy defined by

e «(l) is the permutation obtained by filling the columns of the skew Young diagram of
ribbon shapd from bottom to top and from left to right with the number21. .., N,
i.e., the standard quasi-ribbon word of shape

e w(l) isthe permutation obtained by filling the rows of the skew Young diagram of ribbon
shapel from left to right and from bottom to top with the number2]. .., N.

Example 5.1 Consider the compositioh = 22113 of 9. The fillings of the ribbon
diagram of shapé corresponding tee(1) andw (1) are
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1] 3 HE

J>U‘I|®\l
Hblm\l

8] o] dEl

«(22113 (22113
Thusa (22113 = 132765489 and (22113 = 896754123.

Recall that thepermutohedrorof order N is the Hasse diagram of the weak order on
G, that is, the graph whose vertices are the elemen&\ofnd where an edge labelled
i €[1, N — 1] betweenr andr means that = o; o.

Lemma 5.2 Let | be a composition of N. The descent clagsD{c € &y, D(o) =
D(l)} is the intervalla (1), w(l)] for the weak order oG .

Fori € [1, N — 1], let0; = 1+ T;. These elements verify the relations

02 = 0O for i € [1, N —1],
DiDjZDjDi for ||—J|>1,
0010 = 04100449 for i e [1, N — 2]

In particular, the morphism defined Ay — —0; is an involution ofHy(0). As theD;
satisfy the braid relations, one can associate to each permutatiofiy the elementd,, of
Hn (0) defined bydD, = Oj, - - - O;, whereg, - - - oj, is an arbitrary reduced decomposition
ofo.

For a compositiod = (i1, ..., i,) we denote byi = (i, ...,i1) its mirror image and
by | ~ its conjugate composition, i.e., the composition obtained by writing from right to left
the lengths of the columns of the ribbon diagram ofFor instance(3, 2, 1) = (1, 2, 3)
and(3,2, 1)~ =(2,2,1,1).

Proposition 5.3 The simple K (0) moduleC, is isomorphic to the minimal left ideal
Hn (0) n of Hy(0) wheren = T,y Oaqi)-

Proof: Observefirstthab(I)~! = w(l)anda(l) = w(l1 ™) wy (Wherewy isthe maximal
permutation ofSy). It follows that Degw (1)) = D(I) and Degx(1~)™%) = [1,n—1]

— D(I). Thus, taking into account the fact tHRtD; = 0, one checks that; is different
from 0 and that

—T 1 Oea~ if i € D),
- _ = w(l) “al™)
T Baa) {o it i ¢ D(I).
5.3. Indecomposable projectiveykD)-modules

The indecomposable projectity (0)-modules have also been classified by Norton (cf.
[1, 31]). One associates with a compositionf N the unique indecomposable projective
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Hn (0)-moduleM such thatM, /radM ) ~ C,. This module can be realized as the left
ideal

M| = Hn(O) v

wherev; = Toq) Oy i~y Sincea (™)™ = oo (1), one getD (e (i)™ =[1,n— 1] —
D(l). It follows that the generatar; of M, is different from 0 and that a basis bf, is
given by

{To Oy~ Dedo) = DD} = {T; Oy i~), 0 € [a(l), (D]},

accordingtoLemma5.2. Hence the dimensioklgfis equal to the cardinality of the descent
classD,. Also, every interval of the formd{(1), w(1)] in the permutohedron can be inter-
preted as the “graph” of some indecomposable proje¢iiyé0)-module (cf. Example 5.4
below). The family(M,);;=n forms a complete system of projective indecomposable
Hy (0)-modules, and

Ha(0) = €D M. ®)

I11=N
Example 54 Letl = (1,1,2). Thenl™ = (1,3), 1 = (2,11, 1" =3 1, a(l) =
3214 andx (1 ™) = 1243. Henceyy12 = T, T1 T, O3. The moduleM 11, can be described

by the following automaton. An arrow labellddgoing from f to g means thal; - f = g,
and a loop on the vertek labelledT; | € (withe = 0ore = —1) means thal; - f = ef.

T1|-1
-
€)d To-1

Ts

T1|-1
CORE =

T2

T1/0
T, Tse D To|-1
T3|-1

This is also the graph of the interval [324812] = D;;,in the permutohedron @,4. The
(—1)-loops correspond to the descents of the inverse permutation.

5.4. A Frobenius type characteristic for finite dimensiongj(B)-modules

Let M be a finite dimensionaHy (0)-module and consider a composition series\ri.e.,
a decreasing sequenbdy = M D My D --- D Mg D Myy1 = C of submodules where
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the successive quotienks; /M;_; are simple. Therefore ead¥l; /M, 1 is isomorphic to
someC,,, and the Jordan-dltler theorem ensures that the quasi-symmetric function

k
FM)=) " F,
i=1

is independent of the choice of the composition series. This quasi-symmetric function i
called thecharacteristioof M. Its properties are quite similar to those of the usual Frobenius
characteristic of & y-module [7]. However, the characteristiag M) of a Hy (0)-module

M does not specify it up to isomorphism.

The character formula fdfly (0)-modules can be stated in a form similar to the Frobenius
character formula. Foracompositibywe denote b, (q) the noncommutative symmetric
functionC; (q) = (q—1)'"'S' ((q—1) A), inthe noncommutativie-ring notation introduced
in [21]. Let alsow; be the permutation of the Young subgrogip defined by

wy = (01 -+ 0j;-1) (Oj4+1 =+ Ojstjo=1) ** (Ojggetjog4l *** On=1).

The character of a moduM is then determined by its valugg (T,,,) = trm (T,,) on the
special elements,,,.

Proposition 5.5 [7] (Character formula) The character of M is given by

xm(Tw,) = (F(M), Cy(0))

where(, ) is the pairing between QSym aSgm.

One can refing” into a graded version of the characteristic, at least wieis a cyclic
module i.e., whe = Hy (0) e. In this case, the length filtration

Hy O = P CT,

I(o)>k

of the 0-Hecke algebra induces a filtratiod ©), .y of M by settingM® = Hy (0)®e.
This suggests to introduce tigeaded characteristic/q(M) of M defined by

FaM) = g« FMO/MED),
k>0

The ordinary characteristi€ (M) is then the specialization ¢f;(M) atq = 1.
The graded characteristic is in particular defined for the modules induced by tenso
products of simple 1-dimensional modules

Hn +enr ©)
..... I, = CI1 & CIr THni(O)@’"'@Hnr 0)°
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the characteristic of which being equal to the prodrict - - Fy, . The induction formula can
be stated in terms of the graded characteristic, which leadsjtarelogue of the algebra
of quasi-symmetric functions. Thiganalogue is defined in terms of theshuffle product
[6]. Let A be an alphabet and Igtbe an indeterminate commuting with Theg-shuffle

is the bilinear operation df[q] (A) denoted byo, and recursively defined on words by the
relations

logu=uQOql=u,
(@u) Oq (bv) =auoqbv) + g b@uogv),

where 1 is the empty wordy, v € A* anda, b € A. One can show thap, is associative

(cf. [6]).

Example 5.6 Let M1 (2) denote theH,(0)-module obtained by inducing tH4(0) the
H2(0) ® H2(0)-moduleC;; ® C,, identifying H2(0) ® Hz(0) with the subalgebra dfi;(0)
generated by; andT;. This Ha4(0)-module is generated by a single elemeiin which

T, andTz act byT; - e = —e and byTsz - e = 0. The following automaton gives a complete
description of this module. The states (vertices) correspond to the imagamader the
action of some element d¢4(0), which form a linear basis d¥1(11), 2.

Ti-1
R T 0
T2
(Tz-e D To|-1 1
Ty Tz
T1|-1 T»|0
Tol-1 C T Ty-e T3Tr-e D Tal-1 72
Ts Ty
Ti|-1
TiTsTre | D
1T3T2 < -1 3

T2

T1/0
CTleTsTZ‘e D Tl-1 4
Ts3|—-1

The automaton is graded by the distad¢é ) of a statef to the initial statee as indicated
on the picture. This grading is precisely the one described&pyThat is, if we associate
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with each statef the compositiorl (f) of 4 whose associated subset of $lis D(f) =
{ie[l,3]|Ti-f=—"1},wefind

Fqa(M112) = Z a®OF (r) = Fia+ qF2 + 0*(Fi12+ Fa1) 4+ q°F121 + q*Fona.
f

This equality can also be read on tipeshuffle of 21 and 34:
2104 34 = 2134+ 2314+ %2341+ %3214+ 33241+ %3421

One obtains the graded characteristic by replacing each permuaitichis expansion by
the quasi-symmetric functioRc ).

This example illustrates the general fact that the graded characteristic of an induce
module as above is always given by tpeshuffle. As it is an associative operation, one
obtains in this way @-deformation of the ring of quasi-symmetric functions.

Proposition 5.7 [6, 7] Let | and J be compositions of N and M. Let alsce &1 n;
andz € Sn+1,n+M) be such thaDego) = D(l) andDegr) = D(J). The Hyym(0)-
module obtained by inducing toyH v (0) the Hy (0) ® Hy (0)-moduleC, ® C; (identifying
Hn(0) ® Hu(0) to the subalgebra of Klyw(0) generated by 1T ..., Tno1, Tnats - - -
Tnom-—1) is cyclic and its graded characteristic is given by

H (0) v
Fa (C' ® Ca M iOeHu ) ) = ). aFew

veGnim

where Qv) denotes the composition associated with the descent setraf where

00qT = Z qi® v,

veGnim

Forqg = 1, we obtain the following result [7].

Corollary 5.8 The characteristicF is an isomorphism betweghand theZ-algebra of
guasi-symmetric functions.

5.5. A noncommutative characteristic for finite dimensional projectiy¢Oitmodules

Let M be afinite dimensional projectiugy (0)-module. Hencé is isomorphic to a direct
sum of indecomposable projective modules

m
M= M.
i=1
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The noncommutative Frobenius characterisb€ M is the noncommutative symmetric
functionR(M) defined by

R(M) =" R,.
i=1

The characteristidR (M) does characterize every finite dimensional projectig(0)-
moduleM up to isomorphism, and is therefore stronger tiarnhe following proposition,
which is a reformulation of Carter’s expression of the Cartan invariant&@d) shows in
particular how to computé& (M) from R(M).

Proposition 5.9 [7] Let M be a finite dimensional projectivexi)-module. Then the
characteristic/(M) of M is a symmetric function which is the commutative image of
R(M).

Proof: It suffices to prove the result whevi = M. In this case,

FM) =" cisF,

JEN

where the Cartan invariawf; is equal to the number of permutatiomsof Gy such that
D(o) = | andD(c 1) = J (see [1]). On the other hand, by a formula of Gessel [10], we
havec;; = (ry,rj) = (r, Ry), where(-, -) denotes the usual scalar product of commutative
symmetric functions (see [28]) and whejes the commutative image of the ribbon Schur
function R,. Using the fact that the quasi-ribboRs and noncommutative ribbon Schur
functionsR; are dual bases, it follows th&(M ) =r,. ]

The induction from a tensor product of projective modules is described by the produc
of noncommutative symmetric functions.

Proposition 5.10 Let | = (iy,...,i;) and J = (ji,..., js) be compositions of N and
M. Then

R(M1 @My 1,0 ) = RIRy = Rig+ R, )
whereweset1J = (i1, ...,i0r, j1,..., Jgpand I3 = (i1, ..., 0r—1,0r + j1, j2, - - -, js)-

Proof: The formula for the product of two noncommutative ribbon Schur functions is
proved in [9], and we just have to show that

H (0) ~
M ®@ M3 M oetyo =Mia® M.
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Using the duality between simple modules and indecomposable projective modules, w
obtain

Hn+m (0) ~ :
Mi ® My tindemo = @ dimHomu,,,o
KEN+M

x (M' ® M3 T Set o MK)MK'
By Frobenius reciprocity, we have

Mo © i
M1 @M tiigenuo = D dimHomu,oem o
KEN-+M

x (M1 ® My, C oo ) M
Observe now that the description of the family | ) given in Section 5.3 implies that

_ 1 ifl =13,
dim Homy ) (M;,C)) = {o if 1 #£J

so that

. H 0
dimHomy, g Hw © (M. ®M 3. Ck L oot )

isequalto 0ifD(K)N[1, N] # D(l) orD(K)N[N+1, N+ M] # N + D(J) and equal
to 1whenD(K)N[1, N]=D()andD(K)N[N+1, N+ M] =N + D(J), i.e., when
K=1-JorK =1 Jasdesired. a

Thus, we have the following interpretation of the algebra of noncommutative symmetric
functions.

Corollary 5.11 The characteristic mag is an isomorphism between the Grothendieck
ring K and theZ-algebra of noncommutative functions.

6. Hypoplactic characters ofAg(n)-comodules
6.1. The character of an #n)-comodule

Let M be a finite dimensionad(n)-comodule with coactiod. Let (m;);—1m be a basis
of M. There exist element&(, j))1<i j<m Of Aq(n) such that

m

s(my) = Z a(i, j) ® m

i=1



366 KROB AND THIBON

fori € [1, m]. The element
m
> ad.i)
i=1

of Aq(n) is independent of the choice of the bagis). It will be denoted byy (M) and
called thecharacterof the A (n)-comoduleM.

Proposition 6.1 Let M, N, M’, M” be Ay(n)-comodules.

1.f0—-> M — M — M” — 0is a short exact sequencg (M) = x (M’) + x(M");
2. x(M® N) = x(M) x(N);

3. ifM ~ N, theny(M) = x(N).

It happens that for generic valuesafthe character of aA;(n)-comodule is always an
element of the quantum diagonal algebra.

Theorem 6.2 Let g be an indeterminate and let M be a(A)-comodule. Then the
charactery (M) belongs to the diagonal algebrag(n).

Proof: The basic observation is the following lemma.

Lemma 6.3 The quantum determinant of,f) can be expressed by means of g-commu-
tators as follows

X117 X12 ... Xin
X211 Xo2 ... Xop def

) ) = Z £(0) X16(1) * - * Xno (n)

: €6,
Xn1 Xn2 ... Xnn q

1
= T n1 [Xnn, [ s [X22, Xll]q o ‘]q]q
A-m?

where[P, Q] = PQ—-qQP.

Proof of the lemma: Observe first that the lemma is equivalent to the identity

X121 ... Xyn-1 X121 ... Xin-1
Xn| G b =a b
Xn-11 .-+ Xn-1n-1 Xn-11 .-+ Xn-1n-1
X11 ... Xin
=01-09

an .. Xnn
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Using the tensor notation of Section 4.3, this can be rewritten as

1-a) (Z s(o)elz..n®e:;> +q| Y e0)enn®€

ocB, 0B,
o(n)=n

= Z e(0) en12.n-1 ® €,

UEGn,1

which is itself equivalent to

D" D s | T T

oeB,
o(1)=n
=(@1-q (Z e(o)ef,) +a| Y )€
(IEGn UEGn
o(n)=n
This last formula is now easily proved by inductionmen a

As a consequence of Lemma 6.3, we obtain that the character otttlesterior power
Ay(V) of V (cf. [4]) is equal to

x(Ag(V)) = Ar(@; D)

difu_;;)ru( 3 [xirir,[...,[xiziz,xim]q.--]q]q>

1<i;<--<ir<n

whereA = {Xi1, ..., Xmn}. Letnowi = (1", ..., n') be a partition of. It follows then
from Proposition 6.1 that the character of the comodule

Mg =VE @ AJ(V)® @ @ Ag(V)eh

is also in the diagonal algebrsg(n).

On the other hand, it has been shown by Dipper and Donkin [4] that one can associat
with every partitiork of n anirreducibleA; (n)-comodulel ; q and that the familyL; ¢)arn
forms a complete system of irreducibhg (n)-comodules. They also proved that for an
appropriate ordering: on partitions ofn, the products of exterior powers decompose as

MA,q ~ L)\_q D @aMLM,q.

H<X

Applying Proposition 6.1, we see that the matrix giving the decompositiop@f;. o)) -n
on(x (L, q))x-nisunitriangular. Itfollows thatthe characte(L, ) is alinear combination
of elements of the familyy (M q))x-n. Hencex (L, o) € Aq(n). O
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Note 6.4 The commutative image gf(M) is the formal commutative characterintroduced
in [4]. But the formal character df, 4 is the Schur functiors,. Thus the characters (in
our sense) of the irreduciblg, (n)-comodules are quantum analogues of Schur functions.

Note 6.5 LetCharz(q; n) denote theZ-lattice of An(q) spanned by characters Af(n)-
comodules. The proof of Theorem 6.2 shows t8aar;(q; n) is the subring ofA,(q)
generated by thequantum elementary functions (g; A)with1 <r < n. Moreover since
the composition series of the tvm,(q)—comodules\g M® Aa(V) andAg(V) ® Ag(V)
are the same, these quantum elementary functions commute. It followshthat(q; n) is
a commutativeZ-algebra isomorphic to the algebra of symmetric functions variables.

Note 6.6 Although Theorem 6.2 has been stated for generic valugsibfs not difficult
to see that it holds fog € C — {0, 1}. In the usual commutative case (i.9.~ 1), the

result becomes false. On the other hand we conjecture that it still holds for0 (cf.
Conjecture 6.13).

6.2. A family of irreducible &(n)-comodules

Let | be a composition oN. The element); = T, Oy~ of Hy(0) generates the
one-dimensional lefHy (0)-moduleC,. One can use it to construct tg(n)-comodule

D, =VeN.p.
Let A be a noncommutative totally ordered alphabet and Ibe a composition. We
denote byF, (A) the sum of all quasi-ribbon words of shape According to a result of

Gessel [10], the commutative image@f(A) is the quasi-symmetric functio .

Example 6.7 The quasi-ribbon tableaux of shape= (2, 1) over{a < b < c} are

|aa |aa |ab |bb
b c [ c

ThusF;1(a, b, c) = aba+ aca+ acb+ bch The commutative image d¥,;1(a, b, ¢) is
clearly equal tdMlz; + M111 = F»1, as desired.

Proposition 6.8 Let | be a composition of N. Then(D,) = F; (X11, . .., Xnn).

Proof: LetQR(l) be the set of all quasi-ribbon words of shdpé&\Ve associate with every
wordw = a, - - - &, of A* the tensow = g, ® - - - ® a, of V®".

Lemma 6.9 The family(w - n/)yecqrq) is @ linear basis of the gn)-comoduleD; .

Proofofthelemma: Define the natural readingr ) of a quasi-ribbon tableauof shapd
as the word obtained by readindrom left to right. Ifw is the quasi-ribbon word associated
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with r, we also denote by(w) the natural reading of. For examplen(ababdg = aabbcd
is the natural reading of the quasi-ribbon tableau

|a a
blb]ec
9]
Let nowi € D(l). By definition ofy,, one hadl; n, = —n,. Hence, we get
0 if ki =kit1,

Ve =—(V-Tp) - n ={_Vm - if K < Kiga,

foreveryv = a, ® --- ® a, € V®N. In particular,

Von=-=Vv7og (10)
whenk; # ki 1. Suppose now that¢ D(l). ThenT; n; = 0. Thus we can write

Ve =T -m =v7 - Tip =0

for everyv = a, ® --- ® a, € VN such thak; > ki 1. It follows that the family of
all tensors of the forngay, ® - - - ® ak,) - m with ki < ki11 wheni ¢ D(1) andk; < ki1
wheni € D(l) spans the comodulB,. In other words, we get a generating family of
D, by taking the seR formed of allw - , wherew runs over the natural readings of all
guasi-ribbon tableaux of shape Moreover it is easy to see that these elements are not
zero.

Now, there is at most one increasing word of a given evaluation which can be the nature
reading of some quasi-ribbon tableau of shapelt follows thatR is a linear basis of
D,. Finally, formula (10) shows that - n; = +n(w) - n, for a quasi-ribbon wordv of
shapel . ]

We are now in position to compupg(D, ). In the notation of Section 4.3,

swy = Y weu)eu

[ul=[w]

for everyw € A*. Hence, according to Proposition 4.2,

SWon) =Y (weu)eu-n,

[ul=[w]

and from Lemma 6.9,

x(D)= > > weu|. (11)

weQR() [ul=|w|
u-n =w-n
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Let noww be a quasi-ribbon word of shapelLetalsou = &, - - - a, be aword distinct
from w such thatv - n; = u - n,. Letr(u) be the ribbon diagram of shapeobtained by
filling the boxes from left to right by the letters af Let thenr’(u) be the quasi-ribbon
tableau of shapé obtained fronr (u) by sorting all columns in increasing order from top
to bottom. Let us finally denote by(u) the word obtained by reading from left to right
the letters ofr’(u). Using again the arguments of the proof of Lemma 6.9, we see that
v(u) -, = 0if v(u) is not the natural reading of a quasi-ribbon tableau of shapk
follows that the alphabets of all columnsmdu) andr (w) must coincide. Since # w,
there must exist integers< j andk < | such that

e [k
weuU = [ i }
which is therefore equal to 0. Hence, we have

wRU =wRw".

[ul=|w|
U =wW-n,

Going back to formula (11), we see that

x(Dy) = Z w®w* = F(X11, ..., Xnn). O
weQR(I)
Note 6.10 The same argument as in Note 6.5 shows that the noncommutative quasi
ribbon functiong~ (A) span a commutative subalgebra of the hypoplactic algdBteA),
isomorphic to the algebra of quasi-symmetric functions over a commutative alphabet of th
same cardinality ag&\. This property can in fact also be proved in a purely combinatorial
way.

Example 6.11 Letn=3,N=4andl = (3,1). Thennz; =Tz T, Ty (1 + To) (1 + T3)
(1+ T,) andD3; = V®* . 531. By computing the images undgs; of the canonical basis
vectors ofV ®4, one gets

D31 = Cajazazay - n31 ® Caxazazas - 131 & Cajajagay - n31
@ Cagagazay - n31 @ Cayayazay - nas.

Thus,

X (D31) = X22X11X11X11 + X33X11X11X11 + X33X22X22X22
+ X33X11X11X22 + X33X11X22X22

= X11X11X22X11 + X11X11X33X11 + X22X22X33X22
+ X11X11X33X22 + X11X22X33X22.

This last expression is exactly the sum of the quasi-ribbons words associated with the fiv
guasi-ribbon tableaux
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HEAE [1]1]2 [1]1]2 [1]2]2 [2]2]2
2 3 3 3 3

Hencey (Ds1) = F31(X11, X220, X33) as desired.
Proposition 6.12 TheD, are irreducible pairwise non-isomorphic #¢n)-comodules.

Proof: Propositions 6.1 and 6.8 imply that tBe are pairwise non-isomorphic. We just
have to prove that these comodules are irreducible.| st a composition oN and let
M be a nonzero subcomodule Bf. According to Lemma 6.9, there exists a famiRyof
guasi-ribbon words of shapgeand a family(m,,),,cr 0f nonzero complex numbers such
that

m:Z m,W-n € M.

weR

Using the tensor formalism of Section 4.3, it follows that

JWEDY (Z mww®u*> ® U1 € Ao ® M.

lul=N \weR

As there is at most one quasi-ribbon word of shapad of a given evaluation, we deduce
by homogeneity with respect to the first componentgfn) that

Sw)= Y WRUHU-n € AN ®M
Jul=N

for everyw € R. Let noww be an arbitrary quasi-ribbon word 8fand letu = ay, - - - Uy,
be a word of lengthiN. Note thatw ® u* = 0 if ki < k.1 wheni € D(l). On the other
hand,u-n, =0if k > ki ;1 andi ¢ D(l) according to the proof of Lemma 6.9. Hence

Sw)y= Y WeuHu-n.
ueQR(I)

The monomialsy ® u*, whereu runs over all quasi-ribbon words of shapeare nonzero
and pairwise distincts elements Af(n). Sinces(w) € Ag(n) ® M, all the tensors! - i
areM. According to Lemma 6.9, this shows thdt = D, . O

Conjecture 6.13 The family(D,), (where | runs through all compositions a complete
system of irreducible #{n)-comodules.

Note 6.14 Conjecture 6.13 would imply that the character of ev&gyn)-comodule is an
element ofAy(n), showing therefore that Theorem 6.2 is still valid whiea: 0. Moreover
according to Note 6.10, it would also imply that the character@hgrz (0; n) isisomorphic
to theZ-algebra of quasi-symmetric functions overratetter alphabet.



372 KROB AND THIBON

6.3. Another family of &n)-comodules
Let | be a composition oN. The element, = T, O, -, of the O-Hecke algebra gen-
erates the indecomposable projective lf{0)-moduleM . One can also use to construct
the Ap(n)-comoduleN, defined by
N| = V®N V.

Aword will be said to be ofibbon shape (wherel is a composition) if it can be obtained
by reading from left to right and from top to bottom the columns of a skew Young tableau
of ribbon shapéd . We denote byR, (A) the sum of all words oA* of ribbon shapé .
Proposition 6.15 Let | be a composition of N. Then(N,) = R, (X11, .. ., Xnn)-

Proof: We use the same notation as in the proof of Proposition 6.8. LeRilspbe the
set of all words of ribbon shape

Lemma 6.16 The family(w - O, ~))werq) is a linear basis of the g&n)-comoduleN; .

Proof of the lemma: Note thatT; vy = —v, fori € D(l). It follows that
0 if ki =K1,
Veyy=—V-THvy =9 =V .y if k <Kipa,
VARV if k> ki1,

fori € D(l)andv = a, ® --- ® a, € VEN. Hence we can rewrite (up to a sign) every
v-v;insuchawaythdt > ki1 fori € D(l). The structure of the right action éfy (0) on
V@N implies that such an element is equaite™,, -, where we still havey = ay, - - - ay,
with ki > ki1 fori € D(l). Letnowi ¢ D(l). ThenO, -, = 0; O, ~,. Hence

W - \:\a(l‘w) =W - DiDa(I_”) =W’ T, 0; Doz(l_w) =0

whenk; > ki, ;. Everyv - v, can therefore be rewritten dsw - O, -, wherew € R(l).
In other words, the familyw - O, i~))wer() spansN; .
Now, it follows from (8) that

VeN =3 N (12)

I=N

Since any word oAN has a unique ribbon shape, we deduce that

Z IR(D| = dimVv®N < Z dimN, < Z IR(D|

IEN IEN IEN

from which we get that dinN, is equal to the number of words of ribbon shdpe O
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This argument also shows that decomposition (12) is in fact a direct sum. Arguing as ir
the proof of Proposition 6.8, we see that

S(w - Ba~) = Z (w@Uu*)U- Oy
ueR(l)

for w € R(l), whence the theorem. O

Example 6.17 Letn =3, N =4 andl = (1,1, 2). Thenvyi, = T; T, T; (1 + T3) and
Ni12 = V®*. 111, By computing the action af,1; on the standard basis ¥4, one gets

N112 = Cagapayay - v112® Cagapayay - v112® Cagazazag - vi12.
Then,
X (N112) = X33XooX11X11 + X33X00X11X22 + X33X22X11X33.

This expression is the sum of the ribbon words associated with the 3 ribbon tableaux

(3] [3] [3]
2 2 2
1 1 1

1] 2]

andy (N112) = Ri12(X11, X22, X33) as desired.

Note 6.18 Using the same kind of argument as in Section 6.2, one can prowvd tligan
indecomposablé\,(q)-comodule.

7. Robinson-Schensted type correspondences

In the classical case (correspondingjte- 1), the Robinson-Schensted correspondence is
the combinatorial counterpart of the decompositiol8f' into GL,(C) x Sy-bimodules.

On the other hand, fog=0, there are two natural ways of decomposMgN into
Ao(n) x Hy(0)-bicomodules. This leads to two different Robinson-Schensted type corres-
pondences, involving here ribbon and quasi-ribbon diagrams.

7.1. Afirst Robinson-Schensted type correspondence

The first combinatorial algorithm corresponds to the decomposition

veN =P N, (13)

IEN

(cf. the proof of Proposition 6.15). Recall that any rigHy (0)-submodule otvV®N can
also be regarded as a left module, the action being giveriTpy= —0; v. It follows then
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from Lemma 6.16 thal, is a left Hy (0)-module whose all composition factors are equal
to Cy-. This observation gives us a basis\6PN indexed by pairgr, qr) wherer is a
word of ribbon shapé and whereyr is the (unique) standard quasi-ribbon word of shape
I ~. The corresponding Robinson-Schensted map is therefore trivial. It just associates to
word w its ribbon diagram. It can clearly be recursively defined by an insertion process as
follows.

Letr be the ribbon diagram af, let x be the letter which is in the last box ofand let
a € A. The ribbon diagram ofva is then obtained from by glueinga at the end of the
last row ofr if X < a or under the last box of the last rowoff a < x. For example, with
w = bacch we have

Q_.E_._.b _, |b _, |»b
B

ac| c|c| alc|c
b

Q

This construction is clearly bijective (the standard quasi-ribbon does not bring here any
supplementary information).

7.2. A second Robinson-Schensted type correspondence

The second Robinson-Schensted type algorithm is related to the composition factors ¢
Ve®N, Using Lemmas 6.9 and 6.16, one can see that these compositions factors are exac
the comodule®, each of them occuringQ R(1)| times. ButD, considered as a left
Hn (0)-module is isomorphic t¥ . It follows that there exists a basis ¥N indexed by
pairs(Q, R) whereQ is a quasi-ribbon word of shageand whereR is a standard ribbon
word of the same shape. The corresponding Robinson-Schensted type algorithm whic
associates to each woude A* the pair(Q, R) is described below.

Let Q be a quasi-ribbon diagram and &t A. Let Q" be the diagram obtained fro@
by deleting its last row and let (resp.z) be the first (resp. last) letter of the last row@f
The result@ of the insertion ok in Q is defined by the following rules:

e if Z < a, Qis obtained by adding a box containiagt the end of the last row @@
e if X < a < z, lety be the first letter of the last row @ which is strictly greater thaa.
The quasi-ribbon diagram® is then

T

Q/

[2];
e if a < X, Qis obtained by inserting in Q" and glueing under the quasi-ribbon obtained
in this way the last row of).

Letw = a;---a, be a word of lengtm. The pair(Q, R) associated withw can be
defined as follows. The quasi-ribbon diagr&ns obtained by inserting the letters of
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(from left to right), starting from an empty diagram. The standard ribbon diadRém
iteratively constructed by putting at each step [1, n] of the algorithm the numbarin
the box that contains at this moment(nthe lettera; inserted at this step. Let us illustrate
again this correspondence on= bacch

o, B .
@, %)~ [o],[1]  [b],[1] - [bfc],[2]3]  [blc]e],[2]3]4] . [b]b] ,[1]s5]

The correspondenae — (Q, R) is clearly a bijection. Infact, the quasi-ribbon diagram
Q associated withy is of shapeC (o ~) wheres = std(w). Going back to Proposition 4.21,
this gives the following property, which is the quasi-ribbon version of Knuth’s theorem [20].

Proposition 7.1 Let u, v € A*. Then u andv correspond to the same quasi-ribbon Q
under the second algorithm iff & v with respect to the hypoplactic congruence.

In other words, the hypoplactic relations play, for quasi-ribbons, the saleeas’the
plactic relations for Young tableaux.

References

1. R.W. Carter, “Representation theory of the 0-Hecke algebra#igebral5 (1986), 89—-103.
2. I.V. Cherednik, “An analogue of the character formula for Hecke algebFam\tt. Anal. Appl21 (1987),
172-174.
3. E. Date, M. Jimbo, and T. Miwa, “RepresentationdJgigl,) atq = 0 and the Robinson-Schensted corre-
spondence,” ifPhysics and Mathematics of Strings, Memorial Volume of V. KnizhniRrink, D. Friedan,
and A.M. Polyakov (Eds.), World Scientific, 1990.
4. R. Dipper and S. Donkin, “Quantu@L,,” Proc. London Math. Soé/l. 63, pp. 165-211, 1991.
5. G. Duchamp, D. Krob, A. Lascoux, B. Leclerc, T. Scharf, and J.-Y. Thibon, “Euler-Peirmteracteristic
and polynomial representations of lwahori-Hecke algebfasiil. RIMS, Kyoto Univ31 (1995), 179-201.
6. G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibdtgncommutative Symmetric Functions Ill: Deforma-
tions of Cauchy and Convolution AlgebradTP preprint 96/08, Paris, 1996.
7. G. Duchamp, D. Krob, B. Leclerc, and J.-Y. Thibon, “Fonctions quasiessicquies, fonctions syatfiques
non-commutatives, et adtpres de Heckaq = 0,” C.R. Acad. Sci. Pari822(1996), 107-112.
8. L.D. Faddeev, N.Y. Reshetikin, and L.A. Takhtadzhyan, “Quantization of Lie groups and Lie algebras,”
Leningrad Math. J1 (1990), 193-225.
9. I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, and J.-Y. Thibon, “Noncommutative symmetric
functions,”Adv. in Math.112(1995), 218-348.
10. I. Gessel, “MultipartiteP-partitions and inner product of skew Schur functior@gntemp. Math34 (1984),
289-301.
11. J.A. Green, “Polynomial representationg3if,,” Springer Lecture Notes in Mati830, 1980.
12. N. Hoefsmit, “Representations of Hecke algebras of finite groups with BN-pairs of classical types,” Thesis,
University of British Columbia, 1974.
13. J.E. HumphreyRReflection Groups and Coxeter Groy@ambridge University Press, 1990.
14. N. lwahori, On the structure of the Hecke ring of a Chevalley group over a finite fieléfdc. Sci. Univ.
Tokyo Sect. 10(1964), 215-236.
15. M. Jimbo, “Ag-analogue o) (gl(N + 1)), Hecke algebra and the Yang-Baxter equatiteft. Math. Phys.
11(1986), 247-252.
16. M. Kashiwara, “On crystal bases of theanalogue of universal enveloping algebraByike Math. J.63
(1991), 465-516.



376 KROB AND THIBON

17

18.

19.

20.
21.

22.

23.
24.

25.

26.

27.
28.
29.

30.
31.
32.
33.
34.
35.
36.

37.

. M. Kashiwara and T. Nakashima, “Crystal graphs for representations @f-#malogue of classical Lie
algebras,'J. Algebral65(1994), 295-345.

S.V. Kerov and A.M. Vershik, “Characters and realizations of representations of an infinite dimensional Hecke
algebra, and knot invariantsSoviet Math. DokI38 (1989), 134-137.

R.C. King and B.G. Wybourne, “Representations and trace of the Hecke alggfaraof type An_1,” J.

Math. Phys33(1992), 4-14.

D.E. Knuth, “Permutations, matrices and generalized Young tableRacific J. Math34 (1970), 709-727.

D. Krob, B. Leclerc, and J.-Y. Thibohloncommutative Symmetric Functions II: Transformations of Alpha-
bets International J. Alg. Compuf (1997), 181-264.

A. Lascoux, “Anneau de Grothendieck de la gtEride drapeaux,” iThe Grothendieck Festschrife. Cartier

et al. (Eds.), Birkluser, pp. 1-34, 1990.

A. Lascoux and M.P. Sdttzenberger, “Le mondé plaxique,”Quad. del. Ric. Scil09(1981), 129-156.

A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs grahalogues of weight multiplicities for the

root systemA,,,” Lett. Math. Phys35 (1995), 359-374.

A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Une conjecture pour le calcul des matricesampdsition des
algebres de Hecke de typeaux racines de I'un&,” C.R. Acad. Sci. ParjsSer. A321, (1995), 511-516.

B. Leclerc and J.-Y. Thibon, “The Robinson-Schensted correspondence, crystal bases, and the quantu
straightening at| = 0,” Electronic J. Combinatoric8 (1996), # 11.

P. Littelman, “A Plactic Algebra for Semisimple Lie Algebra&dv. in Math.124(1996), 312—-331.

I.G. MacdonaldSymmetric Functions and Hall Polynomia@xford, 1979; 2nd edition, 1995.

C. Malvenuto and C. Reutenauer, “Duality between quasi-symmetric functions and the Solomon descer
algebra,”J. Algebral77(1995), 967-982.

C. Malvenuto and C. Reutenauer, “Plethysm and Conjugation of Quasi-Symmetric Functions,” preprint, 1995
P.N. Norton, “0-Hecke algebrag),’ Austral. Math. Soc. Ser. 27 (1979), 337-357.

A. Ram, “A Frobenius formula for the characters of the Hecke algebragfit. Math106(1991), 461-488.

C. ReutenaueFree Lie AlgebrasOxford, 1993.

C. Schensted, “Longest increasing and decreasing subsequé&ares]. J. Math13(1961), 179-191.

L. Solomon, “A Mackey formula in the group ring of a Coxeter groupAlgebra41(1976), 255-268.

A.J. Starkey, “Characters of the generic Hecke algebra of a system of BN-pairs,” Thesis, University of
Warwick, 1975.

K. Ueno and Y. Shibukawa, “Character table of Hecke algebra of &fpe; and representations of the
quantum groupg (gln4-1),” in Infinite AnalysisA. Tsuchiya, T. Eguchi, and M. Jimbo (Ed$forld Scientifi¢
Singapore, Part B, pp. 977-984, 1992.



