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Abstract 

This paper traces the development of the notions of dispersion, in demography and in probability, distinguishing 
two main meanings for this term: the one first, to scatter, to cast here and there; in second, to separate the 
elements, to break the unity of a set. This development was initiated by the work of Pascal and Fermat for 
probability and Graunt for political arithmetic, during the second half of the seventeenth century. Major progress 
was made with the probabilistic and demographic work of Laplace, who developed an epistemic approach of 
these two notions of dispersion. However, with an objectivist probabilistic approach, that took place in the 
middle of the nineteenth century, and the use of population censuses, these notions entirely disappeared from the 
demographic field. In the early 1980’s the development of event history analysis and of multilevel analysis 
permitted the reintroduction of these two notions. 

 

Résumé 

Cet article suit en parallèle le développement des notions de dispersion, tant en probabilités qu’en démographie, 
celles-ci étant prises dans les deux sens du terme : d’une part l’action de répandre, de jeter çà et là ; d’autre part 
l’action de séparer les éléments, de rompre l’unité d’un ensemble. Ce développement fut initié par les travaux de 
Pascal et Fermat en probabilité et par ceux de Graunt en arithmétique politique, dans la seconde moitié du 
XVIIème siècle. Il atteint une étape importante avec l’œuvre tant probabiliste que démographique de Laplace, qui 
développe une approche épistémique originale de ces deux notions de dispersion. Cependant, avec le 
développement d’une approche probabiliste objectiviste dès le milieu du XIXème siècle et l’utilisation des 
recensements de population, ces notions en viennent à disparaître entièrement du champ démographique. Ce 
n’est que dans les années 1980 que le développement des analyses biographique et multiniveau, réintroduisent 
ces deux notions. 

 

                                                             
1 Institut National d’Etudes Démographiques, 133 boulevard Davout, 75980 Paris cedex 20, courgeau@ined.fr . 
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1 Introduction 

The term dispersion comes from the Latin verb dipsergere, which means to scatter. In the first 
edition of the dictionary of the French Academy in 1694 this term meant: the action to 

disperse or the action by which something is dispersed, and was illustrated by the example of 
the dispersion of the Jews. Over time this word has designated much more diverse realities, 
especially in science. 

Today academicians distinguish two main meanings of this term, and we will see that 
these meanings are also used, with a more precise signification, in demography. 

The first meaning is: to scatter, to cast here and there, which led to the statistical 
significance of the term: spread of observations around their central value. In demography 
you can talk about the dispersion of a rate or an index, a dispersion which can be measured by 
diverse numerical indicators: variance2, standard deviation, confidence intervals, the 
coefficient of variation, etc., at the price, however, of a loss of information (Barbut, 2002). 

The second meaning is: to separate the elements, to break the unity of a set. Thus a set 
of facts considered equivalent in the explanation of a phenomenon can turn out not be when 
we push the analysis further. We will see for example in demography, that the multilevel 
approach will separately consider the effect of a characteristic on different groups, while the 
characteristic was considered to consistently influence the entire population, in the approaches 
considered previously. 

We also consider the opposite of this term, homogeneity, which corresponds to the 
concentration of indicators on a single non-random value, or to the homogeneity of a set of 
which we do not find it useful to distinguish the elements. 

In order to give a historical view of the evolution of these concepts we must now 
indicate the origins of both probability and demography, because the two disciplines were 
closely related from their beginning. 

The concept of hazard has long been present, but its rigorous formulation did not 
appear until later, especially when Pascal and Fermat (1654) developed their geometry of 

chance, which later became the calculation of probabilities. Pascal (1654)3 clearly posits the 
conditions that allow the calculation of probabilities for games of chance: 

If the game is of pure chance and there is as much chance for one or the other and 

therefore no more reason to win for one or the other… 

This means that the apparent dispersion of earnings hides the high regularity of the probability 
of winning, which in this game, is constant and equal to one half. Depending on the state in 
which the game is, players may leave and share equitably the amounts remaining in the game, 
what he calls the bet. This concept of probability will also play a role in demography, where 
there will be constant underlying probabilities, under the apparent spread of the arrival of 
phenomena.  

As far as populations are concerned, although censuses were made by the Egyptians 
around 2900 BC, the establishment of a science of the population occurred only much later. 
An important step was Graunt’s presentation in 1662, that is to say eight years later than 
Pascal and Fermat, of his Natural and political observations corresponding to the 

                                                             
2 Henri Caussinus told me that in modern Greek διασπορά also means variance. 
3 It should be noted here that if the Treatise on the Arithmetical Triangle was written and printed in 1654, it was 
released only in 1665. It was the presentation of these results by Huygens (1657) which permitted their diffusion 
to interested readers. 
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establishment of political arithmetic, which will become known as demography in the 
nineteenth century.  

It is interesting to hear from him that he engaged his thought on this topic because of 
the fanciful estimates that were going round on the population of London: 

I must confess, that until this provocation, I had been frighted with that misunderstood 

Example of David, from attempting any computation of the people of this populous 

place; ... 

In fact the Bible says that "Satan stood against Israel and incited David to count the 
Israelites": it was a sin against God, who inflicted three days of devastating plague upon 
Israel. This evaluation is made possible from the Bills of Mortality, as Graunt showed in his 
work. 

What is most surprising here is to see implemented, as we will discuss in greater detail 
later, the same method of calculation as for gambling, while it seems a priori difficult to 
believe that the probability of a death or a childbirth may be the same for all human being, 
although it may be in the case of the probability of winning in each bet of a game of chance. 

2 Dispersion of mortality rates by age 

We can find the bases of demography already in Graunt’s work, but sometimes clumsily 
developed, with many errors in reasoning and calculations. We leave aside the construction of 
the mortality table that has generated many comments, among others from Greenwood 
(1928), Glass (1950), Vilquin (1977), Le Bras (2000) and Rohrbasser (2002), so here we will 
concern ourselves with another really probabilistic calculation, in the beginning of Chapter 
XI, to estimate the population of adults in London. 

To do this, he used the Bills of Mortality in London, which showed fewer than 15,000 
annual deaths. Based on the causes of death, which were given in these bills, he thought that 
5,000 of these deaths are from children or elderly. From the 10,000 deaths of people aged 10 
to 60 years, he tries to estimate the population, under certain assumptions. Let us see more 
precisely how he determined the latter. 

First he will use the concept of fair play, already presented by Pascal, for bets in 
games. So he writes: 

Next considering, That it is esteemed an even Lay, whether any man lives ten years 

longer, I suppose it was the same, that one of any 10 might die within one year. 

This means in nowadays terms that if the probability of death over 10 years is , then the 

probability of death over one year can be estimated at . He therefore assumes that, if he 

knows the probability of dying over a period of several years, he can deduce the annual 
probability, which is possible if this probability remains constant throughout this period. He 
also makes the underlying assumption that, as in games of chance, probability theory can be 
applied to estimate the deaths in a population. 

Hacking (1975) reformulates his reasoning for reaching this conclusion, as follows: 

This does not even sound correct, but it is, thanks to the happy choice of figures … 

Graunt assumes a uniform death rate, that is, that there is a constant chance p of 

dying in a given year. If the chance of living ten years is 0.5, consider a population of 
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size N. The number who survive the first year is N(1-p). The number who survive the 

second is [N(1-p)-pN(1-p)] or N(1-p)
2
. The number who survive ten years is N(1-p)

10
 

= 0.5N. Now let q be the chance that at least one man in a group of ten dies in a given 

year; then 1-q is the chance that no one dies. This is just (1-p)
10

, which, solving the 

above equation, is 0.5. So, as Graunt says, q is also 0.5. 

In fact, this calculation does not correspond to the one made by Graunt: Graunt calculates the 

annual probability of dying4, which he considers equal to , while Hacking 

shows simply that . So we must solve the above equation knowing that , 

which leads to , is more than one third higher than its 

estimate by Graunt. Contrary to Hacking, the reasoning of Graunt is ultimately incorrect. It is 
however more complex than the one given by Pascal and Fermat, as it seeks to relate a 
measured probability for 10 years to an annual probability, assuming that it is equal 
throughout this period. It posits the possibility that in 10 years we can consider the annual 
probability of dying as being unmodified by age, i.e. without dispersion or uniform, according 
to the second meaning of this term. 

He then goes further by assuming that the annual probability of dying is constant over 
a longer life span ranging from 10 to 60 years. He therefore considers it unnecessary to 
distinguish the different probabilities of mortality for each age, which then forms a new unit. 
He can then infer the population of London subject to this risk, based on observed deaths. 
Indeed, writing this probability equal for each age he obtains: 

 

Where  is the probability of dying at age x,  the deaths between the ages x and 

x+1 and , the number surviving at age x. It follows that we can deduce the population aged 

10 to 60 years old from the deaths observed and the estimated probability p: 

. 

Assuming this ratio equal to , as estimated by Graunt, we obtain, from the 10,000 reported 

deaths, a population of 200,000 individuals aged 10 to 60 years, but not of 100,000 as Graunt 
stated incorrectly while using a multiplier of 10 instead of 20 (which number being multiplied 

by 10, …). But we have also seen that the estimate of p is incorrect and this leads to 
, giving a multiplier of 14.925, which ultimately leads to estimating the population 

to 149,250 individuals, which is around 150,000. 

We can therefore conclude that the probabilistic reasoning of Graunt is still very 
uncertain and that his demographic assumptions are questionable. As stated in 1669 by 

                                                             
4 In demography, it is customary to call the annual probability of dying q and not p, but we keep here the 
notations used by Hacking. 
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Lodewijk Huygens in a letter to Christiaan Huygens (Huygens, Correspondence 1666-1669), 
in which they seek to estimate the average life at various ages: 

I confess that my calculation of ages is not entirely correct, but there is so little to say 

that this is not too false, especially since the English table, on which we rely, is also 

not very accurate… 

The astronomer Halley (1693), worked out a set up for a more satisfactory table of 
mortality more satisfactory. He acknowledged the shortcomings of the first calculations of 
Graunt: the population at risk lacks, the ages at death are unknown and immigration in 
London and Dublin is important. He says more precisely: 

But the Deduction from those Bills of Mortality seemed even to their Authors to be 

defective: First, In that the Number of the People was wanting. Secondly, That the 

Ages of the People Dying was not to be had. And Lastly, That both London and 

Dublin by reason of the great and casual accession of Strangers who die therein, (as 

appeared in both, by the great Excess of the Funerals above the Births) rendred them 

incapable of being Standards for this purpose; … 

He will then use the data from the city of Breslau, where migration is much lower (1238 
annual births against 1174 deaths): it allows him to make the underlying assumption of a 
stationary population, developed later by Euler (1760), who does not yet use this term but 
clearly indicates that if every year as many children are born, as many men are dead, then the 

number of men will always remain the same, and there will not be any increase of the 

population. He no longer had any reason to assume the same probability of death for all ages, 
since he had the opportunity to estimate deaths according to age and provide a more precise 
survival function. 

Halley, however, like most researchers in the seventeenth and first half of the 
eighteenth century could only use the statistics of births and deaths, insufficient to construct a 
mortality table correctly. It lacks the populations at risk. It was only in 1766 that the Swedish 
astronomer Wargentin provided a real life table because in his country there were population 
registers, which allow measurement of the population subject to the risk of death, and death 
records, which give the numerators of rates or probabilities to calculate. Finally, the censuses 
established during the nineteenth century led to generalize the calculation of these tables. 

Thus, without any estimation of deaths according to age, Graunt had to make the 
homogeneity assumption, at least from 10 to 60 years, in order to estimate the corresponding 
population. Once these deaths have been measured, this assumption becomes useless because 
you can now check its validity and show dispersion, according to the second sense, of their 
values depending on age. 

We will now look at the statistical dispersion of demographic measures, in the first 
sense, throughout the same period. Jacques Bernoulli (1713), which work on epistemic 
probabilities we will present in more detail his in the next section, shows that the estimation of 

a probability may be delimited by two boundaries, as accurate as one could wish. This should 
enable the estimation of the dispersion of demographic indices, when we have the numbers 
measured in order to calculate it. 

To our knowledge, only one author has applied these results to demography: Nicolas 
Bernoulli (in Montmort, 1713). He wants to refute the argument for Divine Providence, 
supported by Arbuthnott (1710), from his observation of children born in London between 
1629 and 1710, which was presented as follows: 
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if chance ruled the world, it would be impossible that the number of boys and girls are 

so close for several years in a row as it was for 80 years. 

In order to show that this result is incorrect, he had to prove that: 

there is a high probability that the number of boys and girls is every year among more 

narrow limits than those that were observed during the following 80 years … 

His demonstration is very close to that of Jacques Bernoulli, as he himself admits: 

I remember my late uncle has demonstrated a similar thing in his treatise De Arte 

conjectandi, which is now in print in Basel. 

However none of the other authors working on the population until 1774, had the idea 
to give the limits within which his calculations could be contained. We find in Kersseboom 
(1742), Deparcieux (1746), Süβmilch (1741, 1761-1762), etc., no attempt to estimate the 
dispersion of their estimates. No doubt some of these authors, like Süβmilch, thought that the 
immutable causes underlying these phenomena were to be found in the Divine Order, which 
would come to expression in a perfect society. In this case the observed dispersion indices 
would disappear. But, as Nicolas Bernoulli has shown, this argument is to be refuted: the 
mythological thinking, which makes up for the lack of explanation of observed phenomena, 
can not really direct research (Courgeau, 2010). 

3 Towards an estimation of epistemic probability 

As we said earlier, Jacques Bernoulli (1713) can further clarify the reasoning about the 
degrees of certainty in the sense of epistemic probabilities. Let see more in detail how he 
operated. He will consider the probabilities applicable not only to objective events, such as 
those found in games of chance, but mostly to other arbitrary events. The demographic 
example he gives is most eloquent: 

For instance when we search, in the abstract, how much more likely it would be for a 

youth of twenty to outlive an old sexagenarian, rather than the latter outliving the 

former, there is nothing you can take into account apart from their difference in age 

and their years; but when the discussion specifically concerns young man Peter and 

old man Paul, you need once again to pay careful attention to their particular 

constitution and their likings, which determine how the two take care of their health; 

for if Peter is more ill, if he indulges in passions, if he lives an intemperate life, it is 

conceivable that Paul, despite his older age, may yet be able to contemplate a longer 

life expectancy.5 

In the classic demographic approach using objective probability, the only criteria for 
distinguishing between any two members of a population were their ages and their age gap. 
Bernoulli’s example above implies that this classic approach ceases to apply when we 
examine two specific persons for which many other characteristics—apart from age—are very 
familiar to us. However, Bernoulli indicates that the characteristics are to be included in the 

                                                             
5 Ita cùm qæritur in abstracto, quantò sit probabilius, juvenem vigenti annorum senem sexagenario fore 
superstitem, quàm verò hunc illi, præter discrimen ætatis & annorum nihil is, quod considerare possis; sed ubi 
specialiter sermo is de individuis Petri juvenis & Pauli senis, attendere insuper opportet ad specialem eorum 
complexionem & studium, quo uterque valetudinem suam curat; nam si Petrus sit valetudinarius, if infectibus 
indulgeat, if intepemperanter vivat, fieri potest, ut Paulus, etsi ætate provectior, optima tamen ratione longioris 
spem vitæ concipere valeat. 
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analysis only if they can be acquired.6 If so, they will improve our estimation of the chances 
that one individual will outlive the other. A few pages later, Bernoulli describes how, from 
trials performed on people who resemble one another as closely as possible, we can extract 
more specific information on a given person’s probability of survival: 

if, for example, in a test conducted on three hundred men resembling Titius, of 

identical age and constitution, you observed that two hundred of them had already 

died before the exact age of ten, you could conclude more surely that Titius is twice as 

likely to die before age ten as he is of living beyond that limit.7 

Bernoulli therefore believed that, by testing a large number of individuals (here, three 
hundred) he could obtain a rough estimate of the unknown subjective probability that an 
individual (here, Titius) will survive beyond age ten. Leibniz rightly replied to this argument:  

New diseases are often spread in the human race and therefore no matter how many 

deaths you have experienced this does not mean you have established the entirety of 

the laws of nature about this fact, so that it could no more change in the future 

(Bernoulli, Leibniz, 2006).  

Bernoulli must therefore recognize that no mortal can ever determine the number of diseases, 
accidents, etc., which can result in the death to a human being, but he nevertheless believes 
that the observation of a large number of similar cases may help extract this probability with 
an accuracy increasing with their number. He also cites Arnauld and Nicole (1662), as having 
already proposed this method, and he pushes it further by putting first, what was later called 
the principle of non-sufficient reason

8. It states that to estimate a probability: 

All cases are equally possible, i.e. everyone can occur as easily as any other;…
9 

This allows him to assign epistemic a priori probabilities for a fact when he knows the 
various arguments for or against it. 

Pushed further, in view of estimating a confidence interval, the reasoning given by 
Bernoulli assumed from the outset that the probability of the event studied is known by the 
author, but is ignored by the experimenter: 

in a given urn I place three thousand white tokens and two thousand black ones, these 

numbers being unknown to you, and to determine the number by experiment you 

remove one token after another (replacing each token as you remove it, before 

choosing the next one, so that the number of tokens in the urn remains constant) and 

you observe how many times a white token comes out and how many times a black one 

comes out.
10 

                                                             
6 si modo haberi possunt. 
7 si ex. gr. facto olim experimento in tercentis hominibus ejusdem, cujus nunc Titius is, ætatis & complexionis, 
observaveris ducentos eorum ante exactum decennium mortem oppetiisse, reliquos ultravitam protraxisse, satis 
tu colligere poteris, duplo plures casus esse, quibus & Titio intra decennium proximum naturae debitutm 
solvendum sit, quàm quibus terminium hunc transgredi possit. 
8 This denomination permits to set this principle against the principle of sufficient reason given by Leibniz, 
which says that for each fact, there is a sufficient reason in order to explain why this fact occurred against 
another one. This principle was further named by Keynes (1921), who found this term clumsy and 
unsatisfactory, principle of indifference. 
9 binis limitibus conclusam, sed qui tam arcti constitui possunt, quam quis voluerit. 
10 pono in urna quadem te inscio reconditos esse ter thousand calculos albos & bis thousand nigros, teque eorum 
nyumerum experimentis exploraturum educere calculum unum post alternum (reponendo tamen singulis vicibus 
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It is precisely in view of this probability—unknown to the experimenter—that 
Bernoulli then determines what we now call a confidence interval between two limits, which 

we can reduce as much as we want.11 Using current notations, if p is the unknown probability, 
he can calculate the number of observations n needed to obtain a confidence interval ε such 

that the estimated value,  (where m is, for example, the number of draws of a white 

token divided by the total number of trials n), lies within the interval . This 
relies indeed on the initial hypothesis that we have an imperfect grasp of a world that is 
however totally deterministic. An increasingly precise observation of that world should enable 
us to reveal all of its mechanisms and—returning to the previous example—to compute with a 
growing accuracy the probability that Titius will live beyond ten years. But as the 
experimenter, in this case, does not know the reference value p, the confidence interval thus 
determined is of little use to him (Courgeau, 2004b). 

Bernoulli’s theorem allows what we call a direct approach to probability—which is, 
in fact, the one adopted by his predecessors—and allows an accurate quantification of 
probability. The approach assumes that the probability of the event studied is known, and 
shows how through successive trials the estimated frequency tends toward that probability. 
One example is fair games, where we can determine a priori the probability of the various 
outcomes considered. By contrast, the approach is not applicable to subjective phenomena. 

Fifty years later, Bayes (1763) will solve a statistical problem, opposed to the direct 

approach, which was called the inverse approach of probabilities. In the latter case, the 
observed sample is only known but the population from which it is derived is not only 
unknown, but its existence is a hypothesis: how can we in this case estimate the probability of 
the event studied? At the very start of his paper, he states the problem clearly: 

Given the number of times in which an unknown event has happened and failed: 

Required the chance that the probability of its happening in a single trial lies 

somewhere between any two degrees of probability that can be named. 

He thus sets out to predict the occurrence of a trial on the basis of a finite number of similar 
trials, which can be very small. We shall not go into the details of his demonstration (see in 
particular Stigler, 1986). Let us just say that having finally estimated probability of an event 
by its initial frequency of occurrence in n trials, , then the frequency with which a new 

event will lie in the interval  is equal to:12 

 

Bayes, therefore, effectively obtains an interval around the estimated probability , in which 

the sought-for probability must lie, while Bernoulli built an interval around p. This time, the 
interval is perfectly usable by the experimenter. 

                                                                                                                                                                                              
illum quem eduxisti, priusquam sequentem eligas, ne numerus calculorum in urna minuatur) & observare, 
quoties albus & quoties ater exeat. 
11 binis limitibus conclusam, sed qui tam arcti constitui possunt, quam quis voluerit. 
12 Bayes, in fact, seeks the more complex probability that the sought-for probability lies in an interval [b, f]. He 
thus obtains an integral relative to , between b and f, of the equation below divided by 2. 
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Laplace, in his 1774 paper13 on the probability of causes, generalized this principle of 

inverse probability to any given number of different causes: 

If an event can be produced by a number n of different causes, the probabilities of the 

existence of these causes given the event stand with respect to one another as the 

probabilities of the event given these causes, and the probability of the existence of 

each is equal to the probability of the event given this cause, divided by the sum of all 

the probabilities of the event given each of these causes. 

We can express this principle more concisely. Let E be an observable event and 
 the set of its causes. Let us assume that we know the probabilities of E for 

each cause, . If we view all the causes as equally likely, the probability of , knowing E, 

is: 

. 

That is exactly what Laplace demonstrated (1786), clearly designating the hypothesis that all 
the causes are equally possible (this hypothesis was already mentioned in note 7 as the 
principle of non-sufficient reason or principle of indifference

14): 

we shall obtain the probability of a cause, determined from the event, by dividing the 

probability of the event, given this cause, by the sum of all the similar probabilities. 

This long detour was necessary to show the reasoning behind the calculation of the 
dispersion of Bayesian estimation in the first sense. We now present an example of its 
application to sex ratios at birth (Laplace, 1781), while recalling that he has addressed many 
other demographic phenomena (death, marriage, fertility of different populations).  

In this case dispersion comes from the number of measurements effectuated to achieve 
the proposed estimate. Let us show in more detail how it operates.  

He said at the outset: 

When no prior is given for the possibility of an event, we must assume all the 

possibilities from zero to unity, equally probable; so the observation can only give us 

information on the ratio of births of boys & girls; we must, to consider the thing in 

itself and excluding events, assume the law of possibility of the birth of a boy or a girl, 

constant from zero to the unit, and use this hypothesis in the different problems that 

may arise on this subject.  

He clearly posits the prior distribution from which he will depart and then, using 
observations, he can estimate a posterior distribution. 

                                                             
13 Interestingly, Laplace does not seem to have been aware of Bayes’s work at that date, for the introduction to 
his paper (written by Condorcet) does not mention Bayes. By contrast, seven years later (1781), Laplace’s 
introduction quotes Bayes and Price, who published his results in the Philosophical Transactions. 
14 This hypothesis is therefore different from Bayes’s hypothesis, namely, that it is the number of trials leading to 
the event that is regarded as uniformly distributed and not its probability. Many authors criticized Laplace’s 
hypothesis (Edgeworth, 1885; Fisher, 1922, 1959), arguing that other monotonic distributions of p, for example 

, could be equally suitable and yield different results. We shall discuss the hypothesis in 

greater detail at the end of the chapter. 
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He introduces the probability of birth of a boy equal to x and that of a girl equal to 
. He then observed  births, p for boys and q for girls. The probability P that the 

possibility of the birth of a boy is between  and , where θ is a very 

small value, is then equal to: 

. 

Setting down  and , he obtains, by an intricate calculation, a rough value 

of this probability, overlooking the quantities in the order of  which as the observations 
are in great number are extremely small, equal to: 

 

He concludes, by examining the value of all the terms of the previous formula, that the value 
of  will vary less from certainty or unity, the greater the numbers p and q. 

For example, he works on births that took place in Paris from 1745 to 1770. Over the 
period of twenty six years it was born in Paris 251,527 males against 241,945 females. This 
leads to a sex ratio of 50.971%. A formula similar to the previous one can then be used to 
calculate the probability that the birth of a boy is equal to or less than one half, which is equal 

to: . He concludes:  

As it is a very small value, it can be considered to be as certain as any other moral 

truth, that the difference observed in Paris between the births of those boys & girls, is 

due to a greater opportunity in the birth of boys (Laplace, 1781). 

You can also calculate using the previous formula15 for the probability, that the possibility of 
the birth of a boy will be included in the confidence interval , is 
approximately equal to 0.99984, very close to unity.  

For London equivalent data to those of Paris, for the period from 1664 to 1758, give 
737,629 boys against 698,958 girls, leading to a sex ratio of 51.346%, an even higher rate 

                                                             
15 In order to undertake this approximate calculation we used the expansion in series, given by Laplace (1781), of 
the last terms of the preceding formula: 

, 

replacing, for the second term θ by – θ. 
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than in Paris. This led Laplace to wonder whether we can conclude from this higher rate a 
higher probability.  

Let u be the probability of birth of a boy in Paris, p the number of births of boys and q 
of girls in Paris,  the probability of birth of a boy in London,  the number of births of 
boys and  the number for girls in London. The probability of these two events will be: 

 

where K is a constant coefficient. It follows that the probability that the birth of a boy to be 
less likely in London than in Paris will be equal to: 

. 

The series obtained by expanding this formula leads, while taking the three first terms, to the 
following approximate value for P: 

. 

He can then conclude: 

There are more than four hundred thousand chances against one, that male births are 

easier in London than in Paris, so we can view as very likely that there is, in the first 

of these two cities, more causes than in the second, which facilitates the birth of boys, 

and which is either the climate or food and manners (Laplace, 1781). 

He gives also in this work the objective of his methods: 

it is here especially that it is necessary to have a rigorous method so as to distinguish 

among the observed phenomena those which may depend on chance, from those which 

depend on particular causes, and to determine how likely they indicate the existence of 

causes.  

The distinction between the phenomena that he refers to as those depending on specific causes 
and those depending on chance seems essential for us, in order to define the forthcoming 
demographic approaches, both biographical and multilevel. 

Gauss (1809) advocates the use of the method of least squares for the solution of what 
is now called a regression model, using a variety of previous results of Laplace. He applies its 
findings to the analysis of the movements of planets, and it is surprising to see that it took a 
century for these methods to be applied to social sciences.  

We can see the beginnings of a more developed demographic analysis, which will 
further involve individual characteristics, as an attempt to explain a demographic 
phenomenon. It opens the way towards an analysis of the dispersion of the populations 
studied in the second sense, but at the time its application to human populations is more 
theoretical than real. 

However, after Laplace few researchers continued in this way (Poisson, 1837; 
Bienaymé, 1838), and criticisms of this approach developed rapidly, as we shall show in the 
next section. 
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4 Disappearance of the concepts of dispersion 

Indeed, from the mid-nineteenth century, many authors disagreed, sometimes violently, with 
this epistemic approach of probabilities. Criticisms focus on the fact that these probabilities 
are trying to deal with all events, both objective ones such as the throw of a dice, and 
subjective ones, such as human judgments (Condorcet, 1785; Laplace, 1814; Poisson, 1837), 
while these critics advocate an entirely objectivist approach for the definition of probabilities 
(Cournot, 1843; Ellis, 1849; Boole, 1854; Venn, 1866). 

Cournot (1843) was one of the first to insist on the distinction between objective 
probabilities and subjective probabilities. He said:  

When the number of trials is small, the formulas usually given for the assessment of 

posterior probabilities become illusory: they only indicate subjective probabilities...  

Similarly, for Venn (1866), the main error of some past and not least authors on probability, 
among whom we find for example Laplace is an example (page 83), is to have applied the 
theory of probabilities to events for which it was not applicable. For him, the concept of the 
series is more fundamental for deciding whether the theory of probability is applicable or not 
to an event and such a theory has no meaning unless it is linked to that concept. It then 
becomes necessary to define precisely what is meant by the term series. The demographic 
example that he used allows this term to be clarified. 

Consider the following sentence: some children will not live to thirty. If this sentence 
is regarded as a logical proposition, the concept of series is quite foreign to it. However if it is 
a proposal that can take a numeric character, replacing the term some by a given proportion, 
then it is difficult not to speak of a series. This does not mean however that, if we observe a 
number of children, we will observe before thirty years this exact proportion of deaths, but 
only that, if there is a growing number of children, the proportion of observed deaths will tend 
towards this limit. The underlying assumption is then that this probability, although not 
calculable a priori as in the case of games, exists and remains the same throughout time for 
the event studied. 

For the objectivist school, it is possible to give an objective status to the concept of 
probability, if one is confined to observing events that may occur during repeated trials. As 
von Mises (1939), one of the most committed representatives of objective probabilities, could 
write: 

We can say nothing about the probability of death of an individual even if we know his 

condition of life and health in detail. The phrase ‘probability of death’, when it refers 

to a single person, has no meaning at all for us. 

We see how his approach to probability is different from that of Bernoulli, and especially that 
of Bayes and Laplace, who were seeking instead to clarify its estimation from the observation 
of a number of individuals similar to the one concerned. It is possible in this case to speak of 
the probability of dying in a population whose size is as large as one want. It does not mean 
however that a human population can be considered as infinite. Also to talk about the 
probability of a unique event in nature or more generally about the probability for a 
proposition to be true, has no meaning for an objectivist. The event must be part of a series (a 
collective in the sense of von Mises), which is one element among a multitude of others. 

They therefore reject the use of Bayes' formula when it uses, for example, a uniform 
prior probability, in order to estimate the probability of the event studied from observations. 
This is actually a hypothesis, the hypothesis of a uniform distribution, they reject as having 



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.6, n°1. Juin/June 2010

 13 

absolutely no sense, and the concept of probability as describing a state of our knowledge. For 
them the word probability means only the frequency of an event in a given experiment. 

This rejection lasted almost a century, but with some researchers who still maintained 
the position of Laplace (Pearson, 1920, 1925) without using it in specific applications.  

At the same time demography did no more use as fine an analysis as that of Laplace, 
for its studied phenomena. It must be understood that the implementation of population 
censuses has sidelined some of the earlier concerns, providing in particular exhaustive 
populations at risk, which avoided the use of data from vital statistics to estimate these 
populations by the multiplier method, which we saw was already used by Graunt. 

Thus the population censuses, which appeared in the eighteenth century and were put 
in place throughout the nineteenth century in Europe, coupled with comprehensive vital 
statistics, would change the use of probabilities. By collecting data on the entire population at 
a given moment the demographer can work with an objectivist approach, since these numbers 
are very large. He does not even calculate the variance of the rates, as it is very low. The 
cross-sectional approach, with the method of concomitant variations (Durkheim, 1895; 
Landry, 1949), as well as the cohort analysis (Pressat 1966, Henry, 1972), never proposed this 
calculation. 

To show why, consider the example of the actual generation of French men reaching 
60 years in 1962 (Pressat 1966): given the number of deaths between 60 and 61 years, 

, and the population 60 years old, , the annual probability of death is 

estimated at , or 23.4 per thousand, and the author does 

not even calculate its variance which can be estimated (Smith, 1992) as equal to: 

, 

or 8.5 in 100 million, assuming a binomial distribution of deaths, that is to say issued from a 
homogeneous population. This variance is in fact so weak that it no longer has any interest. 
Only rarely, when calculating the probabilities over shorter periods (e.g. monthly) the 
demographers should consider these variances (Hoem, 1983) because the numbers, even 
exhaustive, who suffer the event will be much smaller. This perfectly explains why classical 
demography, although keeping the notion of probability, have left aside any measure of 
dispersion in the first sense. Note here however that this assumption of a population in which 
the probability of dying at a given age is the same for all its members, is totally unrealistic as 
we will see in the next section. 

We will now show that the dispersion in the second sense of this term has also 
virtually disappeared from the longitudinal demographic approach. Indeed, under this 
approach, only an analysis of demographic phenomena considered independently from each 
other and appearing in a homogeneous population is actually possible (Blayo, 1995). This 
causes serious difficulties, and even a complete inability to take into account the dispersion of 
these phenomena, both in their mutual interaction and in heterogeneous populations. We refer 
the reader to Courgeau (2003, 2004, 2007) for a critique of this approach. This results in an 
inability to take into account the dispersion in the second sense, the one introduced by other 
demographic phenomena that we studied, as well as the other introduced by the diversity of 
the members of this population. 
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We can conclude that during this period from the middle of the nineteenth century to 
the early 1980s, demography has almost completely left aside the two aspects of the 
dispersion phenomena it studies, keeping only the differences between rates, according to age. 

5 Reappearance of the dispersion in the biographical and 

multilevel approaches 

In response to the previous criticisms, the biographical approach will consider a set of 
individual trajectories in all their complexity, usually observed by detailed surveys. The unit 
of analysis is no longer the event, as in the longitudinal analysis, but the biography, seen as a 
complex stochastic process. This approach will no longer consider the various events studied 
as independent, but rather will analyze the dependencies between them. Similarly the 
population will no longer be considered as a homogeneous one, but the heterogeneity existing 
in it will be studied. This removes most of the criticisms of the longitudinal analysis. We refer 
the reader to Courgeau and Lelièvre (1996) for a further critical presentation of this approach. 

Regarding the dispersion in the first sense, it is essential to consider the variance of a 
quotient in order to conclude an interaction between phenomena or a dependency between a 
phenomenon and various features taken into account. Furthermore, while this event history 
analysis initially used an essentially objectivist statistical approach (Kalbfleisch and Prentice, 
1980, Cox and Oakes, 1984; Courgeau and Lelièvre, 1989, 1992 2001, Andersen et al., 1993), 
a Bayesian approach has recently helped to solve many problems of estimation and 
corresponds better to the spirit in which this analysis is performed (Ibrahim et al., 2001). 

Thus, the Bayesian approach allows in particular incorporating any prior information 
useful to the research question, what the objectivist approach does not allow. Also these 
methods permit now, through Gibbs sampling and Monte Carlo Markov Chains (MCMC) 
(Robert, 2006), to solve much easily complex problems without resorting to asymptotic 
objectivist calculations. It also has many other advantages over the objective approach, thanks 
to the availability and flexibility of tools for modelling and data analysis. 

Regarding the dispersion in the second sense of the term, this approach also takes it 
into account, by introducing the estimation of the heterogeneity of a population and 
dependence between the phenomena studied. The reasons both internal (dependency between 
events) and external to demography (heterogeneous population), can thus be identified and 
their effects on individual behaviour can be analyzed with great detail. One risk is 
committing, in this case, the so-called atomistic fallacy, because by introducing only the 
characteristics of the individual, it ignores the context in which human behaviour occurs. This 
risk precludes the risk of ecological fallacy in the transversal approach, which had already 
been shown by sociologists (Robinson, 1950), and which might attribute to the individual 
more collective reasons, related to the groups used to perform this analysis. 

To avoid these risks of error, the contextual and multilevel approach will have to 
explain individual behaviour by simultaneously introducing various groupings of individuals. 
Thus the contextual approach can associate the behaviour of an individual both to his own 
characteristics (individual measure) and to characteristics of the groups he belongs to 
(aggregate measure). The multilevel approach can go further by introducing a dependency 
internal to the various groups, simultaneously at the individual and contextual level. These 
approaches can thus escape from both the ecological fallacy, because the aggregate 
characteristics are no longer considered a substitute for individual characteristics, and the 
atomistic fallacy as long as it involves the proper environment in which people live 
(Courgeau, 2003, 2004a, 2007a). 
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Naturally, the Bayesian approach will enable an even more satisfactory multilevel 
analysis (Goldstein, 2003; Courgeau 2007b, Draper, 2008), as in the case of event history 
analysis. Especially when the number of units in one level of aggregation is low, estimated 
asymptotic standard deviations by the maximum likelihood method can be severely biased, 
and may even be negative (Draper, 2008). The situation becomes even more difficult in the 
case of binary variables or more generally discrete ones: in some cases the methods of 
objective probability can not even conduct an evaluation of model parameters. The use of 
Bayesian methods is in this case necessary. 

Thus for nearly thirty years demography, which had in the past completely ignored the 
dispersion of its measures, returned to the view that the population is heterogeneous and that 
the phenomena are interdependent, which allows a more elaborated analysis of dispersion to 
be introduced. 

More recently a Bayesian view has emerged in other demographic topics, such as 
paleodemography. Indeed the observation of age indicators on a small number of skeletons is 
the only way to estimate the age structure of archaeological populations. The objectivist 
methods often lead to solutions outside the domain [0,1] of validity for such probabilities by 
age. Therefore, a fully Bayesian solution is needed and allows an optimal solution of the 
problem (Caussinus and Courgeau, 2010). 

6 Conclusion 

Examination of the dispersion of demographic measures showed us a continuous movement 
back and forth between homogeneity and dispersion which, however, was made between 
different units, depending on the period. Indeed, as in any scientific discipline, it is not the full 
complexity of the phenomena implicating the individuals who compose a population, which 
are the object of demography, but some of their aspects, which may become more complex in 
the course of time, but which are always characterized by a small number of parameters 
considered indispensable for understanding demographic phenomena that affect the 
population. 

Initially, we considered only the probabilities for the entire population and the 
possibility of their dispersion in the second sense of this term, according to ages was tested: 
the conclusion was that it is necessary to consider different probabilities for each age. Also 
the dispersion in the first sense of this term was tested for some indices: for the sex ratio at 
birth, lack of dispersal was observed during 80 years in London. However, few examples of 
its use, particularly among political arithmetic authors of the eighteenth century, can be found. 

Laplace continues to observe a population as a whole, but this time from a Bayesian 
perspective. He assumes a prior distribution of probability uniformly distributed on the 
interval [0,1], to obtain posterior probabilities, which permit an accurate estimation of the 
dispersion in the first sense. He also indicates the importance of tackling the dispersion in the 
second sense, involving cases that would play on some sub-populations and not on others 
(climate, food and manners). However, the regression methods proposed by Gauss were 
hardly used in population studies at his time. 

The dissemination of Censuses during the nineteenth century and a critique of the 
bases of calculation led to a rejection of the Bayesian approach of Laplace. The cross-
sectional and cohort analyses used until the early 1980s have left aside any measure of 
dispersion of demographic rates and probabilities, in both senses of the term. 

At that time the re-emergence of dispersion occurs in demography, with the event 
history and the multilevel approaches, where consideration of individual characteristics and 
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aggregate ones splits the analytical framework. Dispersion is again considered in the first 
sense of this term, as it becomes necessary to estimate the variance of the estimated effects to 
assess their validity. Dispersion occurs in the second sense of the term, because units of 
different levels are simultaneously introduced in the analysis and because of the individual 
characteristics that affect different sub-populations each time. 

One last point remains to be solved. Indeed, throughout this article we have contrasted 
the views of those who apply the probability on individual cases, and the views of those who 
entirely reject this possibility: to simplify, on one side Jacques Bernoulli, when he speaks on 
the probability of survival of Titus, on the other side von Mises, when he says that the 
probability of death has no meaning for him since it refers to a single individual. This is in 
fact the distinction between subjective probability and objective probability, applied to 
population data. 

Thus de Finetti (1937), one of the most important representatives of the subjective 
approach, clearly indicates that: 

the degree of probability attributed by an individual in a given event is given by the 

conditions under which he would be willing to bet on this event. 

He says much further than an event for him is always a singular fact. Conversely von Mises, 
one of the most important representatives of the objective approach refused to talk about the 
probability of a singular fact, which for him does not exist. It is important to see how 
demography is vis-à-vis these two extremes? 

For classical demography, an objective probability seems perfectly appropriate, under 
the assumption that the observed population can be considered as a sample from a theoretical 
infinite population having the same probability of being subject to the various demographic 
events. The variances of the estimated probabilities in this case are sufficiently low, as we 
have shown, to permit such a use. 

But when we turn to event history or multilevel approaches, often using data from not 
exhaustive surveys, maintaining an objective probability approach, although still possible and 
used, can be questioned. A subjective probability seems better able to incorporate any prior 
information relevant to the phenomena studied, which the objective probability does not 
allow. The extreme dispersion of probabilities, in the second sense of the term, according to 
individual characteristics and to interactions between the phenomena studied often makes 
such use necessary. However the individual predictions that this analysis allows are only very 
approximate, because such a person has many more features than those considered in the 
analysis, something that may significantly change the prediction (Courgeau, 2007b).  

Despite this last point the event history and multilevel approaches, introducing the 
dispersion in both senses of the term in demography, have permitted considerable progress in 
order to understand human behaviour. 
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