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The optimal shape problem in this paper is to construct plates or beams of minimal weight. The thickness
u(z) is variable, but the vertical deformation y(x) should not exceed a certain threshhold. The functions
u and y are related to each other via the differential equation A(buPAy) = f, see (1.2) below. We
investigate under which boundary conditions on y the class of admissible thickness functions w is convex.
In two out of three cases we give a positive answer, contrary to the common belief that these optimal shape
problems are nonconvex. Moreover, under one type of boundary condition, the answer is different for
beam and plate. Nonconvexity is shown by means of counterexamples which were found using MAPLE.
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1. Introduction

Subject of this paper is to investigate the convexity of some optimal shape problems,
in which the control variable u(x) typically represents the thickness of a beam or plate
occupying  C R", and y(z) stands for its deformation. One wants to minimize the total
mass

m(u) = /Qu(x) dx (1.1)

subject to certain constraints on y. In general these problems are believed to be noncon-
Vex.

However, there are situations in which they are convex after all, and we shall exhibit some
of those situations. To be precise we shall assume that Q C R" is a bounded domain
with smooth boundary and that the deformation of a beam (n = 1) or plate (n = 2) is
governed by the equation

A(buPAy)=f <0 inQ (1.2)
which has to be understood in the sense of distributions, i.e.
/ buP AyAp = / f - forevery ¢ € C;°(Q2) (1.3)
Q Q
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and where p > 1, b > 0 are constants. f € L'(f2) represents a load, and the thickness
function u(z) € L*°(N2) satisfies the constraint

0<a<u(z) <M . (1.4)

The downward deformation of the beam or plate is not allowed to exceed a certain mag-
nitude, i.e. there is a positive constant r such that

y(z) > —r . (1.5)

Notice that (1.5) is an implicit constraint on the set of admissible controls u(z).
We shall suppose that 02 = I'; U T’ and that y(z) satisfies one of the following three
kinds of boundary conditions (1.6)—(1.8)

(1.6) y=Ay=0 on oY (hinged beam or plate)
(17) Y= By =0 onl1 , yww= o (bUpAy) =0 onIs

(cantilever beam or partly clamped plate)
(1.8) Y= % =0 on 0N (clamped beam or plate)

Our main result can be stated as follows.

Theorem 1.1.

a) Problem (1.1)—(1.5) is convez for boundary conditions (1.6) of Navier type.

b) Problem (1.1)—(1.5) is convez for boundary conditions (1.7) of mized type and n =1,
but in general nonconvex for n > 2.

c) Problem (1.1)—(1.5) is in general nonconvez for boundary conditions (1.8) of Dirichlet
type.

For the proof we shall try to show that constraint (1.5) is convex and we shall use the
Poisson representation formula.

Let us recall some related results from the literature. In [6] Problem (1.1)—(1.5) is studied
for n = 1 and p = 3 and declared as nonconvex under any of the three boundary conditions
(1.6), (1.7) or (1.8). Our result shows that the convexity of the problem depends on the
type of boundary condition and on the dimension n of the problem. In [1] Problem (1.1)-
(1.5) is studied for p = 2 and under boundary condition (1.8), but under the additional
constraint

Vu(z)| <C . (1.9)

This constraint was introduced for mathematical convenience, because it lead to a com-
pactness property of the set of admissible designs w.

We tried to find out why many colleagues working in optimal shape design believe that
problems of this nature are nonconvex. Tracing back the literature we found a paper of
Velte and Villaggio [7], who studied a second order problem

—(buy') = f in (0,1) (1.10)
under Dirichlet boundary conditions

y(0) =y(1) =0 (1.11)
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or mixed Dirichlet-Neumann boundary conditions

y(0)=4'(1)=0 . (1.12)

They showed existence of a solution to problem (1.1) (1.4) (1.10) (1.11), but now constraint
(1.5) was replaced by

y'(z)| < C . (1.13)
Constraint (1.13) is nonconvex as stated by [7], see Remark 4.6 at the end of our paper.
If however (1.11) is replaced by (1.12) the constraint (1.13) becomes convex, see Remark
4.7.

Other functionals than (1.1) have been considered for instance in [2] or [5]. If yp is a given
state and v a nonnegative constant, let

J(y,u) = /Q{\y—y0|2+1/u2}dx : (1.14)

Now suppose that u satisfies (1.4) and (1.9), that y satisfies a version of (1.10) (1.11),
namely

—div(uVy)=f in Q, y = g on OS2

and that (1.5) is replaced by
ly(z)| <6 . (1.15)

Then existence of an optimal control was shown in [2]. If however, v = 0 and assumptions
(1.9) and (1.15) are dropped, there does not exist an optimal solution as shown in [5].
Variations of this theme are also contained in [3,4].

Our paper is organized as follows: Section 2 contains proofs of the convexity and Section
3 proofs of the nonconvexity results of Theorem 1.1. Open problems, related observations
and remarks are listed in Section 4.

2. Some optimal shape problems are convex

In this section we prove the first half of our main result.
a) Consider first the case of boundary condition (1.6) and introduce

9(x) := buP(z)Ay(z)
as a new function. Then g solves

—Ag(z) =—f(z) >0 inQ (2.1)
and
g(x) =0 on 0N . (2.2)

Consequently, by the Poisson formula,

o) = — /Q Gz, 2)[(2)dz >0 | (2.3)
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where G in Green’s function for the Laplace operator on {2 under Dirichlet boundary
conditions. But by definition of g, (2.3) and (1.6)

1
A = — <0 in :
y(x) bup(x)g(x) <0 in (2.4)
and
y(z) =0 on 092 . (2.5)
Another application of Poisson’s formula gives
1 9(2)
E— : 2.
) = =5 [ Gla) B2 (2.6

Now suppose that ug gives rise to deformation yg, so ug is mapped to yg, that u; is mapped
to y1 and that uy = Aus + (1 — A)ug is mapped to y). We observe that under each of
those controls ug, u; and u) the auxiliary function g is the same nonnegative function.
Moreover, the mapping ¢ — —t~? is concave for ¢ € [a, M], so that

nio) = [ 6o (75 ) ot

> Joea (- gy ) o
> () + (1= Ngola) > —r 1)

\%

This shows that the constraint (1.5) is convex and proves Theorem 1.1 a).
b) Let us now suppose that n =1, Q = (0, 1) and that boundary conditions (1.7) hold:

y(0)=y'(0)=0,
y'(1) = (buPy")' (1) =0 .

In this case obvious integrations and (2.9) lead to

1 1
by (C) = /C /n F(€)dedn < 0 (2.10)

so that y(z) is concave. Two more integrations and use of (2.8) leads to

v = [ [Fwro [ [ sesanacaw .11

Since the integrand is concave in u we can argue as in a) and conclude that the first part
of Theorem 1.1 b) holds.

3. Some optimal shape problems are nonconvex

In this section we shall provide examples for which the constraint (1.5) is nonconvex.
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First we consider Problem (1.1)—(1.5) under boundary condition (1.8) in the case b =n =
1. Example 3.1 proves Theorem 1.1 ¢).

Example 3.1. Let Q= (0,1), let d € (0, %) be a parameter and ug, u1 and u;/5 be the

following thickness functions

up(w,d) == c- xp,q) (%) + 1 xg17(x) , (3.1)
ui(z,d) =1-xp1-aq/() + ¢ x1-q,1(®) , (3:2)
uy2(w, d) = [ug(z,d) +ui(z,d)]/2 . (3.3)

Notice that ug is nonsymmetric, that uy is its reflection and that uy/, is a convex com-
bination of ug and u1. Choose f(x) = —d;/2(x), a symmetric point load in the center of

Q). Then for given p and d one can explicitly integrate (1.2) (1.8) and one can compare

A= min yy/y(z,d) with B := min y;(x,d) to check (1.5). Here yy is the deformation
z€[0,1] z€[0,1]

caused under control uy, A =0,1,1/2.
The following table shows values of p, ¢ and d for which A < B and provides four coun-
terexamples to the convexity of constraint (1.5).

P 3 2 1.5 1.2
¢ | V100 /100 /200 1/100, 000
d 0.45 0.45 0.475 0.4995
B |—4.25155-107%|—4.25155 - 10~4|—2.19496 - 10~*|—4.65267 - 10~7
A |—6.21587-1074|—4.89005 - 10~4|—2.21025 - 10~4|—4.69828 - 107
B — A| 1.96431-10"%| 6.38491-1075| 1.52878-10"°| 4.56055 10~

Table 1: Nonconvexity of (1.5)
The numbers in Table 1 were obtained from looking at plots of ug(z, d) and rrhl)n1 | uy/3(z, d).
zegll,
If the first of these functions exceeds the second for some (z, d), we have a counterexample,
see Figure 1, which was constructed using MAPLE.

The computations leading to Table 1 show that for p N\, 1 the set of parameters (c, d)
for which the problem is nonconvex becomes smaller and smaller and seems to converge
to (00,1/2). Recall that ¢ had to be less than M. In this context we refer also to Open
Problem 4.1 of this paper.

It remains to prove the second half of Theorem 1.1 b). Example 3.2 will provide a
counterexample to the convexity of constraint (1.5) if n > 2 and if Problem (1.1)—(1.5) is
studied under boundary conditions (1.7).

Example 3.2. Let Q = (0,1) x (0,1), I'1 := {(z1,22) | z1 € {0,1}, zo € (0,1)} and
[’y := 0Q \ I';. Then we have Dirichlet conditions on the vertical parts of the boundary.

If the load f(z1,22) is independent of z3, so is the solution of (1.2) (1.7). Therefore we
can modify Example 3.1. We set

f(z1,29) = —011/2,25}(T) (3.4)

and
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ur(z1,22) == wupr(xy) Ae{0,1,1/2} . (3.5)

Now we can use Table 1 again to conclude that constraint (1.5) is nonconvex, since the
deformations yy(z1, z2) are independent of zg. This concludes the proof of Theorem 1.1 .

Figure 1: yo(z,d) and min y,5(z,d)
z€[0,1]

4. Open problems, observations and remarks

Open Problem 4.1. As stated at the end of Example 3.1, we were not able to produce
a simple counterexample to the convexity of constraint (1.5) when p = n =1 and under
the boundary condition (1.8). Therefore the convexity of constraint (1.5) remains an open
problem.

Open Problem 4.2. Consider again problem (1.1)—(1.5) under boundary condition
(1.8) and for © = (0,1), p > 1, but under the additional constraint that the load f(x) is
symmetric, i.e. f(z) = f(1 — z) and that the control u(z) is symmetric. In this situation
we could not produce a counterexample to nor prove convexity of (1.5).

Observation 4.3. The introduction of symmetry can sometimes generate convexity.

Let Q € R? be a thin annulus of large diameter, Q@ = {z € R? | 0 < R < |z| < R+¢} with
R > 1, and suppose that I'; is the outer and I'g the inner boundary of €2 or vice versa.
Moreover assume that f and u are radially symmetric. Then solving (1.1)—(1.5) under
boundary condition (1.7) is essentially a one-dimensional problem. In view of Theorem 1.1
b) we can expect (1.5) to be a convex constraint. This observation supports the convexity
conjecture in Open Problem 4.2.

Observation 4.4. In Section 2 we have shown more than we needed. If ug and uq are
two controls and u) their convex combination, then the corresponding states 1o, y; and
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y satisfy the pointwise inequality

ya(z) = Ayi(z) + (1 = Myo(z) (4.1)

In fact, the convexity statements of Theorem 1.1 remain true if the nonlinearity u? is re-

placed by a more general function h(u) with the properties that h is positive and —h =1 (u)
is concave on [a, M]. This follows from an inspection of (2.7) and (2.11).

To prove convexity of (1.5) we need only a comparison of the L*-norms.
Observation 4.5. One might be tempted to believe in the following qualitative state-
ment: The thicker the beam, the smaller its deformation. In other words, if ug(z) < u;(z),

then |yo(z)| < |y1(x)|. This statement is wrong as can be seen from the following ex-
ample of the beam under Dirichlet boundary conditions, i.e. Problem (1.2)(1.8) with

f(x) = =b1)5(2):
ug () = 40 X[0,0.46) (%) + 1 - X(0.46,11()
ur(z) =40 xj0,0.5 (%) + 1 - X(051(2)
The minima of the functions yg(z) and y;(z) are -0.000855 and -0.000865, and therefore

the stronger beam u; can lead to a larger deformation y; (in L°°). The qualitative shapes
of yo and y; are plotted in Figure 2.

Figure 2: yo(x) and y;(x)

Remark 4.6.  Problem (1.1) (1.4) (1.10) (1.13) of Villaggio and Velte is in general
nonconvex under boundary condition (1.11). For the proof of this fact choose constants
C' =1/100, b =100, M > 100 and a < 1, load f(x) = 201/3(z) and control functions

3
up(r) =1 and wui(x) = Xxjo,1/9 (%) + 2 X(1/2:3/4) (z) +100 x3/4,1)(2) -
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Then ug and u; are admissible, but uy5(x) = [ug(z) +u1()]/2 is not admissible because

the constraint .
/

< _
V@) < 5

is violated for the state y;/o corresponding to uy/s(z). In fact, a straightforward but

(1.13)

lengthy calculation shows that equality holds a.e. in (1.13) for yy and that y; satisfies
(1.13), too, while y} 5 (z) = 0.01135 > 1/100 for = € (1/2,3/4).

Remark 4.7. Problem (1.1) (1.4) (1.10) (1.13) of Villagio and Velte is convex under
boundary condition (1.12). To prove this one integrates (1.10) and obtains

bu(z)y (x) = — /0 " f(2)dz+ A

where A is a constant. A second integration gives

x 3
yo) = /0 1 /0 f(2)dz)dé + B

u(§)

The boundary conditions y(0) = ¢/(1) = 0 imply

1
A= d d B=0,
| e an
so that

1
ue/(@) = 5 [ Qe (1.2

and

T 1
v = [ ey |, Fee (4.3

Now we are in a situation to show that constraint (1.13) is convex. If ug and u; satisfy
(1.1) (1.4) (1.10) (1.13) and (1.12), we know from (1.13) and (4.2) that

w2 maxfos ;11 [ ra) (44

for i € {0,1}. Consequently (4.4) holds for i € [0, 1] and
uy = Aui(z) + (1 — Nug(x) .
But then we know from (4.2) that |y} ()| < C, where yj is the state corresponding to uy.

This proves the convexity of constraint (1.13).
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