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In a recent paper R. Urbanski [13] investigated the mimimality of pairs compact convex sets which
satisfy additional conditions, namely the minimal convex pairs. In this paper we consider some different
possibilities of decomposing a given compact convex set into smaller compact convex sets which are
related by translations or by reflections. Combining our results with the characterization of minimality
of convex pairs of compact convex sets given in [13] we prove in the second part of this paper that for
the two-dimensional case the following statements:

M: equivalent minimal pairs of compact conver sets are uniquely determined up to translations (see
(3], [11])

CM:  equivalent convex minimal pairs of compact convex sets are uniquely determined up to translations
(see [13])

are equivalent.
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1. Introduction

In this paper we consider the Radstrom-Hormander lattice [4] of equivalence classes of
pairs of nonempty compact convex sets. As in [6] we denote for a real topological vector
space X the set of all nonempty compact convex subsets by (X) and the set of all pairs
of nonempty compact convex subsets by K?(X), ie. K3(X) = K(X) x K(X). The
equivalence relation between pairs of compact convex sets is given by: “(4, B) ~ (C, D)
if and only if A + D = B + C” using the Minkowski sum, and a partial order is given
by the relation: “(4, B) < (C, D) if and only if A C C and B C D.” The space K2(X)
has been investigated in series of papers, (see for instance [3], [6], [7], [8], [9], [11], [13]).

Pairs of compact convex sets arise in quasidifferential calculus as the sub- and superdif-
ferentials of the directional derivative of a quasidifferentiable function and in formulas for
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the numerical evaluation of the Aumann-Integral (see [2] and [1]).

Let us fix some notations: Let X be a real topological vector space, and X* be the space
of all continuous real valued linear functionals. For two compact convex sets A, B € K(X)
we will use the notation

AV B :=conv(AU B),

where the operation “conv” denotes the convex hull. With A we denote the closure of a set
A. During the proofs, an easy identity for compact convex sets, which was first observed
by A. Pinsker [10] will be used frequently, namely: For A, B,C € IC(X) we have:

A+ C)v(B + C)=C + (AVB).

We will use the abbreviation A+ BV C for A+ (BVC) and C+d for C'+{d} for compact
convex sets A, B,C and a point d. Moreover we will write [a, b] instead of {a} V {b}.

Finally let us state explicitely the order cancellation law (see [4], [12]).

Let X be real topological vector space and A, B,C C X compact convexr subsets.

Then the inclusion
A+ BCA+ C

implies
BCC.

If X is a real topological vector space and A, B C X are compact convex subsets, then A
is called a “summand” of B if there exists a C' € K(X) with A+ C = B.

Thus from the algebraic point of view the set (X)) of all nonempty compact convex sub-
sets of a real topological vector space X is an ordered commutative semigroup (IC(X), %, <)
with cancellation property such that for every finite subset the maximum exists. If the
partial order < is given by the inclusion and if the semigroup operation by the (formal
multiplication) * with:

AxB:=A + B,

then we obtain from Pinsker’s formula, that the (formal) multiplication and the partial
order are related by Ax (BVC) = (AxB)V (AxC).

Within this context, the elements of K2(X) with respect to the relation ~ can be
considered as fractions.

There are interesting sub-semigoups of I(X), namely the semigroup P(X) consisting of
all polytopes, the semigroup SK(X) consisting of all strict compact convex sets and for
X = TR" the semigroup B(X) consisting of all closed Euclidean balls.

It has been shown in [13] that a pair (A4, B) is convex if and only if AV B is a summand
of A+ B. This characterization of convex pairs in terms of the Minkowski sum plays an
essential role in the sequel.

More precisely: A pair (4, B) € K2(X) is called “convez” if AU B is a convex set. If
B C Aor A C B, then the pair (A, B) is called “monotone”. Every monotone pair is also

a convex pair. Furthermore a pair (4, B) € K2(X) is called “minimal” if and only if for
every equivalent pair (C, D) € K%(X) the relation (C, D) < (A, B) implies C = A and
B = D and analogously we say that a convex pair (A4, B) € K2(X) is “minimal convez” if
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and only if for every equivalent convex pair (C, D) € K?(X) the relation (C, D) < (A, B)
implies C = A and B = D.
In [8] the following notation was introduced: For A, B,S € K(X), we say that S “sep-

arates” the sets A and B if for every a € A and b € B we have [a,b] NS # (. In this
notation the following result was proved in [13].

Theorem 1.1. Let X be a real topological vector space and A, B € K(X). Then the
following statements are equivalent:

(i.) The set AU B is convex

(ii.) The set AN B separates the sets A and B
(iii.) The set AV B is a summand of the set A+ B
(iv A+ B = AVB + ANB and ANB # 0.

Let us remark, that if A N B separates the sets A and B, the basic relationship between
the Minkowski sum, the convex hull and the intersection is given by property iv) of
Theorem 1.1.

The algebraic analogue of this formula is, that the product of two integers a,b € IN
is equal to the product of its greatest common divisor d(a,b) with its smallest common
multiplier m(a,b). i.e. a-b = d(a,b) - m(a,b), where the order < in IN is given by:
n X m <= n divides m. For this order maximum and minimum exist and are given for

k,le Nbykvi=mk1) and kAl =d(k,I).

2. Algebraic Decomposition of Compact Convex Sets

In this section we prove that every summand of a polytope is again a polytope.

Theorem 2.1. Let (X,7) be a topological vector space and A C X a polytope. Then
every summand of A is also a polytop.

Proof. Since A C X is a polytope, i.e.,
A =convi{ai,...,an}, ai,..,an € X

it is contained in a finite-dimensional subspace ¥ C X on which the induced topology
is locally convex. Hence for every index ¢ € {1,...,n} there exists a continuous linear

functional f; € Y* such that a; = Hy,(A) = {z € A | fi(z) = sup fi(z')}.
z'€A

Let us assume, that A = B + C. Since for every i € {1,...,n} we have:
a; = Hy,(A) = Hy,(B) + Hy,(C)

it follows that for every index Hy,(B) and Hy,(C) are points. Hence for every index
i € {1,...,n} we have:

a; = Hfz.(A) € COHV{I{]@1 (B), Hf2 (B), ...,an(B)} + Hfz.(C').

Let us put
B = conv{Hy, (B), Hy,(B), ..., Hy, (B)}
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and
C = (;onv{,Hf1 (B), Hy, (B), .., an(B)}7

then for every index 7 € {1,...,n} we have:
and by Pinsker’s formula we obtain:

A C(B'+Hy (C) V(B +Hp(C) V...V (B + Hy, (O))
= (BI + Hfl(C) vV Hf2(0)) V..V (BI + an(C))
= (B'+ H, (C)V H(C) V...V Hf,(C) =B +C' C A

Therefore
A=B"+C" = B+C c B+,

and from the order law of cancellation it follows that
Cccc and Bc B.

Hence we obtain that C = C' and B = B’ and since B’ and C’ are polytopes the theorem
is proved. O

Remark 2.2. Observe that in the semigroup of polytopes every element can only be
decomposed by polytopes, i.e, for every A € P(X) the equation A = B + C considered
as an equation in /C(X) in the variables B and C has only solutions in P(X). In this
sense the semigroup of polytopes is algebraic closed with respect to the Minkowski sum.
The same is true for the semigroup SK(X) consisting of all strict compact convex sets,
but not for the semigroup B(X) consisting of all closed Euclidean balls for X = IR", see
for instance the example B) in [7]. Thus the sub-semigroups P(X) and SK(X) of K(X)
behave as the multiplicative semigroup (2-IN+1, - ) of odd integers which is an algebraic
closed sub-semimigroup (IN, - ) of integers.

3. Special Set Theoretic Decompositions of Compact Convex Sets

In this section we characterize compact convex sets which can be represented in a special
way as the union of other compact convex sets. We begin with the following proposition:

Proposition 3.1. Let (X, 7) be a topological vector space z € X and A, B € K(X).
Then AU (B + x) is convez if and only if AV (B + z) is a summand of A+ B.

Proof. From Theorem 1.1 it follows that AU (B +x) is convex if and only if AV (B + )
is a summand of A + B + z. But this is equivalent to the fact that AV (B + z) is a
summand of A + B. O

Corollary 3.2. Let (X, 7) be a topological vector space, x € X and A € K(X). Then
AU (A + x) is convez if and only if the interval I = [0, z] is a summand of A.
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Proof. By assumption we have AU(A+z) = AV (A+z). From Pinsker’s formula follows
that AV(A+2z)=(A+{0})vV(A+{z}) = A+10,z]. Now for B = A we deduce from
Proposition 3.1 that there exists a C € IC(X) such that

A+A = AV(A+4+2)+C = A+[0,z] + C,

and hence by the order cancellation law we get that A = [0,z + C.
The inverse implication is obvious. O

Corollary 3.3. Let (X,7) be a topological vector space. If A € K(X) and interval
I =[a,b] is summand of A then AU (A +b— a) is conver.

Proof. Let A = [a,b] + B for some B € K(X). Then A —a = [0,b — a] + B and this
implies that that A = [0,b — a] + B + a. Hence by Corollary 3.2 for x = b — a we get
that AU (A + b — a) is convex. O

Let us put:

Ki(X) :={A € £(X)| there exists B € K(X) and z € X \ {0} with A=BU(B+1z)}.

Proposition 3.4. Let (X, 7) be a topological vector space. Then A € Ki(X) if and only
if there exists a non trivial interval I for which I is summand of A.

Proof. Necessity “ =:" Let A= BU (B +z) for some B € K(X) and z € X be convex.
Then clearly A= BV (B+xz) =B +[0,z] and I := [0, 2] is summand of A.

Sufficiency. “ <" Let I = [a,b] an interval with a # b which is a summand of A. Then
A = B+ [a,b] for some B € K(X).

Let us denote by

—b
CH_b] = B-l-b-i—[a—b,a

A1 := B+|a, ]

and put

—b b—
g ] and zp:= 2a.

Il = [a—b,

Then I; is a summand a A; and by using Corollary 3.3 we obtain that Ay U (41 + I’_T“)
is convex. Hence

A1U(A1 —1—1:0):A1V(A1+3:0) = Al—i—{O}V{xQ} = A1+[O,x0]
+0b b— b—
0,55 = Brato,

=B+a+[0,b—al=B+]ab = A

b—a

410,75

= B+,

]

Let us put:

Ks(X):={A € K(X) | there exists B € K(X) with A= BU (—B) and B # A}.
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Proposition 3.5. Let (X, 7) be a locally convex topological vector space and A € K(X)
with cardA > 1. Then A € K4(X) if and only if A = —A.

Proof. Necessity. “ =" If A € K4(X) then A = BU (—B)} for some B € K(X) and
hence A = —A.

Sufficiency. “ <" Let A € K(X) with cardA > 1. Hence there exists an element zg € A
with g # 0. Now choose an f € X* with f(z9) > 0 and put B := {a € A | f(a) > 0}.
Obviously B #(, B# A and A= BU (—B). O

4. Equivalence of Minimality and Convex Minimality for the case of
dimension < 2

We begin with the following observation:

Proposition 4.1. Let (X,7) be a locally convex topological vector space, f € X* and
A, B,K € K(X) such that H¢(A) = A, Hf(B) = {b} and H;(K) = {k}. Then the pair
(A, B + K) is minimal.

Proof. Let (4',B') < (A,B+ K) and (A4’, B') be equivalent to (A, B+ K). Then
A+B = B+ K+ A.
By assumption there exists a functional f € X* such that
H¢(A)=A, Hf(B)={b} and H(K)={k}.
Hence from
Hy(A)+ Hy(B') = Hy(B+K) + Hg(A')
and H(B + K) = {k + b} it follows that for every ¥ € Hy(B')

A+t —zc A, with z=Fk+0b.

Therefore we obtain o’ —x = 0 and A = A’ and from the law of cancellation B’ = B+ K.
O

Let us now formulate the following hypothesis:

M: equivalent minimal pairs of compact convex sets are uniquely determined up to
translations

CM: equivalent convexr minimal pairs of compact convex sets are uniquely determined up
to translations

MM: equivalent monotone minimal pairs of compact convex sets are uniquely determined
up to translations

Theorem 4.2. For X = R" with n < 2 the hypothesis M, CM and MM are equivalent.

Proof. We will first show the equivalence of M and MM

“M = MM” Let X = R" with n <2, A, B € K(X) and suppose that the pair (A4, B)
is monotone, i.e., B C A. From the order cancellation law follows that every pair (C, D)
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which is equivalent to (A, B) is also monotone. Hence the hypothesis M implies the
hypothesis MM.

“MM = M” Let X = R" withn <2, A, B,C,D € K(X) and suppose that (A, B) and
(C, D) are equivalent minimal pairs.

We have to show that hypothesis M holds.

Therefore we consider the following cases:

i) Let us consider the case where one of the sets A, B,C, D has a nonempty interior.
For instance, suppose that int A # (.

Then there exists a A > 0 such that AC B+ A-B. From A+ D = B+ C follows
that A+ D C B+ D + )\ - B and hence we obtain that B+ C C B+ D+ \- B.
From the order cancellation law we deduce that C' C D + ) - B.

Now let (C’, D') be an equivalent minimal pair to (C, D + X - B) with C’ C C and
D'c D+ )-B.

First observe that the pair (A,B + A - B) (see [6]) is a minimal pair equivalent
to (C',D'). Since A C B+ A+ B we have C' C D’. From the assumption that
equivalent convex minimal pairs are related by translations we get C' = A + x and
D' = B+ \-B+z. But C' C C and hence we obtain that A+x C C and B+z C D.
Since the pair (A, B) is minimal, it follows that A+x = C and B+z = D.

ii) All sets A, B, C, D have empty interior.

a) If A, B are parallel intervals then there exists a point y € X such that A C

B+y. Since (A, B) and (C, D) are equivalent and minimal and therefore related
by translations, we conclude that C' C D + y. Since the pairs (A, B + y) and
(C, D + y) are also minimal and equivalent, there exists a point z € X such
that A=C+x and B+y = D + y+ x and thus we conclude that A =C+=z
and B=D + .
Although it is not used in this proof, let us mention the following fact: If
A = [a1,ag] is parallel to a shorter interval than B = [b1, bs] then (A, B) is
equivalent to (a1, [b1, b2 —az + a1]) so that by minimality of (A, B) the interval
A = [a1,a1] reduces to a singleton.

b) If A, B are not parallel then there exists a ball K = B(0,r) such that A C
B+ K. Hence C C D+ K and by Proposition 4.1 (A, B+ K) and (C, D+ K) are
minimal pairs equivalent to (A, B). Hence A=C+zand B+ K =D+ K+z
which implies B = D + z.

Finally we prove the equivalence of M and CM: In [13] it is shown that hypothesis M
implies CM. Since every equivalent pair of a monotone pair is also monotone and since
monoton pairs are convex, we deduce that the hypothesis CM implies hypothesis MM.
Now the implication MM = CM can be shown in the same way as in the proof Theorem
4.9 in [13]. This completes the proof of the equivalences. O

5. Examples

Example 5.1. In [13] Theorem 4.5 it was shown, that for an arbitrary topological
vector space every class [A, B] contains a minimal convex pair (A, Bp).
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From the fact that a convex pair is minimal, it does not follow that the whole class is
convex. More pecisely: We give now an example of a pair (Ag, By) which is minimal and
minimally convex and for which there exists an equivalent pair which is not convex.

Let X := R? and 4,B,E,E',F,F' € K(X) as indicated in Figure 1. Let us put C :=
AUE, D:=BUF and C':= AUE', D' := BUF'. Then we have:
(4,B) ~ (C,D) ~ (C', D)

where (A, B) is minimal and convex and the pairs (C, D) and (C’, D') are nonconvex.

Obviously the pair (A4, B) is convex and the minimality follows from Theorem 2.1 in [7].
The equivalences
(A7 B) ~ (07 D) ~ (Cla D/)

can be shown as follows:
We have:
C = AUE, D = BUF and E = F —ux.

Observe that
1) D—z = (B—z)UE and 2)C = AUE
are convex, hence it follows:

3)B—x+FE = EN(B—xz) + (D—x)
4)A+E = ANE + AVE = AnE + C.



D. Pallaschke, R. Urbariski / Decompositions of compact conver sets 341

But
ANE = EN(B—-1z) = [-z,0] =1

and therefore

B+FE =1+D

A+FE =1+C
which implies

B+C = A+D
ie, (A,B) ~ (C,D).

Example 5.2. If a pair (A, B) consists of strictly convex sets, then an equivalent
minimal pair does not necessarily consist of strictly convex sets as the following example
shows:

Let X := R? and Ag, By, C' € K(X) as indicated in Figure 2. Let us put A := AgUC, B :=
By U C. Then the pairs (A, B) and (Ag, By) are equivalent, the pair (Ag, By) is minimal
and does not consist of strictly convex sets, while the pair (A, B) consists of strictly convex
sets.

The equivalence of (A, B) ~ (Ap, Bp) can be seen as follows:
Since the sets A := AgUC, B := By U C are convex, we have:

Apg+C = A+ANC
By+C =B+ BynC,

hence Ag + B = By + A and therefore (Ag, By) ~ (A, B).

The minimality of (Ag, By) follows from Lemma 5.1 in [3] which was proved by J. Grzy-
bowski and can be used for a characterization of minimality for the two-dimensional case.
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An alternative to Example 5.2 is to take a ball K = B(0,r) and the sets A, B from
Example 5.1. Then A + K and B + K are strictly convex and (A, B) is a minimal pair
equivalent to (A + K, B+ K).
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