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Abstract

We determine the numbers of integral tetrahedra with diameter d up to isomorphism
for all d ≤ 1000 via computer enumeration. Therefore we give an algorithm that
enumerates the integral tetrahedra with diameter at most d in O(d5) time and an
algorithm that can check the canonicity of a given integral tetrahedron with at most 6
integer comparisons. For the number of isomorphism classes of integral 4× 4 matrices
with diameter d fulfilling the triangle inequalities we derive an exact formula.

1 Introduction

Geometrical objects with integral side lengths have fascinated mathematicians for ages. A
very simple geometric object is the m-dimensional simplex. Recently an intriguing bijection
between m-dimensional simplices with edge lengths in {1, 2} and the partitions of m+1 was
discovered [2]. So far, for m-dimensional simplices with edge lengths in {1, 2, 3} no formula
is known and exact numbers are obtained only up to m = 13 [9]. Let us more generally
denote by α(m, d) the number of non-isomorphic m-dimensional simplices with edge lengths
in {1, . . . , d} where at least one edge has length d. We also call d the diameter of the simplex.
The known results, see i.e., [9], are, besides some exact numbers,

α(1, d) = 1,

α(2, d) =

⌊

d + 1

2

⌋⌊

d + 2

2

⌋

=

⌊

(d + 1)2

4

⌋

, [A002620]

α(m, 1) = 1,

α(m, 2) = p(m + 1) − 1, [A000065]
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where p(m+1) denotes the number of partitions [A000041] of m+1. The aim of this article
is the determination of the number of non-isomorphic integral tetrahedra α(3, d).

Besides an intrinsic interest in integral simplices, their study is useful in field of integral
point sets. These are sets of n points in the m-dimensional Euclidean space Em with pairwise
integral distances. Applications for this combinatorial structure involving geometry and
number theory are imaginable in radio astronomy (wave lengths), chemistry (molecules),
physics (energy quantums), robotics, architecture, and other fields, see [3] for an overview.
We define the largest occurring distance of an integral point set P as its diameter. From the
combinatorial point of view there is a natural interest in the determination of the minimum
possible diameter d(m,n) for given parameters m and n [3, 4, 5, 7, 9, 10, 11, 12, 14, 16].
In most cases exact values of d(m,n) are obtained by an exhaustive enumeration of integral
point sets with diameter d ≤ d(m,n). A necessary first step for the enumeration of m-
dimensional integral point sets is the enumeration of m-dimensional integral simplices. Hence
there is a need for an efficient enumeration algorithm.

Another application of integral tetrahedra concerns geometric probabilities. Suppose you
are given a symmetric 3× 3 matrix ∆2 with entries being equi-distributed in [0, 1] and zeros
on the main diagonal. The probability P2 that ∆2 is the distance matrix of a triangle in the
Euclidean metric can be easily determined to be P2 = 1

2
. As a generalization we ask for the

probability Pm of a similar defined (m + 1)× (m + 1) matrix ∆m being the distance matrix
of an m-dimensional simplex in the Euclidean metric. To analyze the question for m = 3 we
consider a discretization and obtain P3 = lim

d→∞
4·α(3,d)

d5 .

Our main results are the determination of α(3, d) for d ≤ 1000,

Theorem 1. The number α̂≤(d, 3) of symmetric 4 × 4 matrices with entries in {1, . . . , d}
fulfilling the triangle inequalities is given by

α̂≤(d, 3) =

{

17d6+425d4+1628d2

2880
, if d ≡ 0(mod 2);

17d6+425d4+1763d2+675
2880

, if d ≡ 1(mod 2).

If we additionally request a diameter of exactly d we have

α̂(d, 3) =

{

34d5−85d4+680d3−962d2+1776d−960
960

if d ≡ 0(mod 2);
34d5−85d4+680d3−908d2+1722d−483

960
if d ≡ 1(mod 2).

Theorem 2.

0.090 ≤ P3 ≤ 0.111,

and the enumeration algorithms of Section 4 and Section 5, which allows us to enumerate
integral tetrahedra with diameter at most d in time O(d5) and to check a 4 × 4-matrix for
canonicity using at most 6 integer comparisons.

2 Number of integral tetrahedra

Because a symmetric 4 × 4-matrix with zeros on the diagonal has six independent non-zero
values there are d6 labeled integral such matrices with diameter at most d. To obtain the
number α≤(d, 3) of unlabeled matrices we need to apply the following well known Lemma:
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Lemma 3. (Cauchy-Frobenius, weighted form)
Given a group action of a finite group G on a set S and a map w : S −→ R from S into

a commutative ring R containing Q as a subring. If w is constant on the orbits of G on S,
then we have, for any transversal T of the orbits:

∑

t∈T
w(t) =

1

|G|
∑

g∈G

∑

s∈Sg

w(s)

where Sg denotes the elements of S being fixed by g, i.e.

Sg = {s ∈ S|s = gs} .

For a proof, notation and some background we refer to [6]. Applying the lemma yields:

Lemma 4.

α≤(d, 3) =
d6 + 9d4 + 14d2

24

and

α(d, 3) = α≤(d, 3) − α≤(d − 1, 3) =
6d5 − 15d4 + 56d3 − 69d2 + 70d − 24

24
.

As geometry is involved in our problem we have to take into account some properties
of Euclidean spaces. In the Euclidean plane E2 the possible occurring triples of distances
of triangles are completely characterized by the triangle inequalities. In general there is a
set of inequalities using the so called Cayley-Menger determinant to characterize whether a
given symmetric (m + 1) × (m + 1) matrix with zeros on the diagonal is a distance matrix
of an m-dimensional simplex [13]. For a tetrahedron with distances δi,j, 0 ≤ i ≤ j < 4, the
inequality

CMD3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 δ2
0,1 δ2

0,2 δ2
0,3 1

δ2
1,0 0 δ2

1,2 δ2
1,3 1

δ2
2,0 δ2

2,1 0 δ2
2,3 1

δ2
3,0 δ2

3,1 δ2
3,2 0 1

1 1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0 (1)

has to be fulfilled besides the triangle inequalities.
In the first step we exclusively consider the triangle inequalities for m = 3 and count

the number α̂≤(d, 3) of non-isomorphic symmetric 4 × 4 matrices with entries in {1, . . . , d}
fulfilling the triangle inequalities.

Proof of Theorem 1.
Counting labeled symmetric 4 × 4 matrices with entries in {1, . . . , d} fulfilling the trian-
gle inequalities is equivalent to determining integral points in a six-dimensional polyhedron.
Prescribing the complete automorphism group results in some further equalities and an appli-
cation of the inclusion-exclusion principle. Thus, after a lengthy but rather easy computation
we can apply Lemma 3 and obtain

24α̂≤(d, 3) = 3 ·
⌈

4d4 + 5d2

12

⌉

+ 6 · 37d4 − 18d3 + 20d2 − 21d + (36d2 + 42)
⌈

d
2

⌉

96
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+

⌈

34d6 + 55d4 + 136d2

240

⌉

+ 6 ·
(

d2 − d

⌈

d

2

⌉

+

⌈

d

2

⌉2
)

+ 8 ·
(

d2 − d

⌈

d

2

⌉

+

⌈

d

2

⌉2
)

,

which can be modified to the stated formulas. �

d α(d, 3) d α(d, 3) d α(d, 3) d α(d, 3) d α(d, 3)
1 1 26 305861 51 8854161 76 65098817 120 639349793
2 4 27 369247 52 9756921 77 69497725 140 1382200653
3 16 28 442695 53 10732329 78 74130849 160 2695280888
4 45 29 527417 54 11783530 79 79008179 180 4857645442
5 116 30 624483 55 12916059 80 84138170 200 8227353208
6 254 31 735777 56 14133630 81 89532591 220 13251404399
7 516 32 861885 57 15442004 82 95198909 240 20475584436
8 956 33 1005214 58 16845331 83 101149823 260 30554402290
9 1669 34 1166797 59 18349153 84 107392867 280 44260846692

10 2760 35 1348609 60 19957007 85 113942655 300 62496428392
11 4379 36 1552398 61 21678067 86 120807154 320 86300970558
12 6676 37 1780198 62 23514174 87 127997826 340 116862463817
13 9888 38 2033970 63 25473207 88 135527578 360 155526991341
14 14219 39 2315942 64 27560402 89 143409248 380 203808692441
15 19956 40 2628138 65 29783292 90 151649489 400 263399396125
16 27421 41 2973433 66 32145746 91 160268457 420 336178761892
17 37062 42 3353922 67 34657375 92 169272471 440 424224122232
18 49143 43 3773027 68 37322859 93 178678811 460 529820175414
19 64272 44 4232254 69 40149983 94 188496776 480 655468974700
20 82888 45 4735254 70 43145566 95 198743717 500 803900006590
21 105629 46 5285404 71 46318399 96 209427375 520 978079728301
22 133132 47 5885587 72 49673679 97 220570260 540 1181221582297
23 166090 48 6538543 73 53222896 98 232180129 560 1416796092768
24 205223 49 7249029 74 56969822 99 244275592 580 1688540496999
25 251624 50 8019420 75 60926247 100 256866619 600 2000468396580

Table 1: Number α(d, 3) of integral tetrahedra with diameter d - part 1.

In addition to this proof we have verified the stated formula for d ≤ 500 via a computer

enumeration. We remark that
α̂≤(d,3)

α≤(d,3)
and α̂(d,3)

α(d,3)
tend to 17

120
= 0.1416 if d → ∞. Moreover

we were able to obtain an exact formula for α̂(d, 3) because the Cayley-Menger determinant

CMD2 =

∣

∣

∣

∣

∣

∣

∣

∣

0 δ2
0,1 δ2

0,2 1
δ2
1,0 0 δ2

1,2 1
δ2
2,0 δ2

2,1 0 1
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

∣

for dimension m = 2 can be written as

CMD2 = −(δ0,1 + δ0,2 + δ1,2)(δ0,1 + δ0,2 − δ1,2)(δ0,1 − δ0,2 + δ1,2)(−δ0,1 + δ0,2 + δ1,2).
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Thus CMD2 < 0 is equivalent to the well known linear triangle inequalities δ0,1 + δ0,2 > δ1,2,
δ0,1+δ1,2 > δ0,2 and δ0,2+δ1,2 > δ0,1. Unfortunately for m ≥ 3 the Cayley-Menger determinant
is irreducible [1] and one cannot simplify (−1)m+1CMDm > 0 into a set of inequalities of
lower degree. So we are unable to apply the same method to derive an analytic formula for
α(d, 3).

d α(d, 3) d α(d, 3) d α(d, 3)
620 2356880503873 760 6523288334629 900 15192308794063
640 2762373382787 780 7428031732465 920 16957109053082
660 3221850132593 800 8430487428682 940 18882231158104
680 3740530243895 820 9538364312059 960 20978358597822
700 4323958989350 840 10759766492473 980 23256639532080
720 4978017317882 860 12103204603044 1000 25728695195597
740 5708932993276 880 13577602128303

Table 2: Number α(d, 3) of integral tetrahedra with diameter d - part 2.

Lemma 5. We have α(3, d) ∈ Ω(d5), α(3, d) ∈ O(d5), α≤(3, d) ∈ Ω(d6), and α≤(3, d) ∈
O(d6).

Proof. The upper bounds are trivial since they also hold for symmetric matrices with integer
values at most d and zeros on the diagonal. For the lower bounds we consider six-tuples δ0,1 ∈
[d, d(1−ε)), δ0,2 ∈ [d(1−ε), d(1−2ε)), δ1,2 ∈ [d(1−2ε), d(1−3ε)), δ0,3 ∈ [d(1−3ε), d(1−4ε)),
δ1,3 ∈ [d(1 − 4ε), d(1 − 5ε)), and δ2,3 ∈ [d(1 − 5ε), d(1 − 6ε)). For each ε there are Ω(d6)
non-isomorphic matrices. If ε is suitable small then all these matrices fulfill the triangle
conditions and inequality 1.

In general we have α≤(m, d) ∈ Ω(dm(m+1)/2), α≤(m, d) ∈ O(dm(m+1)/2), α(m, d) ∈ Ω(dm(m+1)/2−1),
and α(m, d) ∈ O(dm(m+1)/2−1).

In Section 4 and Section 5 we give an algorithm to obtain α(d, 3) via implicit computer
enumeration. Some of these computed values are given in Table 1 and Table 2. For a
complete list of α(d, 3) for d ≤ 1000 we refer to [8]. This amounts to

α≤(1000, 3) = 4299974867606266 ≈ 4.3 · 1015.

3 Bounds for P3

In this section we give bounds for the probability P3 that ∆3 is the distance matrix of a
tetrahedron in the 3-dimensional Euclidean space E3, where ∆3 is a symmetric 4× 4 matrix
with zeros on the main diagonal and the remaining entries being equi-distributed in [0, 1].
Therefore we consider a discretization. Let d be a fixed number. We consider the d6 six-
dimensional cubes Ci1,...,i6 := ×6

j=1

[

ij
d
,

ij+1

d

]

⊆ [0, 1]6. For every cube C it is easy to decide

whether every point of C fulfills the triangle conditions, no points of C fulfill the triangle
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conditions, or both cases occur. For inequality 1 we have no explicit test but we are able to
compute a lower bound CMD3(C) and an upper bound CMD3(C), so that we have

CMD3(C) ≤ CMD3(x) ≤ CMD3(C) for all x ∈ C.

Thus for some cubes C we can decide that all x ∈ C correspond to a tetrahedron. We denote
this case by Ξ(C) = 1. If no x ∈ C corresponds to a tetrahedron we set Ξ(C) = −1. In all
other cases we define Ξ(C) = 0. With this we obtain for all d ∈ N the following bounds:

Lemma 6.
∑

C : Ξ(C)=1

1

d6
≤ P3 ≤ 1 −

∑

C : Ξ(C)=−1

1

d6
.

Thus we have a method to obtain bounds on P3 using computer calculations. For the
actual computation we use two further speed ups. We can take advantage of symmetries
and use an adaptive strategy: We start with a small value of d and subdivide cubes C with
Ξ(C) = 0 recursively into 8 smaller cubes. After a computer calculation we obtain

0.090 ≤ P3 ≤ 0.111,

which proves Theorem 2. Clearly Theorem 2 can be improved by simply letting the com-
puters work for a longer time or by using a computing cluster, but the convergence of our
approach seems to be rather slow. An enhanced check whether a cube C fulfills inequality
(1) would be very useful.

Good estimates for P3 can be obtained by considering the values α(3, d) in the following
way. At first we consider the probability P̃3 being defined as P3 where additionally δ0,1 = 1.

Lemma 7.

P̃3 = P3.

Proof. The problem of determining P3 or P̃3 is an integration problem. Due to symmetry
we only need to consider the domain where δ0,1 is the maximum. For every δ0,1 ∈ (0, 1] there
is a probability p(δ0,1) that δ0,1, . . . , δ2,3 are distances of a tetrahedron where δ0,2, . . . , δ2,3 ∈
(0, δ0,1] are equi-distributed random variables. Since p(δ0,1) is constant we can conclude the
stated equation.

Lemma 8.

P3 = lim
d→∞

4 · α(d, 3)

d5
.

Proof. We consider a modified version of the algorithm described above to obtain exact
bounds on P̃3. As already mentioned, the triangle inequalities alone define a five-dimensional
polyhedron. Since determinants are continuous CMD3 = 0 defines a smooth surface and
so the volume of all cubes C with Ξ(C) = 0 converges to zero. Thus substituting Ξ(C) by
the evaluation of Ξ in an arbitrary corner of C yields the correct value for P̃3 = P3 for
d → ∞. Since there are at most O(d4) six-tuples (d, i2, . . . , i6), ij ∈ {1, . . . , d} with non-
trivial automorphism group we can factor out symmetry and conclude the stated result.
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Using Lemma 4 and Theorem 1 we can modify this to

P3 = lim
d→∞

α(d, 3)

α(d, 3)
≤ lim

d→∞

α̂(d, 3)

α(d, 3)
=

17

120
= 0.1416.

Heuristically we observe that the finite sequence
(

α(d,3)
α(d,3)

)

1≤d≤1000
is strictly decreasing. So

the following values might be seen as a good estimate for P3:

α(600, 3)

α(600, 3)
=

2000468396580

19359502966749
≈ 0.103333,

α(800, 3)

α(800, 3)
=

8430487428682

81665192828999
≈ 0.103232, and

α(1000, 3)

α(1000, 3)
=

25728695195597

249377330461249
≈ 0.103172.

4 Orderly generation of integral tetrahedra

Our strategy to enumerate integral tetrahedra is to merge two triangles along a common side.
In Figure 1 we have depicted the two possibilities in the plane to join two triangles (0, 1, 2)
and (0, 1, 3) along the side 01. If we rotate the triangle (0, 1, 3) in the 3-dimensional space
from the position on the left in Figure 1 to the position on the right we obtain tetrahedra
and the distance δ2,3 forms an interval [l, u]. The restriction to integral tetrahedra is fairly
easy.

@
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�""
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"

`````
u0

u1

u3
u2

"
"

"
"

"
`````

�
�

@
@

u

0

u
1

u3
u2

Figure 1: Joining two triangles.

Let us consider the example δ0,1 = 6, δ0,2 = δ1,2 = 5, δ0,3 = 4, and δ1,3 = 3. Solving
CMD3 = 0 over the positive real numbers yields that the configuration is a tetrahedron

iff δ2,3 ∈
(√

702−24
√

455

6
,

√
702+24

√
455

6

)

≈ (2.297719304, 5.806934304). Thus there are integral

tetrahedra for δ2,3 ∈ {3, 4, 5}. In general we denote such a set of tetrahedra by

δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3 ∈ [l, r].

This notation permits to implicitly list Ω(d6) integral tetrahedra in O(d5) time.
All integral tetrahedra can be obtained in this manner. So an enumeration method is to

loop over all suitable pairs of integral triangles and to combine them. We will go into detail
in a while. Before that we have to face the fact that our enumeration method may construct
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pairs of isomorphic tetrahedra. Looking at Table 1 we see that storing all along the way
constructed non-isomorphic integral tetrahedra in a hash table is infeasible. Here we use the
concept of orderly generation [15] which allows us to decide independently for each single
constructed discrete structure if we have to take or to reject it. Therefore we have to define
a canonical form of an integral tetrahedron. Here we say that a tetrahedron T with side
lengths δi,j is canonical if for the lexicographic ordering of vectors �,

(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3) � (δτ(0),τ(1), . . . , δτ(2),τ(3))

holds for all permutation τ of the points 0, 1, 2, 3. We describe the algorithmic treatment of a
canonicity function χ(T ) 7→ {true, false} which decides whether a given integral tetrahedron
T is canonical in Section 5. We have the following obvious lemma:

Lemma 9. If χ(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3) = true and χ(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3 + 1) =
false then χ(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3 + n) = false for all n ≥ 1.

Thus for given δ0,1, δ0,2, δ1,2, δ0,3, and δ1,3 the possible values for δ2,3 which correspond to a

canonical tetrahedron form an interval [l̂, û]. Clearly, the value of χ(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3)
has to be evaluated for δ2,3 ∈ {δi,j − 1, δi,j, δi,j + 1 | (i, j) ∈ {(0, 1), (0, 2), (1, 2), (0, 3), (1, 3)}}
only. Thus we can determine the interval [l̂, û] using O(1) evaluations of χ(T ).

Algorithm 1. Orderly generation of integral tetrahedra
Input: Diameter d

Output: A complete list of canonical integral tetrahedra with diameter d

begin

δ0,1 = d

for δ0,2 from
⌊

d+2
2

⌋

to d do

for δ1,2 from d + 1 − δ0,2 to δ0,2 do

for δ0,3 from d + 1 − δ0,2 to δ0,2 do

for δ1,3 from d + 1 − δ0,3 to δ0,2 do

Determine the interval [l̂, û] for δ2,3

print δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, [l̂, û]
end

end

end

end

end

We leave it as an exercise for the reader to prove the correctness of Algorithm 1 (see
[15] for the necessary and sufficient conditions of an orderly generation algorithm). Since
we will see in the next section that we can perform χ(T ) in O(1) the runtime of Algorithm
1 is O(d4). By an obvious modification Algorithm 1 returns a complete list of all canonical
integral tetrahedra with diameter at most d in O(d5) time.

We remark that we have implemented Algorithm 1 using Algorithm 2 for the canonicity
check. For the computation of α(800, 3) our computer needs only 3.3 hours which is really
fast compared to the nearly 3 hours needed for a simple loop from 1 to α(800, 3) on the same
machine. Due to the complexity of O(d4) for suitable large d the determination of α(d, 3)
will need less time than the simple loop from 1 to α(d, 3).
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5 Canonicity check

In the previous section we have used the canonicity check χ(T ) as a black box. The straight
forward approach to implement it as an algorithm is to run over all permutations τ ∈ S4

and to check whether (δ0,1, . . . , δ2,3) � (δτ(0),τ(1), . . . , δτ(2),τ(3)). This clearly leads to running
time O(1) but is too slow for our purpose. It may be implemented using 24 · 6 = 144 integer
comparisons. Here we can use the fact that the tetrahedra are generated by Algorithm 1.
So if we arrange the comparisons as in Algorithm 2 at most 6 integer comparisons suffice.

Algorithm 2. Canonicity check for integral tetrahedra generated by Algorithm 1
Input: δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3

Output: χ(δ0,1, δ0,2, δ1,2, δ0,3, δ1,3, δ2,3)
begin

if δ0,1 = δ0,2 then

if δ0,2 = δ1,2 then

if δ0,3 < δ1,3 then return false

else

if δ1,3 < δ2,3 then return false else return true

end

else

if δ1,3 < δ2,3 then return false

else

if δ0,1 = δ0,3 then

if δ1,2 < δ1,3 then return false else return true end

else

if δ0,1 > δ1,3 then return true

else

if δ1,2 < δ0,3 then return false else return true end

end

end

end

end

else

if δ0,2 = δ1,2 then

if δ0,1 < δ2,3 or δ0,3 < δ1,3 then return false else return true end

else

if δ0,2 = δ1,3 then

if δ0,3 > δ1,2 or δ0,1 < δ2,3 then return false else return true end

else

if δ0,2 = δ0,3 then

if δ1,2 < δ1,3 or δ0,1 ≤ δ2,3 then return false else return true end

else

if δ0,3 > δ1,2 then

if δ0,1 ≤ δ2,3 then return true else return false end

else
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if δ0,1 < δ2,3 then return true else return false end

end

end

end

end

end

end

To prove the correctness of Algorithm 2 we consider all vectors (δ0,1, . . . , δ2,3) with δi,j ∈
{0, . . . , 5}, δ0,1 ≥ δ0,2 ≥ δ1,2, δ0,2 ≥ δ0,3, and δ0,2 ≥ δ1,3. It suffices to show that Algorithm 2
returns the correct value for this finite set of vectors since these inequalities are fulfilled by
Algorithm 1 and also necessary for χ(T ) = true. Algorithm 2 can be considered as a binary
decision tree. It might be a task to optimize this type of binary decision tree in the worst
or in the average case.

6 Dimensions m ≥ 4

Clearly the question for bounds for Pm arises also for m ≥ 4. But non-trivial answers seem
out of reach by our approach. So far we have no efficient equivalent of Algorithm 2 at hand
and the number α(4, d) of integral 4-dimensional simplices with diameter d is Ω (d9). We
give the known values of α(4, d) in Table 6.

d α(d, 4) d α(d, 4) d α(d, 4) d α(d, 4)
1 1 14 12957976 27 4716186332 40 162007000505
2 6 15 24015317 28 6541418450 41 202323976907
3 56 16 42810244 29 8970194384 42 251321436143
4 336 17 73793984 30 12168243592 43 310607982160
5 1840 18 123240964 31 16344856064 44 382002253424
6 7925 19 200260099 32 21748894367 45 467627887530
7 29183 20 317487746 33 28688094208 46 569910996879
8 91621 21 492199068 34 37529184064 47 691631229557
9 256546 22 747720800 35 48713293955 48 835911697430

10 648697 23 1115115145 36 62769489452 49 1006370948735
11 1508107 24 1634875673 37 80321260053 50 1207047969441
12 3267671 25 2360312092 38 102108730634 51 1442539675756
13 6679409 26 3358519981 39 128999562925 52 1718015775541

Table 3: Number α(d, 4) of integral 4-dimensional simplices with diameter 1 ≤ d ≤ 52.
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