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Abstract. Let ® be an irreducible crystallographic root system in a Euclidean spacgith ®* the set of
positive roots. Fow € &,k € Z, letH («, k) be the hyperplang € V : (o, v) = k}. We define a set of hyperplanes
H={H@G,1):6 e dT}U{H(5,0):5 € ®*}. This hyperplane arrangement is significant in the study of the
affine Weyl groups. In this paper it is shown that the Poiagatynomial ofH is (1 + ht)", wheren is the rank

of ® andh is the Coxeter number of the finite Coxeter group correspondidy to
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1. Introduction

Let ® be anirreducible crystallographic root systemin a Euclidean spaaéth & the set

of positive roots. Fow € @,k € Z, letH («, k) be the hyperplang € V : (o, v) = k}. We
define a set of hyperplangés = {H(,1):8 € ®TJU{H(5,0):8 € ®T}. We will refer to

‘H as the sandwich arrangement of hyperplanes associadedTthis set of hyperplanes has
appeared in at least two areas of the study of the affine Weyl groups: the Kazhdan-Luszt
representation theory as it applies to these groups [7], and the study of the properties of tl
language of reduced expressions [3]. In [8] Shi proved the following theorem:

Theorem 1.1 The number of connected components 6f V), H is (h+ 1", where
n is the rank ofb, and h is the Coxeter number of the associated finite Coxeter group.

The purpose of this paper is, in some sense, to generalize this result by determining tt
Poincag polynomialP (H, t) of H. The number of connected component¥ef J,;H,

and the number of these components that are bounded, can both be read off easily frc
P(H,t). The Poincag polynomial has other connections to combinatorial and algebraic
properties ofH{; a good reference is [6].

2. The Poinca® polynomial of H

The intersection posét(H) of H is the set of nonempty intersections of element{of
partially ordered by reverse inclusion. This poset is ranked by codimensionMntitie
unigue elementhaving rank 0. Writingx) for «(V, x), we define the Poincapolynomial
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of H to be
PH.O = ) n)(=H)™®.

xeL(H)

Theorem 2.1 ([6] (2.3), [9]) For any setH of hyperplanes in a real Euclidean space V
the number of connected components of V) ,,.,,H is equal to R, 1). The number of
bounded connected componentsHsH, —1)|.

To proceed to evaluate the Poinegrdlynomials for the sandwich arrangement, we need
the following simple lemma.

Lemma 2.2 ([6] (2.3)) If A= A;U A;is a hyperplane arrangemerand H, L H, for
all Hy € Ay, Hy € Ay, then

P(A,t) = P(A, )P (A3, 1).

Let ® be a root system, and I&t be the associated sandwich arrangement. Hgbe

the subarrangement &f consisting of the hyperplanes that contain the origitvofFor

Y € L(Ho), let Wy be the group generated by the reflections through all hyperplanes
containingY. This is a Coxeter group [5].

Lemma 2.3 For Y € L(Hp), let W1 x --- x Wy, be the decomposition of YMnto
irreducible Coxeter groups. Lé# (W) be the sandwich arrangement associated to the
Coxeter group W;. Then

[MIPH.O=[t'] >  PHMW. 1) P(HWym 1),
YeL(Hop): rk(Y)=l

Proof: ForanyX € L(H), let Xo be the unique translate of that passes through the ori-
gin. Since the hyperplanes that intersect to fofrall have translates g, Xg € L(Ho).
ForY e L(Ho) with rk(Y)=I, let Hy={H € H:Ho2Y}. By the decomposition
of the Coxeter groupMy and by the previous lemmaR (Hy,t) = P(H(Wy 1),t) - -
P(H(Wy,m), t). We have

[IP(HMWy ). 1) - PHMWym). ) = Y (=D u(X)
XeL (Hy): rk(X)=I
= > DX,
XeL(H): Xo=Y

[t'] > P(HWy), 1) -+ P(H(Wym), 1)
YeL (Ho): rk(Y)=I

= > > =D
YeL (Ho): tk(Y)=l XeL(H):Xo=Y

> DX

XeL(H): rk(X)=l O
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Theorem 2.4 Let ® be an irreducible crystallographic root systew the associated
finite group and’H the associated sandwich arrangement. We have

P(H,t) = A+ ht)",

where h is the Coxeter number and n is the rank of the associated finite Coxete
group W.

We prove the theorem by induction on the number of generators, using the previous lemm
We will determine every coefficient & (H, t) except that of". Since we knowP (H, 1)
from Theorem 1.1, this will determine the polynomial. The analysis will be done case-by-
case.

An: There is a bijection betweeh(H) and the partitions off{ + 1]. It is given by
matching the partitio8 = (By, ..., By) with

Y =n{x —x; =0: i, j are in the same block d}.

The Coxeter group\y is isomorphic toAjg,|—1 x --- x Apg,—1, and rkY) =n+1—m.
By Lemma 2.3, fot < n we have

[tl] P(H7 t) = Z |B]_|‘Bl|71 . |Bn+17| ||Bn+1fl\ *l’

where the sum is taken over all partitionsofif 1] inton+ 1 —1I blocks. This is recognized
to be the number of labeled forestsoa- 1 vertices oih + 1 — | rooted trees. From [4] we
have

[tIP(H.t) = <n+1)'(n[|>.

We have shown that the coefficientstbin P (7, t) and(1+ (n+ 1)t)" are the same for
1 <1 <n-1. SinceP(H, t) is annth degree polynomial anél(*, 1) = (n+2)", P(H, t)
is in fact equal tq1 + (n + 1)t)".

Bn: The elements of (H) of dimensiorl (rankn —1) are somewhat harder to describe
than in theA, case. We can start by taking a subseC [n] and partitioning it intol
non-empty blocksX = (X4, ..., X|). Define a sign function sgnd — {1, —1} so that
sgn(j) = 1 wheneverj is the smallest element in its block. For a given partition]of
there are P!~! ways to do this. The partition and the function sgn together determine the
intersection

Y = N{sgni)x —sgn(j)x; = 0:i, j are in the same block of}
N{xx =0:k € [n] — J}.
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We haveWy = Ax,j—1 X -+ X Axx, |- X Bn_j3;, and the contribution of to the coeffi-
cient oft" in P(H, t) is | Xq|X=2 ... XX 1=12(n — | I)"1IL. If we sumIT|X; |1Xi-1
over all partitions ofJ into | blocks, we geﬂJ|‘J'*'('f‘:ll), the coefficient oft!?I=! in
P(H(A3-1), t). Putting this all together, the coefficientdf' in P(H(By), t) is

> (ﬂ)(zmk' ('l‘j 11)(2(n — k)" k.

k=I

We would like to show that this is equal to the coefficient®df in (1 + 2nt)", which is
(?)(Zn)“—'. We can remove a factor of 2 so that we have

kX;: <E>kk_l<l|<:i)(n k= (?)n“",

which is a consequence of Abel’s Identity [2].

C,: The calculations are the same as Bt

Dn: This is very similar to theéB,, case. If|J| # n — 1, the intersectiolY determined by
X, Jand sgnis

Y = N{sgni)x —sgn(j)xj = 0:i, j are in the same block of}
N{xx —x =0:k,I € [n] — J}
N{xx+x =0:k,I € [n] — J}.

If |J| = n—1, thereis no correspondiig We havey = Ajx,—1 X -+ - X Ax,|-1 X Dn_j3s
and the identity to be proved is

(0 e (k=1 nk_ (N n-l

k=l

which is again a consequence of Abel’s Identity.

For the exceptional groups we use the data from [5]. The integ&sT) listed there
give the number o € L(Ho(T)) such thatwy = R. As before, we need only show
that the coefficients af, ..., t"~1 match the coefficients afL + ht)". The calculations
are shown in the tables that follow. In these tabla®) is the leading coefficient of
P(H(Ry),t) - P(H(Ry), 1), whereRy x --- x Ry, is the decomposition oR into irre-
ducible factors.

As a corollary of Theorem 2.1, we have the following.

Corollary 2.5 LetH, h, and n be asin Theorefnl. The number of bounded components
of V- UpyepHisth—D"
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3. Tables
Table 1 Eg.
R n(R, Ee) n(R, E) - ¢(R)
t5 AL x A2 360 58320
Ay x Ag 216 270000
As 36 279936
Ds 27 884736
1492992
4 AZx A 1080 38880
A3 120 9720
AL x Ag 540 69120
Ay 216 135000
Da 45 58320
311040
t3 A3 540 4320
AL x Ay 720 12960
As 270 17280
34560
t2 A2 270 1080
A 120 1080
2160
tt A 36 72
t0 Ao 1 1
Table 2 Es.
R n(R, E7) n(R, E7) - c¢(R)
t6 AL x Ap x Ag 5040 5806080
Ax x Ay 2016 11340000
AL x As 1008 15676416
As 288 33882912
A1 x Ds 378 24772608
De 63 63000000
Es 28 83607552
238085568

(Continued on next page.
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Table 2 (Continued)

R n(R, E7) n(R, E7) - ¢(R)
t5 A x A 5040 362880
Ay x A2 10080 1632960
A2 x Ag 7560 1935360
Az x Ag 5040 2903040
Apx Ay 6048 7560000
As 1344 10450944
A; x Dg 945 2449440
Ds 378 12386304
39680928
t4 At 3780 60480
AZx A 15120 544320
A3 3360 272160
AL x Ag 8820 1128960
Ay 2016 1260000
Da4 315 408240
3674160
t3 A3 4095 32760
AL x Ay 5040 90720
Ag 1260 80640
204120
t2 Az 945 3780
A 336 3024
6804
t! A 63 126
t0 Ag 1 1
Table 3 Esg.
R n(R, Eg) n(R, Eg) - ¢(R)
t7 A1 x A x Ay 241920 2721600000
Ag x Ay 120960 4838400000
AL x Ag 34560 8131898880
A7 8640 18119393280
Az x Ds 30240 8918138880
D7 1080 38698352640
A x Eg 3360 20065812480
E; 120 73466403840
174960000000

(Continued on next page.
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Table 3 (Continued)

R n(R, Eg) n(R, Eg) - ¢(R)
t6 AZ x A2 604800 195955200
Apx Mg x Ag 604800 696729600
AZ x Ay 362880 907200000
A2 151200 619315200
Az x Ay 241920 1360800000
A1 x As 120960 1881169920
As 34560 4065949440
Az x Dy 50400 587865600
Aq x Ds 45360 2972712960
Ds 3780 3780000000
Ee 1120 3344302080
20412000000
t° AS x Ay 604800 43545600
AL x A 403200 65318400
AZ x Ag 453600 116121600
Az x Ag 302400 174182400
Apx Ay 241920 302400000
As 40320 313528320
A1 x Dy 37800 97977600
Ds 7560 247726080
1360800000
t4 At 113400 1814400
AZx Ay 302400 10886400
A3 67200 5443200
A x Ag 151200 19353600
Ay 24192 15120000
Ds4 3150 4082400
56700000
t3 A 37800 302400
AL x Ay 40320 725760
Ag 7560 483840
1512000
t2 A2 3780 15120
Az 1120 10080
25200
t! AL 120 240
t0 Ao 1 1
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Table4 Fy.
R n(R, Fg) n(R, Fg) - ¢(R)
t3 A1 x Ay 96 1728
Bs 12 2592
Cs 12 2592
6912
t2 Az 32 288
AL x Ag 72 288
B, 18 288
864
tt Ar 24 48
t0 Ao 1 1
Table5 Go.
R n(R, Gz) n(R, Gz) - c(R)
tt A 6 12
t0 Ao 1 1
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