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Abstract

We consider a generalization of the gcd-sum function, and obtain its average order

with a quasi-optimal error term. We also study the reciprocals of the gcd-sum and

lcm-sum functions.

1 Introduction and notation

The so-called gcd-sum function, defined by

g (n) =
n∑

j=1

(n, j)

where (a, b) denotes the greatest common divisor of a and b, was first introduced by Broughan
([3, 4]) who studied its main properties, and showed among other things that g satisfies the
convolution identity (see also the beginning of the proof of Lemma 3.1)

g = ϕ ∗ Id

where F ∗ G is the usual Dirichlet convolution product. By using the following alternative
convolution identity

g = µ ∗ (Id · τ) ,
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where µ is the Möbius function and τ is the divisor function, we were able in [1] to get the
average order of g. Our result can be stated as follow. If θ is the exponent in the Dirichlet
divisor problem, then the following asymptotic formula

∑

n6x

g (n) =
x2 log x

2ζ (2)
+

x2

2ζ (2)

(

γ −
1

2
+ log

(
A12

2π

))

+ Oε

(
x1+θ+ε

)

(1)

holds for any real number ε > 0, where A ≈ 1.282 427 129 . . . is the Glaisher-Kinkelin
constant. The inequality θ > 1/4 is well-known, and, from the work of Huxley [5] we know
that θ 6 131/416 ≈ 0.3149.

The aim of this paper is first to work with a function generalizing the function g and prove
an asymptotic formula for its average order similarly as in (1) . In sections 5, 6 and 7 we
will establish estimates for the lcm-sum function, and for reciprocals of the gcd-sum and
lcm-sum functions. We begin with classical notation.

1. Multiplicative functions. The following arithmetic functions are well-known.

Ida (n) = na (a ∈ Z
∗)

1 (n) = 1

and µ, ϕ, σk and τk are respectively the Möbius function, the Euler totient function, the sum
of kth powers of divisors function and the kth Piltz divisor function. Recall that τk can be
defined by τk = 1 ∗ · · · ∗ 1

︸ ︷︷ ︸

k times

for any integer k > 1 and that τ2 = τ. We also have σk =
∑

d|n dk

and σ0 = τ.

2. Exponent in the Dirichlet-Piltz divisor problem. For any integer k > 2, θk is defined to be
the smallest positive real number such that the asymptotic formula

∑

n6x

τk (n) = xPk−1 (log x) + Oε,k

(
xθk+ε

)

(2)

holds for any real number ε > 0. Here Pk−1 is a polynomial of degree k − 1 with real coef-
ficients, the leading coefficient being 1

(k−1)!
. It is now well-known that 1

3
6 θ3 6

43
96

and that
k−1
2k

6 θk 6
k−1
k+2

for k > 4 (see [6], for example).

By convention, we set

τ0 (n) =

{

1, if n = 1;

0, otherwise;

and θ1 = 0.
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2 A generalization of the gcd-sum function

Definition 2.1. We define the sequence of arithmetic functions fk,j (n) in the following way.

(i) For any integers j, n > 1, we set

f1,j (n) =

{

1, if (n, j) = 1;

0, otherwise;

f2,j (n) =

{

(n, j), if j 6 n;

0, otherwise.

(ii) For any integers j > 1 and k > 3, we set

fk,j = f2,j ∗ (Id · τk−2) .

Definition 2.2. For any integers n, k > 1, we define the sequence of arithmetic functions

gk (n) by

gk (n) =
n∑

j=1

fk,j (n) .

Examples.

g1 (n) =
n∑

j=1

(n,j)=1

1 = ϕ (n) ,

g2 (n) =
n∑

j=1

(j, n) = g (n) ,

g3 (n) =
n∑

j=1

∑

d|n

d>j

n

d
(j, d) ,

...

gk (n) =
n∑

j=1

∑

dk−2|n

∑

dk−3|dk−2

· · ·
∑

d1|d2

d1>j

n

d1

(j, d1) .

Now we are able to state the following result.

Theorem 2.3. Let ε > 0 be any real number and k > 1 any integer. Then, for any real

number x > 1 sufficiently large, we have

∑

n6x

gk (n) =
x2

2ζ (2)
Rk−1 (log x) + Oε,k

(
x1+θk+ε

)
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where Rk−1 is a polynomial of degree k− 1 and leading coefficient 1
(k−1)!

. The following table

gives Rk−1 for k ∈ {1, 2, 3}

k 1 2 3

Rk−1 1 X + γ −
1

2
+ log

(
A12

2π

)
X2

2
+ αX + β

where

α = 2γ −
1

2
+ log

(
A12

2π

)

β = −
ζ ′′ (2)

2ζ (2)
+

(

γ − log

(
A12

2π

))2

−

(

3γ −
1

2

)(

γ − log

(
A12

2π

))

−
1

4

(
12γ1 − 12γ2 + 6γ − 1

)

and

Constant Name
γ ≈ 0.577 215 664 . . . Euler − Mascheroni

γ1 ≈ −0.072 815 845 . . . Stieltjes
A ≈ 1.282 427 129 . . . Glaisher − Kinkelin

3 Main properties of the function gk

The following lemma lists the main tools used in the proof of Theorem 2.3.

Lemma 3.1. For any integer k > 1, we have

gk+1 = gk ∗ Id

and then

gk = ϕ ∗ (Id · τk−1) .

Moreover, we have

gk = µ ∗ (Id · τk) . (3)

Thus, the Dirichlet series Gk (s) of gk is absolutely convergent in the half-plane ℜs > 2, and

has an analytic continuation to a meromorphic function defined on the whole complex plane

with value

Gk (s) =
ζ (s − 1)k

ζ (s)
.
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Proof. Broughan already proved the first relation for k = 1 (see [3, Thm. 4.7]), but, for the
sake of completeness, we give here another proof.

(g1 ∗ Id) (n) = (ϕ ∗ Id) (n) =
∑

d|n

dϕ
(n

d

)

=
∑

d|n

d
∑

k6n/d

(k,n/d)=1

1 =
∑

d|n

d

n∑

j=1

(j,n)=d

1

=
n∑

j=1

(j, n) =
n∑

j=1

f2,j (n) = g2 (n) .

For k = 2, we get

(g2 ∗ Id) (n) =
∑

d|n

n

d

d∑

j=1

(j, d) =
n∑

j=1

∑

d|n

d>j

n

d
(j, d) =

n∑

j=1

f3,j (n) = g3 (n) .

Now let us suppose k > 3. We have

gk+1 (n) =
n∑

j=1

fk+1,j (n) =
n∑

j=1

(f2,j ∗ (Id · τk−1)) (n)

=
n∑

j=1

(f2,j ∗ Id · τk−2 ∗ Id) (n)

=
∑

d|n

n

d

d∑

j=1

(f2,j ∗ (Id · τk−2)) (d) = (gk ∗ Id) (n) .

The second relation is easily shown by induction. For the third, we have using ϕ = µ ∗ Id

gk = ϕ ∗ (Id · τk−1) = µ ∗ (Id ∗ (Id · τk−1))

= µ ∗ (Id · (1 ∗ τk−1)) = µ ∗ (Id · τk) .

The last proposition comes from the equality (3)

gk = µ ∗ (Id · τk) = µ ∗ Id ∗ · · · ∗ Id
︸ ︷︷ ︸

k times

and the Dirichlet series of µ and Id.

4 Proof of Theorem 1

Lemma 4.1. For any integer k > 1 and any real numbers x > 1 and ε > 0, we have
∑

n6x

nτk (n) = x2Qk−1 (log x) + Oε,k

(
x1+θk+ε

)

where Qk−1 is a polynomial of degree k − 1 and leading coefficient 1
2(k−1)!

.
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Proof. Using summation by parts and (2), we get

∑

n6x

nτk (n) = x
∑

n6x

τk (n) −

∫ x

1

(
∑

n6t

τk (n)

)

dt

= x2Pk−1 (log x) + Oε,k

(
x1+θk+ε

)
−

∫ x

1

(
tPk−1 (log t) + Oε,k

(
tθk+ε

))
dt.

Writing

Pk−1 (X) =
k−1∑

j=0

ajX
j

with ak−1 = 1
(k−1)!

, we obtain

∑

n6x

nτk (n) = x2

k−1∑

j=0

aj (log x)j −
k−1∑

j=0

aj

∫ x

1

t (log t)j dt + Oε,k

(
x1+θk+ε

)

and the formula

∫ x

1

t (log t)j dt = x2

j
∑

i=0

(−1)j−i j!

2j+1−i × i!
(log x)i − (−1)j j!

2j+1

(easily proved by induction) gives

∑

n6x

nτk (n) = x2

k−1∑

j=0

aj

{

(log x)j −

j
∑

i=0

(−1)j−i j!

2j+1−i × i!
(log x)i

}

+

j
∑

i=0

(−1)j j! aj

2j+1
+ Oε,k

(
x1+θk+ε

)

= x2

k−1∑

j=0

aj

{

(log x)

2

j

−

j−1
∑

i=0

(−1)j−i j!

2j+1−i × i!
(log x)i

}

+ Oε,k

(
x1+θk+ε

)

which completes the proof of the lemma.

Remark. For k = 3, the following result is well-known (see [7, Exer. II.3.4], for example)

∑

n6x

τ3 (n) = x

{

(log x)2

2
+ (3γ − 1) log x + 3γ2 − 3γ − 3γ1 + 1

}

+ Oε

(
xθ3+ε

)

and gives

∑

n6x

nτ3 (n) = x2

{

(log x)2

4
+

(
6γ − 1

4

)

log x −
12γ1 − 12γ2 + 6γ − 1

8

}

+ Oε

(
x1+θ3+ε

)
.

(4)
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Now we are able to prove Theorem 2.3.

Using (3) we get
∑

n6x

gk (n) =
∑

d6x

µ (d)
∑

m6x/d

mτk (m) ,

and lemma 3.1 gives

∑

n6x

gk (n) =
∑

d6x

µ (d)

{(x

d

)2

Qk−1

(

log
x

d

)

+ Oε,k

((x

d

)1+θk+ε
)}

= x2
∑

d6x

µ (d)

d2
Qk−1

(

log
x

d

)

+ Oε,k

(
x1+θk+ε

)
.

Writing

Qk−1 (X) =
k−1∑

j=0

bjX
j

with bk−1 = 1
2(k−1)!

, we get

∑

n6x

gk (n) = x2
∑

d6x

µ (d)

d2

k−1∑

j=0

bj

(

log
x

d

)j

+ Oε,k

(
x1+θk+ε

)

= x2

k−1∑

j=0

j
∑

h=0

(
j

h

)

bj (log x)j−h
∑

d6x

(−1)h µ (d)

d2
(log d)h + Oε,k

(
x1+θk+ε

)

and the equality

∑

d6x

(−1)h µ (d)

d2
(log d)h =

∞∑

d=1

(−1)h µ (d)

d2
(log d)h −

∑

d>x

(−1)h µ (d)

d2
(log d)h

=

[
dh

dsh

(
1

ζ (s)

)]

[s=2]

+ O

(

(log x)h

x

)

,

implies

∑

n6x

gk (n) = x2

k−1∑

j=0

j
∑

h=0

(
j

h

)([
dh

dsh

(
1

ζ (s)

)]

[s=2]

)

bj (log x)j−h

+ O
(

x (log x)k−1
)

+ Oε,k

(
x1+θk+ε

)

= x2

k−1∑

j=0

j
∑

h=0

(
j

h

)([
dh

dsh

(
1

ζ (s)

)]

[s=2]

)

bj (log x)j−h + Oε,k

(
x1+θk+ε

)
,

and writing
[

dh

dsh

(
1

ζ (s)

)]

[s=2]

=
Ah

2ζ (2)h+1
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with Ah ∈ R (and A0 = 2), we obtain

∑

n6x

gk (n) =
x2

2ζ (2)

k−1∑

j=0

j
∑

h=0

(
j

h

)
Ahbj (log x)j−h

ζ (2)h
+ Oε,k

(
x1+θk+ε

)

which is the desired result. The leading coefficient is
(

k−1
0

)
A0bk−1 = 1

(k−1)!
. The particular

cases are easy to check.

(i) For k = 1, the result is well-known (see [2, Exer. 4.14])

∑

n6x

g1 (n) =
∑

n6x

ϕ (n) =
x2

2ζ (2)
+ O (x log x) .

(ii) For k = 2, see [1].

(iii) For k = 3, we use (4) and the computations made above. The proof of Theorem 2.3 is
now complete.

5 Sums of reciprocals of the gcd

The purpose of this section is to prove the following estimate.

Theorem 5.1. For any real number x > e sufficiently large, we have

∑

n6x

(
n∑

j=1

1

(j, n)

)

=
ζ (3)

2ζ (2)
x2 + O

(

x (log x)2/3 (log log x)4/3
)

.

Proof. For any integer n > 1, we set

G (n) =
n∑

j=1

1

(j, n)
.

With a similar argument used in the proof of the identity g = ϕ ∗ Id (see lemma 3.1), it is
easy to check that

G = ϕ ∗ Id−1,

and thus
∑

n6x

G (n) =
∑

d6x

1

d

∑

m6x/d

ϕ (m) .

The well-known result (see [8], for example)

∑

n6x

ϕ (n) =
x2

2ζ (2)
+ O

(

x (log x)2/3 (log log x)4/3
)

,

combined with some classical computations, allows us to conclude the proof of Theorem 5.1.
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6 The lcm-sum function

Definition 6.1. For any integer n > 1, we define

l (n) =
n∑

j=1

[n, j]

where [a, b] is the least common multiple of a and b.

Lemma 6.2. We have the following convolution identity

l =
1

2

(
(Id2 · (ϕ + τ0)) ∗ Id

)
.

Proof. We have

n∑

j=1

j

(n, j)
=
∑

d|n

1

d

n∑

j=1

(n,j)=d

j =
∑

d|n

1

d

∑

k6n/d

(k,n/d)=1

kd =
∑

d|n

∑

k6n/d

(k,n/d)=1

k,

with
∑

k6N

(k,N)=1

k =
∑

d|N

dµ (d)
∑

m6N/d

m

=
1

2

∑

d|N

dµ (d)

{
N

d

(
N

d
+ 1

)}

=
N

2

∑

d|N

µ (d)

(
N

d
+ 1

)

=
N

2
(ϕ + τ0) (N) ,

and hence
n∑

j=1

j

(n, j)
=

1

2

∑

d|n

n

d
(ϕ + τ0)

(n

d

)

=
1

2
((Id · (ϕ + τ0)) ∗ 1) (n) ,

and we conclude by noting that

l (n) = n

n∑

j=1

j

(n, j)

which completes the proof, since Id is completely multiplicative.

Theorem 6.3. For any real number x > e sufficiently large, we have the following estimate

∑

n6x

(
n∑

j=1

[n, j]

)

=
ζ (3)

8ζ (2)
x4 + O

(

x3 (log x)2/3 (log log x)4/3
)

.
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Proof. Using lemma 6.2, we get

∑

n6x

l (n) =
1

2

∑

d6x

d
∑

m6x/d

m2 (ϕ + τ0) (m)

=
1

2

∑

d6x

d
∑

m6x/d

m2ϕ (m) + O
(
x2
)

and the estimation (see [8])

∑

n6x

n2ϕ (n) =
x4

4ζ (2)
+ O

(

x3 (log x)2/3 (log log x)4/3
)

implies

∑

n6x

l (n) =
1

2

∑

d6x

d

{
1

4ζ (2)

(x

d

)4

+ O

((x

d

)3

(log x)2/3 (log log x)4/3

)}

+ O
(
x2
)

=
x4

8ζ (2)

∞∑

d=1

1

d3
+ O

(

x3 (log x)2/3 (log log x)4/3
)

+ O
(
x2
)
,

which is the desired result.

7 Sum of reciprocals of the lcm

We will prove the following result.

Theorem 7.1. For any real number x > 1 sufficiently large, we have

∑

n6x

(
n∑

j=1

1

[n, j]

)

=
(log x)3

6ζ (2)
+

(log x)2

2ζ (2)

(

γ + log

(
A12

2π

))

+ O (log x) .

Some useful estimates are needed.

Lemma 7.2. Set Cϕ = log

(
A12

2π

)

≈ 1.147 176 . . . For any real number x > 1, we have

(i) :
∑

n6x

ϕ (n)

n2
=

log x

ζ (2)
+

Cϕ

ζ (2)
+ O

(
log ex

x

)

.

(ii) :
∑

n6x

ϕ (n)

n2
log
(x

n

)

=
(log x)2

2ζ (2)
+

Cϕ log x

ζ (2)
+ O (1) .

(iii) :
1

2

∑

n6x

ϕ (n)

n2

(

log
(x

n

))2

=
(log x)3

6ζ (2)
+

Cϕ (log x)2

2ζ (2)
+ O (log x) .
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Proof. (i) . Using ϕ = µ∗ Id, we get

∑

n6x

ϕ (n)

n2
=
∑

d6x

µ (d)

d2

∑

m6x/d

1

m

=
∑

d6x

µ (d)

d2

{

log
(x

d

)

+ γ + O

(
d

x

)}

= (log x + γ)
∑

d6x

µ (d)

d2
−
∑

d6x

µ (d) log d

d2
+ O

(

1

x

∑

d6x

1

d

)

=
log x

ζ (2)
+

γ

ζ (2)
−

ζ ′ (2)

(ζ (2))2 + O

(
log ex

x

)

.

Recall that
ζ ′ (2)

ζ (2)
= γ − Cϕ.

(ii) and (iii) . Abel’s summation and estimate (i) . We leave the details to the reader.

Now we are able to show Theorem 7.1. For any integer n > 1, we set

L (n) =
n∑

j=1

1

[n, j]
.

Since

L (n) =
1

n

n∑

j=1

(n, j)

j
=

1

n

∑

d|n

d
n∑

j=1

(j,n)=d

1

j

=
1

n

∑

d|n

d
∑

k6n/d

(k,n/d)=1

1

kd
=

1

n

∑

d|n

∑

k6n/d

(k,n/d)=1

1

k
,

11



we get

∑

n6x

L (n) =
∑

n6x

1

n

∑

d|n

∑

k6n/d

(k,n/d)=1

1

k

=
∑

d6x

1

d

∑

h6x/d

1

h

∑

k6h

(k,h)=1

1

k

=
∑

d6x

1

d

∑

h6x/d

1

h

∑

δ|h

µ (δ)

δ

∑

m6h/δ

1

m

=
∑

d6x

1

d

∑

δ6x/d

µ (δ)

δ2

∑

a6x/(dδ)

1

a

∑

m6a

1

m

=
∑

d6x

∑

δd6x

1

d

µ (δ)

δ2

∑

a6x/(dδ)

1

a

∑

m6a

1

m

=
∑

n6x

1

n2

∑

d|n

dµ
(n

d

) ∑

a6x/n

1

a

∑

m6a

1

m
,

and the convolution identity ϕ = µ ∗ Id implies that

∑

n6x

L (n) =
∑

n6x

ϕ (n)

n2

∑

a6x/n

1

a

∑

m6a

1

m
.

Thus

∑

n6x

L (n) =
∑

n6x

ϕ (n)

n2

∑

a6x/n

1

a

{

log a + γ + O

(
1

a

)}

=
∑

n6x

ϕ (n)

n2

{
1

2

(

log
x

n

)2

+ γ
(

log
x

n

)

+ O (1)

}

=
(log x)3

6ζ (2)
+

Cϕ (log x)2

2ζ (2)
+

γ (log x)2

2ζ (2)
+ O (log x)

where Cϕ = log

(
A12

2π

)

, which concludes the proof.
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[7] G. Tenenbaum, Introduction à la Théorie Analytique et Probabiliste des Nombres, Société
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