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We give an existence result for the dynamics of a system of particles moving on a line in a horizontal
plane and subjected to friction, to percussional effects, to stiffness and to damping. The novelty in our
study is that the normal reaction is expressed by a measure, incorporating a series of Dirac measures.
The velocity is a function of bounded variation and the acceleration is its Stieltjes measure. Together
with the tangential reaction — which is also a measure — they must satisfy a measure-differential inclusion
formulation of friction. Convex analysis, variational inequalities and measure theory are used in the
existence proof.
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1. Introduction

This paper is concerned with an existence result for the dynamics of a system of N
particles moving on a line in a horizontal plane and which are subjected to friction and to
percussional effects. The particles’ masses my,..., my > 0 form a diagonal mass matrix
M = diag(mi,...,my). The particles are linked to — or by — a system of springs and
dashpots, the effects of which are translated mathematically by positive definite symmetric
N x N matrices: the stiffness matrix K and the damping or viscosity matrix V. The
necessarily tangential displacement of all particles is described by a function g with values

in RY and defined on an interval I (T) := [to, to + T, where ty € IR is given and T > 0

is to be determined. The velocity is denoted u : I(T) — R”Y. The initial position gq
at t = ¢y and the initial velocity ug are given. The external tangential forces are known

in a fixed interval of time I(7y) and are expressed by a given function p : I(Tp) — RY.
The particles also experience friction, of Coulomb type: the friction coefficient v > 0 is
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assumed constant and the associated set is denoted C' = [—7,7].

The main novelty in our study is that the normal reaction, although known, is not a
function. Instead, it is expressed by a measure, which includes Dirac measures at a
denumerable set of instants D = {t,, : n > 0}. This means that normal percussions occur.
To be precise, two measures are introduced, namely

0.¢)
df :=dt +du, dp:= Z%’(St,- , (1.1)
=0

where dt is the Lebesgue measure, d; is the Dirac measure at t, a; > 0, for all ¢, and
S~ a; < +0o. Then the normal reaction is given by v df, where v : I(Ty) — RY is a Borel
measurable function, defined everywhere, with nonnegative components and bounded.
Clearly, we should expect that the tangential reaction is also expressed in terms of df,

that is, as f df where [ is a R —valued function, integrable with respect to df or bounded
on I(Tp) or on a smaller interval I(T"), in the case of a local existence result.

Notice that in the equation of the balance of forces, we must account for this singular
tangential reaction term f df. It turns out that it can only be compensated by allowing
the acceleration ¢ = u to be a measure. In other words, we have to consider the velocity
u as a function of bounded variation, having expected discontinuities at the percussional
instants ;. The acceleration is then the differential or Stieltjes measure of u, denoted du.
Let us just recall here that if the right-limit of u is denoted by u™ and the left-limit by
u~, then du(]s,t]) = ut(t) — u™(s) and du({t}) = ut(t) — u=(2).

The problem is formulated as follows:

Problem (P). Find T > 0, a function of bounded variation u : I(T) = [to, to+T[— R™

— the velocity — and a function f € LY(I(T),df; RY) — the density of tangential reaction —
such that, defining the displacement by

t
a(t) = 0+ /t u(s)ds (t € I(T)), (1.2)

0

we have:
u(to) = uo, (1.3)
Mdu+Vudt+ Kqdt = fdf + pdt, (1.4)
—ut(t) € Nyiyo(f(t), do-ae.. (1.5)

Equation (1.4) is just the balance equation written in the form of an equality of measures.
In the classical setting, where df is replaced by Lebesgue measure dt and u is absolutely
continuous (so that du = @ dt), (1.4) would mean M 4(t) + V u(t) + K q(t) = f(t) + p(t),
for Lebesgue almost every ¢, as usual.

The differential inclusion (1.5) is a well known form of Coulomb’s friction law. The

notation N4(x) stands for the outward normal cone to a convex set A C RY at a point
z:ifz & A, then Ng(z) =0 and if z € A, then

v € Ny(r) eVzeAv-(z—12) <0, (1.6)
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where the dot denotes the scalar product in RY. The convex set considered here is defined
by
v(t)C :={(vi(t)cr,...,on(t)en) s ety en € C = [—7,7]}- (1.7)

The main result is the following:

Theorem 1.1. Let p € L®(I, dt; RY) and v € L*®(I, db; ]R]_i\_[) Let ug, ¢o € RY.

Then, for sufficiently small T > 0, there is at least one solution (u, f) to Problem (P)
which is defined on I(T) = [tg, to + T7.

The proof uses convex analysis, variational inequalities and some elementary measure
theory. Equations such as (1.4), (1.5) are sometimes called measure-differential equations
or inclusions.

Different versions of the problem may be considered. For instance, we might have added
a transport velocity e(t) of the line where the particles move; then, the velocity u(¢) must
be replaced by u(t) — E(t) where E(t) := (e(t),...,e(t)). The proof would proceed much
in the same manner.

Previous works in this direction include [5], [6] and [7] by the authors and some references
therein. The present work differs from [5] and [6], where the unknown functions are scalar
(in both) or the elastic and viscous effects are absent (in [5]). Moreover, although the
general appproach is similar, other technical tools are used here, say, in Sections 2, 3 and
5. This work also differs from [7], Section 3.3, where the normal reactions are not known
a priori, but the applied forces are usual functions, while here these forces can also be
responsible by the given normal percussions, hence they may be expressed more generally
by measures.

We can also refer to [3] and [4], which treat (with a simpler apparatus and from the
application point of view) the cases of particles and bodies with known or unknown
normal reaction forces. We believe that the mathematical tools developed here will prove
useful in the general theoretical setting.

This paper is organized as follows: in Section 2, the corresponding problem without
percussion is studied. In Section 3, the existence of a solution to the problem with a
finite number of percussions is obtained “almost” explicitly. In Section 4, Problem (P) is
solved by a technically challenging limit procedure on the previously obtained approximate
solutions. Finally, in Section 5, a few auxiliary results are presented for the convenience
of the reader.

2. The problem without percussions

Let us solve first the classical problem — that is, in the absence of percussions — in a
subinterval J := [a,b] C I(Tp). Given v, ¢go € RY, we have to find an absolutely

continuous function v : J — R and a Lebesgue-integrable function g : J — RY which
solve the following problem:

Problem (Pj). - Defining ¢ : J — R”" by

q(t) = qa +/ v(s)ds (telJ), (2.1)
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then v, ¢ and g satisfy:

v(a) = vg, (2.2)
M%(t) + V() + Kq(t) = g(t) + p(t), dt-ae. in J, (2.3)
—v(t) € Nyyc(g(t)), dt-ae. in J. (2.4)

Theorem 2.1. If p € L%(J,dt; RY) and v € L2(J,dt; RY), then Problem (Py) has a
unique solution (v,g) € AC(J;RY) x L2(J, dt; RY).

The proof is performed in several steps. First, we notice that, if g € L2(J, dt; RY ) is
already known, then (2.1)-(2.2) may be expressed as a Cauchy problem for a second-

order o.d.e. :
Mq(t) + Vq(t) + Kq(t) = ¢(t), dt-a.e. in J, (2.5)

q(a) = ga, G(a) = v, (2.6)
where ¢ := g+p € L*(J, dt; R"). Classically, (2.5)—(2.6) has a unique solution. Moreover,

the map ¢ — (g, ¢) is continuous from L2 := L2(J,dt; RY) into (L2)%; to obtain this, just
write the explicit integral formula for the solution (g, ¢). Thus, the map S defined by

ge L2(J,dt; RN) — S(g) :=v =g, (2.7)
where v is the solution of (2.1)—(2.3), is continuous from L? into L?; see also Lemma 2.2

below.

We now turn our attention to (2.4). By Lemma 5.1, ¢ — v(¢)C is a measurable closed
convex-valued multifunction, and by Lemma 5.2, (2.4) is equivalent to the following in-

clusion, in the Hilbert space L?(.J, dt; R™N):
—v € Ngel(w(0)(9), (2.8)

the outward normal cone to the set of L2-selections of ¢ — v(¢)C. In variational form,
this is written:

(0,0 — g)pz = /J o(t) - (p(t) — g(t)) dt > 0, (2.9)

for every ¢ € L2(J,dt; RY) such that o(t) € v(t)C, dt-a.e. in J.

Coupling this with (2.1)—(2.3) and by definition of S, we obtain the following variational
inequality, where {-,-) denotes the inner product of L?:

(S(9),0—g) >0, Vo € Sel(v(-)0). (2.10)

By Lemma 5.3, we know that (2.10) has a unique solution provided that Sel(v(:)C) is a
nonempty bounded closed convex subset of the Hilbert space L2(J, dt; RY ) — and this is
easy to verify — and that the continuous operator § is strictly monotone:

Lemma 2.2. The solution operator S of (2.1)—(2.3) (see (2.7)) is strictly monotone and
Lipschitz-continuous in L2(J, dt; RN ).
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Proof. Let g; € L? and v; = S(g;), fori = 1,2, so that g; = Mi;+Vv;+Kg;—p =: L(v;).
We put w = v — vy and W(t) = f; w(s) ds and we write

A= (S(g1) — S(92), 91— ) = /J (01— v9) - (g1 — go)
- / " olt) - (Mio(t) + V() + KW (6)d.
But since W (t) = w(t) and w(a) = W (a) = 0, we obtain that
A= %Mw(b) cw(b) + /ab Va(t) - w(t) dt + %KW(b) W) .

Since M and K are (definite) positive matrices and V is definite positive (there is a > 0
such that Vz -z > of|z||%,Vz € RY), it follows that

(S(or) = Slo2). 1~ ) = o [ Jw@)|Pdt = allS(on) - Sl 0. (211

Hence S is monotone. Moreover, (S(g1) — S(g2), 91 — g2) = 0 implies S(g1) = S(g2) or
v1 = vg so that g1 = L(v1) = L(v2) = g2 proving that S is strictly monotone. Finally, by

Cauchy-Schwarz inequality, (2.11) implies that ||S(g1) — S(g2)|| < |91 — g2]|- O

3. The case of a finite number of percussions

We solve approximate problems to Problem (P), which we call Problem (P,,), for n € INj.
These are obtained by replacing the percussional measure dy with a measure du,, which
contains only a finite number of percussions, i.e. a finite number of Dirac measures. To
be precise,

dpy, = Zaiéti ) (3.1)
1=0

The approximate problem (P,,) is defined as follows:

Problem (P,). — Define the positive measure df,, = du, + dt on I(Ty) = [to, to + To[-
Let p € L®(I(Tp), dt; RN) and v € L®(I(Tp),dt; RY). The initial values ug, go € RY
are given. For any T €0, Ty], find u, : I(T) = [to, to + T[— RY, a function of bounded

variation with Stieltjes measure du,, and a function f, € L®(I(T),dt; RY) such that, if
gn is the Lipschitz-continuous function defined by

t
an(t) = qo +/t un(s)ds, t € I(T), (3.2)

then the following hold:
un(to) = up, (3.3)
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M duy, + Vuy dt + Kqp dt = f,, df, + pdt, (3.4)
(1) € Nyoln(t)) , dp-ae.. (35)

Let T be fixed. Then the elements of {tg,...,t,} N I(T) may be ordered and we denote
them
M=tg<M<...<\y <tg+T (withn' <n). (3.6)

In the interior of every subinterval I; := [A;, Aj41], the measure df, equals the Lebesgue
measure, and so the problem is solved as in the previous section, as long as we know how
to prescribe the values g, ()\;) and up()}); to be precise, we need to know the right-velocity

gy (Ag)-
Recall that if \; = t,,;) for some m(j) < n, then

dn({Aj}) = din({Aj}) = (am@) o) {Ai}) = amj), (3.7)
dun({Aj}) = Uy (N) = ugy (Ag)- (3.8)

Here a convention is needed for the left endpoint \g = %y:
Up, (A0) = un(Ao) = uo, (3.9)

by (3.3). Thus the integration of the balance equation (3.4) on the singleton {);} leads
to Mfugy () = un (A)] = @) fn(X;) or

u,f ()\J) =u, ()\J) + am(j)M_lfn()\j). (3.10)

In addition, (3.5) has to hold at A; (which has a positive measure for df,,, by (3.7)). Thus,
fn(Xj) € v(A;)C and

—tuy (Nj) € Nyorjyo(Fa(N))- (3.11)
By elementary convex analysis, (3.11) is equivalent to: Vp > 0, f,();) is the projection or
proximal point of f,(A;) — pu;t ();) in the set (A;)C. Combining with (3.10) we obtain:

Fa(Aj) = projyaye (T = pamy M~ fu(Ag) — puy (A7), (3.12)
where Id is the N x N identity matrix, ap, ;M ~1 is a symmetric positive definite matrix
and y = —u;, (1)) is assumed known. By Lemma 5.4, there is a unique such f,();) € RY.

Therefore, (3.10) and (3.12) give us the right-velocity at the start of the new subinterval
I; = [Aj, A\j41[, while the initial position is obtained by continuity from the solution
already known up to A; : that is, as the displacement is continuous, we take ¢,(};) =
¢, (Aj). In the interior of I; we do not expect percussions: there, as pointed out above,
df,, coincides with dt and the problem reduces to the classical situation considered in
Section 2. Thus there is a unique pair (un, fn) € AC(I;, RY) x L2(I;, dt; RY) such that
un(Aj) = ut (X)), as given by (3.10), and
duy,

Mﬁ(t) + Vun(t) + Kqn(t) = fa(t) + p(t), dt-a.e. in Ij, (3.13)
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—un(t) € Nywyo(fult)), dt-a.e. in I, (3.14)
where gy, is the anti-derivative of u, which satisfies ¢, (\;) = g¢5; (A;).

We have obtained a solution u,, on I; (notice that (3.13) may be considered as a definition
of f,). Since the study undertaken in the previous section allows us to work on the closure

I;, it is clear that the limits g;, (Aj4+1) and u, (Aj41) exist. Therefore, we may continue
with the procedure, so that after a finite number of steps, we shall have defined on the
whole of I(T") the unique solution (up, fn) to the problem (Py).

The solution u,, is made of a finite number of absolutely continuous pieces, “separated” by
a finite number of discontinuities (at the A;); hence, it has bounded variation. Moreover,

by construction it is right-continuous, except at tg = Ag. In fact, for the sake of (1.3), we
take uy(tg) = ug, while by (3.10) and (3.12) with j =0,

ut (o) = uo + aoM ¢, (3.15)

where ¢ is the unique solution of
& = proj, ) o([Id — pagM ¢ — pug). (3.16)

As for fp, by (3.11) (or (3.12)) and (3.14), we have f,(A;) € v(A;)C and fy(t) € v(t)C, dt-
a.e. in the interior of I, hence fyp(t) € v(t)C, dp-a.e. in I(T). Since v and C are

bounded, we conclude that f, € L®(I(T),df,; RY). Furthermore we notice that by
defining f, = 0 at the atoms of df which are not included in the definition of du, (hence
of df, and so this only changes f, in a df,-null set) we may assume that

fn(t) € v(t)C, G-a.e., (3.17)

whence, for all n
[ fallzoogg) < VII¥|loo- (3.18)

4. Convergence to a solution

We show that by considering an interval I = I(T) with sufficiently small 7" > 0, it is
possible to extract convergent subsequences of (uy, f), in a sense to be specified below,
and that any such limit (u, f) is a solution to Problem (P) on 1.

By (3.18), (fn) is a bounded sequence in L®(I, df; RY), hence it admits a subsequence,
still denoted (f,), which converges to some f € L®(I,df; RY) in the weak- topology
a(L*®, L';df). As for (uy,), we have the following result:

Proposition 4.1.  There is Ty € |0,Ty] such that, if we consider I = I(T) with T €
10, T1[, then we may extract from (uy) a subsequence, still denoted (uy), which satisfies:

(a) (un) converges pointwisely to a function of bounded variation u : I = [ty, to+T[— RY
which is right-continuous in |tg, to + T[;

(b) ut — ut pointwisely and in L'(I,d; RY).
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Proof. Let us point out that the special status of the left endpoint is only due to the
fact that there u(tg) = (lim)uy(t9) = up must stand in for the left-behaviour u~(¢9). For
t €lto, to + T[, we have dup([to,t]) = un(t) — un(tp). Thus, by integrating the balance
equation (3.4) we obtain

un(t) — ug + M1V ( / un(s)ds) + MUK / (g0 + / n(7)dr)ds) =

to to to
t
M1 fndbp + M1 [ p(s)ds. (4.1)
[tO:t] to

Let us denote by || - [|oo the uniform norm (of u, and 7) and the L (I, dt; R™) norm (of
p). Then the above equation and (3.18) lead to the estimate:

[unlloo < lJuoll + aT [[unllco + 6T ([lqoll + Tllunllco) + evl[¥lloollddll + TPl

where ||[M~1V|| < a (the norm of linear operators), |M~'K|| < b and | M| < ¢, with
a,b,c >0 and ||df|| = dO(I) = [, db.

For T €]0,T}[ with Ty = min{Ty, (vVa% + 4b — a)/2b} we have 1 — aT — bT? > 0 and

_ Nluoll + 6T llgoll + cvl¥llol|dB]] + T Iplloo
1—aT — bT? '

[tnlloo < a1(T) : (4.2)

Moreover, from (3.4), that is, from:
duy = —M " Wupdt — M~ Kqpdt + M~ f,, d6, + M~ 'pdt,

we see that the (positive) measures of total variation |du,| are bounded by a fixed measure

dg:
|dun| < d = [aa1(T) + b (llqoll + Ta1(T)) + cT[pllc] dt + cv|[v[|oodf.  (4.3)

Thus, by [7, Lemma 0.3.5] applied to u;}} = u, in int(I), we may extract a subsequence, still
denoted u,, that converges pointwisely to a function of bounded variation u : I — RY ,
which is right-continuous in Jto, tg + T[. Moreover, u,(ty) = u(ty) and u; (to) = u™(t9),
as in (3.15), (3.16). Thus also u,;} — u* pointwisely in I.

Since (uy,) and (u,}) are bounded, the rest of the proposition is a consequence of Lebesgue’s
theorem on dominated convergence. O

From this, it follows that

t t

un(s)ds = q(t) :== qo +/t u(s) ds, (4.4)

an(t) = qo + /

to

uniformly on I. To finish the proof that (u, f) solves Problem (P), we still need to check
that both the balance equation (1.4) and the friction law, in the form of the inclusion
(1.5), hold.
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Balance equation. By (4.1), we have

t

t
M(Un(t) - uO) + V(Qn(t) - QO) + K Qn(s) ds = fndby +/ p(s) ds. (4'5)
to [to,t] to

We write (with x denoting a characteristic function, as usual):

fudtn = [ £a8= [ Fuxpon (@~ d8)+ [ (fu = £
[t07t] [tU 7t]

The first integral terms in the right-hand side converge to zero, because they are bounded

in the norm of RY by

00
Nelloelldtn — doll < Alvlloo 3 ai =0, asm — oo
1=n+1

(To be precise, the sum concerns only those a; corresponding to ¢; belonging to I = I(T)).
The components of the other integral terms in the right-hand side can be written as a

duality product (fn — f, X[to,g€k) in L(I, db; ]RN) x LY(I,d®, ]RN), where e, € RY is a
vector of the canonical basis. Since f, — f weakly-*, it follows that those integral terms
also converge to zero, as n grows. Hence,

fndl, — fdo. (4.6)
[to,t] [to,t]

Since (uy) and (g,) converge pointwisely and uniformly (respectively), we obtain from
(4.5) and (4.6)

t

t
M (u(t) - uo) + Valt) —a) + K [ a(s)ds= [ fdo+ / p(s)ds, (A7)
to [to,t] to

for all ¢ € I. This means that the balance equation (1.4) holds if we apply the measures
in both hand-sides to any interval [tg, t]; consequently, it holds as an equality of measures.

Friction law. We have to prove (1.5) or equivalently, as in Section 2 and by Lemma
5.2, that
f(t) e v(t)C, db-a.e. , (4.8)

[t (et - sy asie) > o (49)
for all df-measurable selections ¢, with ¢(t) € v(t)C, df-a.e. .

By (3.17) and the weak-* convergence of (f,) to f, it classically follows (4.8). The
inequality (4.9) is obtained by taking the limit in the analogous formulation of (3.5):

/I W (1) - (0(t) = fult)) dba(t) > 0 (4.10)
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By (4.2), (3.18) and the definition of ¢ we have

‘/IU?I (¢ = fn)dbn — /qui (o - fn)dH‘ < 201 (T) (¥l col|dbn — db]],

and the right-hand side converges to zero. Thus (4.9) is a consequence of (4.10) and of
the following limit

llm/ (p— fn)dd = /Iu+ (@ — f)db. (4.11)
By the dominated convergence theorem, thanks to Proposition 4.1 and (3.18), we have:
/u,‘{'-cpd@—)/u*‘-(pde, (4.12)
I I
[t guan = [t guat] <alvlalit =l >0 (413

Therefore (4.11) follows from

/u+-fnd0—>/u+-fd9,
I I

by the weak-* convergence of f,, to f. O

5. Auxiliary results
The first result concerns the measurability of a particular multifunction.

Lemma 5.1. Letv : I ¢ R — RY be Borel-measurable (respectively, Lebesque-
measurable). Let C' be a fized compact interval of R. For every t € I define the compact

convez set v(t)C C RN by (1.7). Then t — I(t) = v(t)C is a Borel-measurable (respec-
tively, Lebesgue-measurable) multifunction.

Proof. Let @ be a countable dense subset of C. For every (di,...,dy) € QY the
function

t— (Vl(t)dl, cey I/N(t)dN)

is a (Borel or Lebesgue) measurable selection of I'. Moreover, the set C of such functions
is countable and each I'(¢) is the closure of {o(t) : ¢ € C}. Thus, by [1, Chapter III], I is
a measurable multifunction. |

The second result concerns equivalent formulations of an inclusion. Let dn be a complete
positive measure on an interval J = [a,b] (and which is defined at least on the Borel
subsets of J). Let I' be a Borel (hence dn-) measurable multifunction defined on J with

closed convex values (contained in a compact subset of RY).
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Lemma 5.2. Letv,g:J — RY be dn-measurable functions. Then, the inclusion
—v(t) € Nr)(g(t)), dn—a.e. in J, (5.1)
1 equivalent to the conditions

g(t) € T'(t), dn-a.e. in J, (5.2)

/J o(t) - (o(t) — g(t)) dn(t) > 0 (5.3)

for every ¢ € L2(J,dn; RYN) which is a selection of T (i.e., p(t) € I'(t), dn-a.e.).

Before proving this lemma, let us notice that if g,v € L? then (5.2) means that g belongs
to the set Sel(T') of L? selections of I'. Thus (5.3) means that (v, — g);2 > 0 for all
¢ € Sel(T") and so

—v € Ngeyr)(9)- (5.4)

Proof. If (5.1) holds then the outward normal cone is nonempty for dn-almost every t,
and this is only possible if (5.2) is true. Then, there is a dn-null set N such that, for all
t & N,g(t) € T(t),—v(t) € Npw)(g(t)) and ¢(t) € T'(t). By definition of normal cone, this
implies v(t) - (¢(t) — g(t)) > 0, for t ¢ N and so (5.3) holds.

To prove the converse, i.e. that (5.2) and (5.3) imply (5.1), we show that if (5.2) holds but
(5.1) does not, then (5.3) cannot hold. Under such assumptions, there is a set of positive
measure Jo C J such that, for all t € Jy, f(¢,2) := v(t) - (z — g(t)) is negative for some
z € I'(t). Then m(t) :=inf{f(¢,2) : z € T'(¢)} is a negative dn-measurable function in Jy,
by [1, Lemma I11-39]. It follows that ¢ — {z € T'(¢) : f(t,2) < m(t)/2} is a dp-measurable
multifunction in Jy with nonempty closed values, hence it has a dn-measurable selection
z: Jy — RN, Putting o(t) = 2(t) if t € Jy and o(t) = g(t) otherwise, we obtain an
L2%-selection of T' for which

m(t)
[ o0+ e -seraney = [ sexwyane < [ T <o

0

Jo
contradicting (5.3). O

Next, and for the sake of completeness, we recall an existence result for a classical varia-
tional problem.

Lemma 5.3. Let H be a Hilbert space with inner product (-,-) and norm || ||. Assume
that S : H — H is a continuous monotone operator and that K is a nonempty bounded
closed convex subset of H. Then there is at least one x € H such that

zreK; (Sr,y—z)>0,VyeK. (5.5)
In other words, by definition of outward normal cone, there is x € H such that

—Sx € NK(.Z) (5'6)
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Moreover, if S is strictly monotone, i.e. if

x#y= (Sz—Sy,z—y) >0, (5.7)
then (5.5) — i.e. (5.6) — has a unique solution.

Proof. Existence: H is a reflexive Banach space, S is monotone and obviously weakly
continuous over all subspaces of finite dimension of H and, since K is a nonempty closed
convex set, its indicator function ¢ = {k is a proper lower semicontinuous convex function.
Moreover, for any 39 € domp = K :

lyll = +o0 = [(Sy, ¥ — vo) + oW)] ly]|+ = +o0;

this is obvious since ¢(y) = 400 -i.e. y ¢ K- for sufficiently large ||y||.

Hence, we may apply Theorem I1.3.1 in [2]: it follows that for every z € H there is x € H
which solves
(S —z,y—z) +¢(y) — p(z) 20, Vy € H. (5.8)

By choosing y € K, we see that ¢(z) < +oo, whence z € K and ¢(x) = 0. Therefore,
(5.8) is trivial for y ¢ K and for z = 0 it is certainly equivalent to (5.5).

Uniqueness: Let 21,29 € K satisfy (5.5). Then (Sz1,z22 — 1) > 0 (take x = 7 and
y = x3) and similarly (Sxg, 1 — z2) > 0. Hence
<S$1 — Sxo, 11 — $2> <0,

which implies x; = 9, by (5.7). O

Finally, let us prove the following

Lemma 5.4. Let H be a Hilbert space (or simply H=R") andy € H. Let A: H - H
be a symmetric strongly positive continuous linear operator and consider the following
conditions on x € H:

z = projg ((Id — pA)z + py); (5.9)p
y— Az € Ni(x). (5.10)

Then, by elementary convex analysis, (5.10) = (5.9),, for all p > 0; and if (5.9), holds
for some p > 0, then (5.10) holds.
Moreover, (5.9), and (5.10) have a unique solution x € H (where necessarily x € K ).

Proof. To prove (5.9),, hence (5.10), we show that, for a convenient choice of p > 0, the
operator & — Tj(z) := projg ((Id — pA)z + py) has a unique fixed point in K.

The projection on K is nonexpansive, whence
[Tp(z) — Tp(2)|| < [|(Id — pA)(z — 2)]I. (5.11)

We know that for some o > 0, (Aw,w) > al|w||?, Vw € H. Thus, by developing the
square of the r.h.s. of (5.11), we obtain

1Tp(z) = Tp(2)|| < k(p)llz — 2|, Vz,z € H,
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where k(p) := (1 — 2pa + p2||A||>)Y/2. If p €]0,2al||A||~?[, then k(p) €]0,1[. Hence, T, is
a strict contraction in K and it has a unique fixed point. O
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