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Abstract

The aim of this paper is to further explore an idea from J.-L. Loday and extend some
of his results. We impose a natural and simple symmetry on a unit action over the most
general quadratic relation which can be written. This leads us to two families of binary,
quadratic and regular operads whose free objects are computed, as much as possible,
as well as their duals in the sense of Ginzburg and Kapranov. Roughly speaking, free
objects found here are in relation to rooted planar m-ary trees, triangular numbers and
more generally m-tetrahedral numbers, homogeneous polynomials on m commutative
indeterminates over a field K and polygonal numbers. Involutive connected P-Hopf
algebras are constructed.

To J.-L. Loday on his 60th birthday

1 Introduction

Let K be a null characteristic field. In the sequel, if S is a set, then KS or K[S] will be the
free K-vector space spanned by S.

We pursue our ideas from our work [4] to view discrete structures through operad theory.
These ideas started in studying a work of J.-L. Loday [6]. In this paper, J.-L. Loday uses
rooted planar binary trees to construct the free object in the category of dendriform algebras
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and consequently rooted planar binary trees were reconstructed from the simple one, , and
two operations. A question comes to mind:
Is it possible to view more discrete structures as generated by a simple object and operations?
An advantage of this point of view is to use the power of algebraic tools. For instance,
it is proposed in [4] formal deformations of dendriform algebras. Operations reconstructing
planar binary trees from can be deformed and at each order of the deformation, new types
of algebras are proposed whose free objects have to be discovered. As we are focusing on
K-vector spaces equipped with several operations, the natural framework to be considered
is K-linear operad theory. We suppose the reader to be familiar with it, otherwise see [3, 5]
for instance. Our setting will be regular, binary and quadratic operads.

To answer partly our question, we proceed in a way different from [4]. From an action of
a unit, which will be defined below, on the most general quadratic relation written with k
binary operations, we will exhibit a class of operad kP whose duals, in the sense of Ginzburg
and Kapranov [3], can be studied. We show in Section 3, that these operads, so called the
k−Gonal operads are related to polygonal numbers. We recover that any polygonal numbers
can be reconstructed from the most simple one, that is 1, and k operations. We will focus on
the case k = 3 in Section 4 and 5. In this case, 3P can be described and renamed in 3-Dend,
the operad of the so called 3-dendriform algebras since on one generator, the free object is
related to rooted planar ternary trees. To recover the rooted planar m-ary trees cases, we add
quadratic relations to 3-Dend in Section 4 and get the operads m-Dend. We show their free
objects on one generator are related to rooted planar m-ary trees. Duals of operads m-Dend
are computed, giving birth to operads m-Tetra, related to tetrahedral numbers in dimension
m − 1 and homogeneous polynomials in m commutative indeterminates. Homologies are
proposed. In Section 5, we restrict our attention to the case 3-Dend and propose an homology
of 3-dendriform trialgebras. We also provide proofs of results obtained in Section 4 for this
particular case. We sum up our results in Section 6.

Let us start with some technicalities on operads.

2 Some technicalities on operads

Let V be a K-vector space and P be a binary regular quadratic operads. The free P-algebra
P(V ) on V is by definition a P-algebra equipped with a linear map i : V → P(V ) which
satisfies the following universal property: for any linear map f : V −→ A, where A is a
P-algebra, there exists a unique P-algebra morphism φ : P(V ) −→ A such that φ ◦ i = f .
Since our P-algebras are regular, the free P-algebra over a K−vector space V is of the
form: P(V ) :=

⊕
n≥1 P(n) ⊗K[Sn] V

⊗n, where P(n) := Pn ⊗K[Sn] is the K-vector spaces
spanned by all possible n-ary operations. In particular, the free P-algebra on one generator
is P(K) =

⊕
n≥1 Pn. The generating function of the regular operad P , or its Poincaré series,

is given by: fP(x) :=
∑

(−1)ndim Pn x
n. Below, we will indicate the sequence (dim Pn)n≥1.

By a unit action [7], we mean the choice of two linear applications: υ : P(2) −→ P(1) and
̟ : P(2) −→ P(1), giving sense, when possible, to x ⋄ 1 and 1 ⋄ x, for all operations ⋄ ∈ P(2)
and for all x in the P-algebra A, i.e., x⋄1 = υ(⋄)(x) and 1⋄x = ̟(⋄)(x). If P(2) contains an
associative operation, say ⋆, then we require that x⋆1 := x := 1⋆x, i.e., υ(⋆) := Id := ̟(⋆).
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We also set T (V ) := K ⊕
⊕

n>0 V
⊗n.

3 Symmetry on a unit action and polygonal numbers

3.1 The kP operads

Let k > 1 be an integer. We consider k binary operations •i, 1 ≤ i ≤ k, over a K-vector
space V , supposed to be related by quadratic and regular relations. We suppose the existence
of a unit element, denoted by 1, which acts as follows. First we rename •1 as ≻ and •n as ≺.
Second, set for all x ∈ V , 1 ≺ x = 0 = x ≻ 1, x ≺ 1 = x = 1 ≻ x and for all 2 ≤ i ≤ k−1 set
x•i 1 = 0 = 1•i x. Observe that the action of the unit is invariant under the transformation,

x ≺ y 7−→ y ≻ x, x ≻ y 7−→ y ≺ x, x •i y 7−→ y •i x, (1)

for all 2 ≤ i ≤ k − 1. We now write down the most general equation relating operations •i,
1 ≤ i ≤ k to their braces, that is:

k∑

i,j=1

λij (x •i y) •j z =
k∑

i,j=1

λ′ij x •i (y •j z),

where the λij and λ′ij are scalars of K. Setting x = 1, then y = 1, then z = 1 in the previous
equation and applying our choice of the unit action lead to the following system of relations.
For all x, y, z ∈ V, for all 2 ≤ i ≤ k − 1, we get:

(x ≺ y) ≺ z = x ≺ (y ⋆ z), (x ≺ y) •i z = x •i (y ≻ z)

(x ≻ y) ≺ z = x ≻ (y ≺ z), (x ≻ y) •i z = x ≻ (y •i z)

(x ⋆ y) ≻ z = x ≻ (y ≻ z), (x •i y) ≺ z = x •i (y ≺ z),

where x ⋆ y := x ≺ y+ x ≻ y. Observe that ⋆ is associative and that this system of 3(k− 1)
relations is invariant under the transformation (1). Binary, regular and quadratic operads
denoted by kP can be naturally associated with each system of relations. The coefficients of
their Poincaré series starts with 1, k, 2k2 − 3(k − 1), . . ., that is for k = 2, we get 1, 2, 5, . . .
which is the beginning of the Catalan numbers counting for instance the number of planar
rooted binary trees on p internal vertices, with p > 0. The operad 2P is the operad Dend of
dendriform algebras introduced by J.-L. Loday [6]. For k = 3, we get 1, 3, 12, . . . which is the
beginning of the sequence counting the number of planar rooted ternary trees on p internal
vertices, with p > 0. For k = 4, we get 1, 4, 23, . . . which is the beginning of the sequence
counting the number of non-crossing connected graphs [2] on p+ 1 vertices, with p > 0 and
so on.

3.2 Hopf algebra structures on kP

Let T be a kP-algebra. Define new operations by:

x ≺′ y := y ≻ x; x ≻′ y := y ≺ x; x •′i y := y •n+1−i x,
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for all 2 ≤ i ≤ k − 1. Then, the K-vector space T equipped with these operations is a
new kP-algebra, denoted by T op, called the opposite kP-algebra. A kP-algebra is said to be
commutative if T op = T . We get the following results.

Theorem 3.1. Let V be a K-vector space. For all k > 1, there exists a connected P-Hopf
algebra structure respectively on kP(V ), the free kP-algebra over V and on kPcom(V ), the
free commutative kP-algebra over V .

Proof: Observe that the choice of the unit action is such that x ≺′ 1 := 1 ≻ x := x and
x ≻′ 1 := 1 ≺ x := x and thus in agreement with the opposite structure. Apply now the
result in [7]. �

3.3 Reconstructing polygonal numbers from 1: The operad k-
gonal

The free objects associated with the operads kP defined in that section seems to be difficult
to construct systematically (except for the case n = 2, see [6] and the case n = 3, see
next Section). However, free objects associated with their operadic duals can be computed
systematically. In the literature (see N.J.A. Sloane Online Encyclopedia of Integers for
instance) the nth k-gonal number is defined by:

gk(n) := n+ (k − 2)
n(n− 1)

2
.

Up to the author’s knowedge, serious results on polygonal numbers started with a Fermat’s
theorem in 1638. He pretended to have proved that any positive integers can always be
written as a sum of at most k k-gonal numbers. Gauss proved the case of triangular numbers
summarising his result by the formula EΥPHKA = △+△+△ (1796). Euler left important
results on the Fermat’s assertion which were used by Lagrange to prove the square case,
result also found independently by Jacobi (1772). Finally Cauchy proved the whole assertion
(1813). We now define k-gonal algebras.

Definition 3.2. Fix an integer k > 2. A k-gonal algebra Gk is a K-vector space equipped
with k binary operations ⊢,⊣, (⊥i)2≤i≤k−1 : G⊗2

k → Gk obeying the following system of
quadratic relations for all 2 ≤ i, j ≤ k − 1 and all x, y, z ∈ Gk,





(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z), (x ⊣ y) ⊥i z = x ⊥i (y ⊢ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (x ⊢ y) ⊥i z = x ⊢ (y ⊥i z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (x ⊥i y) ⊣ z = x ⊥i (y ⊣ z),

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊥i y) ⊥j z = 0 = x ⊥i (y ⊥j z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊥i y) ⊢ z = 0 = x ⊣ (y ⊥i z).

(2)

The associated category (resp. operad) is denoted by k-Gonal, (resp. k −Gonal).

As expected, there are 2(k − 2)2 + 5(k − 1) = 2k2 − 3(k − 1) relations. The functorial
diagram between involved categories holds,
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As → Dias → 3 − Gonal := Triang → 4-Gonal → . . .
ց ↓ ւ ւ

Leib

where Leib is the category of Leibniz algebras (a generalisation of Lie algebras [6]). Com-
mutative k-gonal algebras can be also defined. Introduce new operations by: x ⊢′ y := y ⊣
x; x ⊣′ y := y ⊢ x; x ⊥′i y := y ⊥m+1−i x, for all 2 ≤ i ≤ m − 1. Then, the K-vector
space Gk equipped with these operations is a new k-gonal algebra, denoted by Gop

k , called
the opposite k-gonal algebra. A k-gonal is said to be commutative if T op = T . For any
k-gonal algebra Gk, let as(Gk) be the quotient of Gk by the ideal generated by the elements
x ⊢ y − x ⊣ y and x ⊥i y, for all 2 ≤ i ≤ m − 1 and x, y ∈ T . Observe that as(Gk) is an
associative algebra and that the functor as.(−) :k-Gonal→ As is left adjoint to the functor
inc : As → k-Gonal. As expected, we get:

Theorem 3.3. Fix k > 2. The operad k-Gonal is dual in the sense of [3] to the operad kP,
that is k-Gonal=kP ! and thus kP=k-Gonal!.

Proof: Straightforward. �

To state the next theorem, we introduce for all 1 ≤ p ≤ k − 3, the linear maps,

ψp
1 :

⊕

n>0

T⊗n → V ⊕ . . .⊕ V︸ ︷︷ ︸
k−3

, v1 ⊗ . . .⊗ vn 7→ 0 ⊕ . . .⊕ 0 ⊕ v1︸︷︷︸
pth position

⊕ 0 ⊕ . . .⊕ 0,

and ψ2 :
⊕

n>0 T
⊗n → T (V ) defined by v1 ⊗ . . .⊗ vn 7→ v2 ⊗ . . .⊗ vn for n > 1 and by v 7→ 1.

Denote by ψ : (K ⊕ V ) ⊗ T (V ) → K and by Ψ : (K ⊕ V ) ⊗ T (V ) ⊗ (K ⊕ V ) ⊗ T (V ) → K
the canonical projections.

Theorem 3.4. Fix an integer k > 2. Let V be a K-vector space. Define on

k −Gonal(V ) := T (V ) ⊗ [V ⊗ (K ⊕ V ⊕ . . .⊕ V︸ ︷︷ ︸
k−3

) ⊗ T (V )] ⊗ T (V ),

the following binary operations where the ωi ∈ V ⊗pi, v, v′ ∈ V and w,w′ belong to either V
or K:

ω1 ⊗ [v ⊗ w ⊗ ω2] ⊗ ω3 ⊣ ω′

1 ⊗ [v′ ⊗ w′ ⊗ ω′

2] ⊗ ω′

3 = ψ(w′, ω′

2)ω1 ⊗ [v ⊗ w ⊗ ω2] ⊗ ω3ω
′

1v
′ω′

3,

ω1 ⊗ [v ⊗ w ⊗ ω2] ⊗ ω3 ⊢ ω′

1 ⊗ [v′ ⊗ w′ ⊗ ω′

2] ⊗ ω′

3 = ψ(w,ω2)ω1vω3ω
′

1 ⊗ [v′ ⊗ w′ ⊗ ω′

2] ⊗ ω′

3,

ω1 ⊗ [v ⊗ w ⊗ ω2] ⊗ ω3 ⊥2 ω
′

1 ⊗ [v′ ⊗ w′ ⊗ ω′

2] ⊗ ω′

3 = Ψ(w,ω2, w
′, ω′

2)ω1 ⊗ [v ⊗ ω3ω
′

1v
′] ⊗ ω′

3,

ω1 ⊗ [v ⊗ w ⊗ ω2] ⊗ ω3 ⊥i ω
′

1 ⊗ [v′ ⊗ w′ ⊗ ω′

2] ⊗ ω′

3 = Ψ(w,ω2, w
′, ω′

2)ω1 ⊗ [v ⊗ ψi−2
1 (ω3ω

′

1v
′) ⊗ ψ2(ω3ω

′

1v
′)] ⊗ ω′

3,

for 3 ≤ i ≤ k − 1. Then, k − Gonal(V ) is the free k-gonal algebra over V . Therefore, the
Poincaré series of the operad k −Gonal is,

fk−gonal(x) =
∑

n>0

(−1)ngk(n)xn =
(k − 3)x2 − x

(x+ 1)3
.
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Proof: The proof that k − Gonal(V ) is a k-gonal algebra does not present any difficulties
and is left to the reader. The map i : V →֒ k −Gonal(V ) is the composite:

V ≃ K ⊗ [V ⊗K ⊗K] ⊗K →֒ k −Gonal(V ).

Let f : V −→ Gk be a linear map, where Gk is a k-gonal algebra. We construct its universal
extension φ as follows. First on monomials from k-Gonal(V ), then extended by K-linearity.
Therefore, define φ : k-Gonal(V ) −→ Gk by:

φ(v−r ⊗ . . .⊗ v−1⊗ [ v0 ⊗ ψ
p
1(w) ⊗ u1 ⊗ . . .⊗ us] ⊗ v1 ⊗ . . .⊗ vq) :=

f(v−r) ⊢ . . . ⊢ f(v−1) ⊢ [f(v0) ⊥p+2 (f(w) ⊢ f(u1) ⊢ . . . ⊢ f(us))] ⊣ f(v1) ⊣ . . . ⊣ f(vq),

φ(v−r ⊗ . . .⊗ v−1⊗ [ v0 ⊗ u1 ⊗ . . .⊗ us] ⊗ v1 ⊗ . . .⊗ vq) :=

f(v−r) ⊢ . . . ⊢ f(v−1) ⊢ [f(v0) ⊥2 (f(u1) ⊢ . . . ⊢ f(us))] ⊣ f(v1) ⊣ . . . ⊣ f(vq),

The map φ is a morphism of k-gonal algebra, hence the unicity of such a map since it has
to coincide with f on V . �

Remark: Observe that k-gonal numbers can be reconstructed from k operations and 1
played here by 1 ⊗ [v ⊗ 1 ⊗ 1] ⊗ 1 if we consider a vector space V spanned by say v, i.e.,
V := Kv.

4 On planar m-ary trees and tetrahedral numbers

Let us focus on the case k = 3. It appears that 3P can be described with the help of planar
rooted ternary trees. This leads us to generalise axioms of 3P to recover the case of planar
rooted m-ary trees, m-ary trees for short. We first deal with the general case before focusing
on 3P .

4.1 The operad m−Dend

Definition 4.1. Fix an integer m > 1. A K-vector space T is a m-dendriform algebra
if it is equipped with m binary operations ≺,≻, •2, . . . , •m−1 : T⊗2 −→ T verifying for all
x, y, z ∈ T, and for all 2 ≤ i ≤ m− 1, the m(m+1)

2
axioms.

(x ≺ y) ≺ z = x ≺ (y ⋆ z), (x ≺ y) •i z = x •i (y ≻ z)

(x ≻ y) ≺ z = x ≻ (y ≺ z), (x ≻ y) •i z = x ≻ (y •i z)

(x ⋆ y) ≻ z = x ≻ (y ≻ z), (x •i y) ≺ z = x •i (y ≺ z),

where x ⋆ y := x ≺ y + x ≻ y and,

(x •i y) •j z = x •i (y •j z),

for all 2 ≤ i < j ≤ m− 1. A m-dendriform algebra is said to be involutive if it is equipped
with a linear involutive map † : T −→ T acting as follows, (x ≺ y)† = y† ≻ x†, (x ≻ y)† =
y† ≺ x†, (x•i y)

† = y† •n+1−ix
†, for 2 ≤ i ≤ k−1. We extend then † on T⊗2 by the following

formula, (x⊗ y)† = x† ⊗ y†. New operations can be defined by: x ≺′ y := y ≻ x; x ≻′ y :=
y ≺ x; x •′i y := y •m+1−i x, for all 2 ≤ i ≤ m − 1. The K-vector space T , equipped with
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these operations is a new m-dendriform algebra, denoted by T op, the opposite m-dendriform
algebra. A m-dendriform algebra is said to be commutative if T op = T . Recall the case
m = 2 has been studied in [6].

Therefore, each m > 1 gives birth to a regular, binary and quadratic operad denoted by
m−Dend, and a category denoted by m-Dend. The functorial diagram between categories
holds:

2 − Dend −→ 3 − Dend −→ . . . −→ m− Dend . . . −→

+ ց ↓ + ւ+

As

We recall some general facts about m-ary trees. Their names comes from the fact that each
father vertex has exactly m children. The degree of such a tree will be the number of internal

vertices. By
m

n, we mean the set of m-ary trees of degree n. It is known that the cardinal

of
m

n is (mn)!
n!(n(m−1)+1)!

. Each m-ary tree can be decomposed in a unique way via the so called
grafting operation defined for all p1, . . . , pm ∈ N as follows,

∨ :
m

p1
× . . .×

m

pm
−→

m

Pm
i=1

pi+1
,

(t1, . . . , tm) 7−→ t1 ∨ . . . ∨ tm,

the last symbol meaning that the roots of ti are glued together and that a new root is created.

The tree
m

represents by definition the tree | ∨ . . .∨ | m-times and is called a m-corolla.

For instance,
3

:= ,
4

:= , and so forth. There exists also an involution still denoted

by † :
m

n 7→
m

n for all n, defined recursively by t† = t†m ∨ . . . ∨ t†1 if t = t1 ∨ . . . ∨ tm.
Pictorially, this is the mirror image via the central axis of the tree. Over the K-vector

space K[
m

∞] := K | ⊕
̂
K[

m

∞], where
̂
K[

m

∞] :=
⊕

n>0K
m

n, we introduce recursively the
following binary operations first on the trees. They are naturally extended by bilinearity to

the whole
̂
K[

m

∞]. Let p, q > 0 and set for any t = t1∨. . .∨tm ∈
m

p and r = r1∨. . .∨rm ∈
m

q,

t ≻ r = (t ⋆ r1) ∨ . . . ∨ rm, (3)

t ≺ r = t1 ∨ . . . ∨ (tm ⋆ r), (4)

t •2 r = r1 ∨ (r2 ∨ . . . ∨ rm ⋆ t1 ∨ t2) ∨ . . . ∨ tm, (5)

t •3 r = r1 ∨ r2 ∨ (r3 ∨ . . . ∨ rm ⋆ t1 ∨ t2 ∨ t3) ∨ . . . ∨ tm, (6)
... =

...
... (7)

t •
m−1 r = r1 ∨ . . . ∨ (rm−1 ∨ rm ⋆ t1 ∨ . . . ∨ tm−1) ∨ tm, (8)

|≺ t = 0 = t ≻|, t ≺|= t =|≻ t, (9)

| •it = 0 = t•i |, (10)

where as usual x ⋆ y = x ≺ y + x ≻ y is by construction associative. The symbols 1 ≺ 1,
1 ≻ 1 and 1 •i 1 are not defined. Observe that | ⋆t = t = t⋆ | and that our three operations

respect the natural grading of
̂
K[

m

∞] since •i,≻,≺: K
m

p ⊗K
m

q −→ K
m

p+q. As expected,
we get the following results whose proofs are similar of those described for m = 3, see next
section.
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Theorem 4.2. Fix an integer m ≥ 2.

• Equipped with these m binary operations, K̂[ ∞] is the free m-dendriform algebra

generated by
m

which is involutive when equipped with the involution †.

• There exists a structure of involutive and connected P-Hopf algebra on K[
m

∞].

• Let V be a K-vector space. The following operations turn
⊕

n>0K[
m

n] ⊗ V ⊗n into a
m-dendriform algebra:

t⊗ ω ≺ t′ ⊗ ω′ := t ≺ t′ ⊗ ωω′,

t⊗ ω ≻ t′ ⊗ ω′ := t ≻ t′ ⊗ ωω′,

t⊗ ω •i t
′ ⊗ ω′ := t •i t

′ ⊗ ωω′.

Therefore, the unique m-dendriform algebra map m−Dend(V ) −→
⊕

n>0K[
m

n]⊗V ⊗n,

which sends the generator v ∈ V to
m

⊗ v is an isomorphism.

4.2 The operad m-Tetra

To compute the dual in the sense of Ginzburg and Kapranov of m − Dend, we will need
the definition of the tetrahedral numbers of dimension k, where here k := m − 1. The nth

tetrahedral number of dimension k is by definition the number t[n]
[k]

:= n(n+1)...(n+k−1)
k!

(see

N.J.A. Sloane Online Encyclopedia of Integers for instance). For instance, for k = 3, we got
the triangular numbers 1, 3, 6, 10, 15, . . .. Instead of dimension 2 (triangles are drawn in a
plane), consider dimension 3. Triangles become tetraedrons, hence the tetrahedral numbers.
They are 1, 4, 10, 20, . . . and they will be present in the definition of the Poincaré series of
the operad Tetra defined below and so on. We now define these types of algebras.

Definition 4.3. A m-tetrahedral algebra T is a K-vector space equipped with m binary
operations ⊢,⊣,⊥2, . . . ,⊥m−1 : T

⊗2 −→ T verifying for all x, y, z ∈ T , for all 2 ≤ i ≤ m− 1,

the following m(3m−1)
2

axioms.





(x ⊣ y) ⊣ z = x ⊣ (y ⊣ z), (x ⊣ y) ⊥i z = x ⊥i (y ⊢ z),

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (x ⊢ y) ⊥i z = x ⊢ (y ⊥i z),

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (x ⊥i y) ⊣ z = x ⊥i (y ⊣ z),

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊥i y) ⊥i z = 0 = x ⊥i (y ⊥i z),

(x ⊢ y) ⊢ z = x ⊢ (y ⊢ z), (x ⊥i y) ⊢ z = 0 = x ⊣ (y ⊥i z),

(11)

and also for all 2 ≤ i < j ≤ m− 1,

{
(x ⊥i y) ⊥j z = x ⊥i (y ⊥j z),

(x ⊥j y) ⊥i z = 0 = x ⊥j (y ⊥i z).
(12)
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Any associative algebra (A, ·) is am-tetrahedral algebra by setting ⊢= · =⊣ and ⊥i= 0 for
all 2 ≤ i ≤ m−1. Axioms above give birth to regular, binary and quadratic operads denoted
bym-Tetra and categories denoted bym-Tetra. For convenience, we set 3-Tetra:= Triang, 3-
Tetra:=Triang and 4-Tetra:=Tetra and 4-Tetra:=Tetra. The following functorial diagram
holds:

As → Dias → Triang → Tetra → . . .
ց ↓ ւ ւ

Leib

Commutative m-tetrahedral algebras are left to the reader. For any m-tetrahedral algebra
T , let as(T ) be the quotient of T by the ideal generated by the elements x ⊢ y − x ⊣ y and
x ⊥i y, for all 2 ≤ i ≤ m− 1 and x, y ∈ T . Observe that as(T ) is an associative algebra and
that the functor as.(−) :m-Tetra→ As is left adjoint to the functor inc : As → m-Tetra.
As expected, we get the following result.

Theorem 4.4. For each m ≥ 2, the operad m-Tetra is dual in the sense of [3] to the operad
m-Dend, that is m-Tetra=m-Dend! and m-Dend=m-Tetra!.

Proof: Straightforward. �

Let V be a K-vector space. Let the linear map, Ψ : T (V ) ⊗ . . .⊗ T (V )︸ ︷︷ ︸
m−1 times

−→ K, and the

linear map, ψ : T (V ) ⊗ . . .⊗ T (V )︸ ︷︷ ︸
m−2 times

−→ K, be the canonical projections.

Theorem 4.5. Let V be a K-vector space. Consider the K-vector space,

m− Tetra(V ) := T (V ) ⊗ [V ⊗ T (V ) ⊗ . . .⊗ T (V )︸ ︷︷ ︸
m−2 times

] ⊗ T (V ).

Then, equipped with operations, ⊥i 2 ≤ i ≤ m− 1, defined by,

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊥2 ω

′
1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= Ψ(ω2, . . . , ωm−1, ω
′
2)ω1 ⊗ [v ⊗ ωmω

′
1v
′ ⊗ ω′3 ⊗ . . .⊗ ω′m−1] ⊗ ω′m,

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊥3 ω

′
1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= Ψ(ω3, . . . , ωm−1, ω
′
2, ω
′
3)ω1 ⊗ [v ⊗ ω2 ⊗ ωmω

′
1v
′ ⊗ ω′4 ⊗ . . .⊗ ω′m−1] ⊗ ω′m,

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊥4 ω

′
1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= Ψ(ω4, . . . , ωm−1, ω
′
2, ω
′
3, ω
′
4)ω1 ⊗ [v ⊗ ω2 ⊗ ω3 ⊗ ωmω

′
1v
′ ⊗ ω′5 ⊗ . . .⊗ ω′m−1] ⊗ ω′m,

... =
...

...

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊥

m−1 ω
′
1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= Ψ(ωm−1, ω
′
2, . . . , ω

′
m−1)ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ωm−2 ⊗ ωmω

′
1v
′] ⊗ ω′m,

and,

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊣ ω′1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= ψ(ω′2, . . . , ω
′
m−1

)ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωmω

′
1v
′ω′m,

ω1 ⊗ [v ⊗ ω2 ⊗ . . .⊗ ω
m−1 ] ⊗ ωm ⊢ ω′1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m

= ψ(ω2, . . . , ωm−1)ω1vωmω
′
1 ⊗ [v′ ⊗ ω′2 ⊗ . . .⊗ ω′

m−1
] ⊗ ω′m.
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m − Tetra(V ) is the free m-tetrahedral algebra on V . Consequently, the Poincaré series
associated with the operad m− Tetra is,

fm−tetra(x) :=
∑

n≥1

(−1)nt[n]
[m−1]

xn =
−x

(1 + x)m
.

Remark: Observe that the brackets [. . .] can be dropped and are here only to recall the
symmetry in the definitions of operations ⊢ and ⊣.
Proof: The proof will be only sketched to avoid tedious computations. Therefore, checking
axioms of m-tetrahedral algebras is left to the reader. The map i : V →֒ m − Tetra(V ) is
the composite:

V ≃ K ⊗ [V ⊗K ⊗ . . .⊗K] ⊗K →֒ m− Tetra(V ).

Let f : V −→ T be a linear map, where T is a m-tetrahedral algebra. We construct its
universal extension φ as follows. First on monomials from m-Tetra(V ), then extended by
K-linearity. Therefore, define φ : m-Tetra(V ) −→ T by:

φ(X) := f(v−p) ⊢ . . . ⊢ f(v−1) ⊢ [f(v0) ⊥2 (f(2w1) ⊢ . . . ⊢ f(2wk2
))

⊥3 (f(3w1) ⊢ . . . ⊢ f(3wk3
))

...

⊥
m−1

(f((m−1)w1) ⊢ . . . ⊢ f((m−1)wkm−1
))] ⊣ f(v1) ⊣ . . . ⊣ f(vq),

if,

X := v−p ⊢ . . . ⊢ v−1 ⊢ [v0 ⊥2 (2w1 ⊢ . . . ⊢2 wk2
)

⊥3 (3w1 ⊢ . . . ⊢3 wk3
)

...

⊥
m−1

((m−1)w1 ⊢ . . . ⊢(m−1) wkm−1
)] ⊣ v1 ⊣ . . . ⊣ vq,

where the vj and the iwj belong to V and where it is understood that the non-existence of
a line ⊥i . . ., 2 ≤ i ≤ m− 1, in the definition of X entails the vanishing of the line ⊥i . . . in
the construction of φ. According to dimonoid calculus rules [6] and the group of equations
(12) of Definition 4.3, the writings at the right hand side of the equalities do have a meaning.
The proof that φ is a morphism of m-tetrahedral algebras is tedious but not difficult and
is left to the reader. The unicity of such a morphism is now straightforward since it has
to coincide on V with f . The last claim concerning the Poincaré series associated with the
operad m− Tetra is easy to compute. �

Remark: Observe that tetrahedral numbers in dimension m− 1 can be reconstructed from
m operations and 1 played here by 1 ⊗ [v ⊗ 1 ⊗ . . .⊗ 1] ⊗ 1 if we consider a vector space V
spanned by say v, i.e., V := Kv.

4.3 Relations with homogeneous polynomials

Set χ := 1⊗[v⊗1⊗. . .⊗1]⊗1. Let PnHmg[X0, X1, . . . , Xm−1] be theK-vector space of homo-
geneous polynomials of degree n−1 over the commutative indeterminates X0, X1, . . . , Xm−1.

10



Observe that as a K-vector, the dimension of PnHmg[X0, X1, . . . , Xm−1] is t[n]
[m−1]

. Consider

the bijection,

v⊗p1 ⊗ [v ⊗ v⊗p2 ⊗ . . .⊗ v⊗pm ] ⊗ 1 7−→ Xp1

0 X
p2

1 . . . Xpm

m−1.

Set P∞Hmg[X0, X1, . . . , Xm−1] :=
⊕∞

n=2 PnHmg[X0, X1, . . . , Xm−1]. This K-vector space
inherits am-tetrahedral algebra structure via the bijection constructed above. Still denote by
χ the image of χ under this map. We get that,Kχ⊕P∞Hmg[X0, X1, . . . , Xm−1], is the freem-
tetrahedral algebra generated by χ. Consequently, following [7], P∞Hmg[X0, X1, . . . , Xm−1]
inherits an operadic arithmetic, that is, a K-left-linear map (called usually the multiplica-
tion),

⊛ : P
∞Hmg[X0, X1, . . . , Xm−1]

⊗2 → P
∞Hmg[X0, X1, . . . , Xm−1],

distributive to the left as regards operations ⊢, ⊣, ⊥i and consisting to replace the generator
χ in the code describing the left object by the right one. For instance, ((χ ⊥i χ) ⊣ χ) ⊛ z :=
(z ⊥i z) ⊣ z, where z is a homogeneous polynomial of degree say d. The combinatorial object
underlying the free m-tetrahedral algebra on one generator is no longer linear combinations
of planar m-ary trees but homogeneous polynomials over m commutative indeterminates,
thus related to projective algebraic hypersurfaces in the projective space Pm−1(K).

4.4 (Co)Homology of m-tetrahedral algebras

The aim of this subsection is to propose an homology of m-tetrahedral algebras. We proceed
as follows.

For any t ∈
m

n, label its leaves from left to right starting from 0 to (m − 1)n. Start
with the leave 0, and begin to count from the place you reached. Every m leaves, place
the operation ⊥m+1−i, 2 ≤ i ≤ m − 1, (resp. ⊢), (resp. ⊣), if the leave points in the same

direction that the (i− 1)th (resp. the (m− 1)th) (resp. 0th) leave of
m

. Here is an example

of how the operations assignement depends on the leaves of here the corolla
6

.

2345

Middle leaves

By convention the last leave of a given m-tree remains unassigned. Proceeding that way, a

tree from
m

n+1 will give m binary operations, we label 1 to n from left to right. We have
defined for 1 ≤ j ≤ n, a map,

◦j :
m

n+1 −→ {⊥i,⊢,⊣},

assigning to each j the corresponding operation by the process just described. The image

will be denoted by ◦t
j. Denote by

m̃

n the set of trees of
m

n whose leaves have been colored

11



by the operations ⊥i,⊢,⊣ just as explained. We get a bijection tilde :
m

n −→
m̃

n. For any

1 ≤ j ≤ n, define the face map, dj : K
m

n −→ K
m

n−1, on
m

n first and extended by linearity
then to be the composite tilde−1 ◦ delj ◦ tilde, where the linear map,

delj : K
m̃

n −→ K
m̃

n−1,

assigns to a tree t, the tree t′ obtained from t as follows. Localise the leave colored by the
operation labelled by j. Remove the offspring of its father vertex if the m children are leaves,
or if all middle leaves are not colored. Otherwise, the result is zero. Let T be a m-tetrahedral

algebra over K. Define the module of n-chains by C
m

n(T ) := K[
m

n]⊗ T⊗n. Define a linear

map d : C
m

n(T ) −→ C
m

n−1(T ) by the following formula,

d(t; v1, . . . , vn) :=
n−1∑

j=1

(−1)j+1(dj(t); v1, . . . , vj−1, vj◦
t
jvj+1, . . . , vn) :=

n−1∑

j=1

(−1)j+1dj(t; v1, . . . , vn),

with a slight abuse of notation, and where t ∈
m

n, vj ∈ T .

Proposition 4.6. The face maps dl : C
m

n(T ) −→ C
m

n−1(T ) satisfy the simplicial relations

dkdl = dl−1dk for any 1 ≤ k < l ≤ n− 1. Therefore d ◦ d = 0 and so (C
m

∗(T ), d) is a chain-
complex.

Proof: We give a sketch of this idendity for the lowest dimension, that is,

d1d2 = d1d1 : C
m

3(T ) → C
m

2(T ).

Consider the 5 planar rooted trees on three internal vertices. Remove each offspring of two

children by m-children. We obtain 5 m-trees of
m

3 which will give dialgebra constraints.
Consider now the family of m-trees of the form,

((| ∨
m

∨. . .∨ |)∨ | ∨ . . .∨ |), ((| ∨ | ∨
m

∨. . .∨ |)∨ | ∨ . . .∨ |), . . . , ((| ∨ . . .∨ | ∨
m

∨ |)∨ | ∨ . . .∨ |).

They will give equalities (x ⊥m+1−i y) ⊢ z = 0 for i ≥ 2. Apply formally the involution †
(compatible with the opposite structure) on these trees to obtain the equalities x ⊣ (y ⊥i

z) = 0. Consider now the family of m-trees of the form,

(| ∨(
m

∨. . .∨ |)∨ | ∨ . . .∨ |), (| ∨(| ∨
m

∨. . .∨ |)∨ | ∨ . . .∨ |), . . . , (| ∨(| ∨ . . .∨ | ∨
m

)∨ | ∨ . . .∨ |).

We obtain equations (x ⊥i y) ⊥2 z = 0, for i ≥ 2 for the first m − 2 trees. The last ones
gives x ⊥2 (y ⊥2 z) = 0. The (m− 1)th one gives (x ⊣ y) ⊥2 z = x ⊥2 (y ⊢ z). Applying the
involution † will give the constraints x ⊥m−1 (y ⊥m+1−i z) = 0, x ⊥m−1 (y ⊥m−1 z) = 0 and
(x ⊣ y) ⊥m−1 z = x ⊥m−1 (y ⊢ z). Similarly the family,

(| ∨ | ∨(
m

∨ . . .∨ |)∨ | ∨ . . .∨ |), (| ∨ | ∨(| ∨
m

∨ . . .∨ |)∨ | ∨ . . .∨ |), . . . ,

. . . (| ∨ | ∨(| ∨ . . .∨ | ∨
m

)∨ | ∨ . . .∨ |),
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will give equations (x ⊥i y) ⊥3 z = 0, for i ≥ 3 for the first m − 3 trees. The two
last one give x ⊥3 (y ⊥2 z) = 0 and x ⊥3 (y ⊥3 z) = 0. The (m − 2)th one gives
(x ⊣ y) ⊥3 z = x ⊥3 (y ⊢ z) and so forth. Observe now that the family,

(| ∨ . . . | ∨
m

∨ | ∨ . . . | ∨
m

∨ | ∨ . . .∨ |),

will give the constraints (x ⊥i y) ⊥j z = x ⊥i (y ⊥j z) for 2 ≤ i < j ≤ m − 1 and also
(x ⊥i y) ⊣ z = x ⊥i (y ⊣ z) and (x ⊢ y) ⊥i z = x ⊢ (y ⊥i z) for 2 ≤ i ≤ m − 1 as
expected. The general case still splits into two cases. If j = i + 1, then the proof follows
from the low dimension cases and from axioms of m-tetrahedral algebras. The case j > i+1
is straightforward. �

We get a chain-complex,

C
m

∗(T ) : . . .→ K[
m

n] ⊗ T⊗n → . . .→ K[
m

3] ⊗ T⊗n → K[
m

2] ⊗ T⊗n ⊥i,⊢,⊣
−−−→ T.

This allows us to define the homology of a m-tetrahedral algebra T as the homology of the

chain-complex C
m

∗(T ), that is H
m

n(T ) := Hn(C
m

∗(T ), d), n > 0. The cohomology of T is

by definition H
m n

(T ) := Hn(Hom(C
m

∗(T ), K)), n > 0. For the free m-tetrahedral algebra

over the K-vector space V , we get H
m

1(m−Tetra(V )) ≃ V . We conjecture that for n > 1,

H
m

n(m− Tetra(V )) = 0, that is the operad m− Tetra is Koszul.

4.5 The Pascal triangle

We now summarise all the integer sequences we got by gathering them inside the Pascal
triangle. Here is the beginning of this famous triangle. We have chosen the south-east
direction (the south-west could be another one) and indicate by an arrow the begining of
the coefficients of Poincaré series of the operads involved in this paper and the functors
associated with the corresponding categories.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
ւ ց ց ց ց ց ց ց

As
as.
← . . . ←֓ 7− Tetra ←֓ 6− Tetra ←֓ 5− Tetra ←֓ Tetra ←֓ Triang ←֓ Dias ←֓ As

Similarly, one could also construct a triangle dual to Pascal’s by representing the generalised
Catalan numbers, for instance, as follows. Recall that the operad of associative algebras is
self-dual.

1
1 1

1 2 1
1 3 5 3 1

1 4 12 14 12 4 1
1 5 22 55 42 55 22 5 1
ւ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ց

As
+
← . . . 5−Dend ←֓ 4−Dend ←֓ 3−Dend ←֓ 2−Dend →֒ 3−Dend →֒ 4−Dend →֒ 5−Dend . . .

+
→ As
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5 An operad over rooted planar ternary trees and tri-

angular numbers

For m = 3, one can also propose an homology of 3-dendriform algebras. Before entering this
subject, we propose other results and prove some theorems of the previous section in this
context.

5.1 A focus on 3-Dend

Recall a K-vector space T is a 3-dendriform algebra if it is equipped with 3 binary operations
≺,≻, · : T⊗2 −→ T verifying for all x, y, z ∈ T,

1. (x ≺ y) ≺ z = x ≺ (y ⋆ z), 4. (x ≺ y) • z = x • (y ≻ z)

2. (x ≻ y) ≺ z = x ≻ (y ≺ z), 5. (x ≻ y) • z = x ≻ (y • z)

3. (x ⋆ y) ≻ z = x ≻ (y ≻ z), 6. (x • y) ≺ z = x • (y ≺ z),

where x ⋆ y := x ≺ y + x ≻ y.
Remark: Pay attention, this structure is different from tridendriform axioms obtained in
[8] but is similar to the one obtained by F. Chapoton, the difference lying in an extra axiom,
i.e., the associativity of • required in [1].
For more information about ternary trees, we refer to the extended literature. In small
dimensions, one gets: 0 := {|}, 1 := { }, 2 := { , },

3 := { , , , , , , , , , , , }

and so on, where n denotes the set of ternary trees of degree n. Recall each tree of n,
n > 0, can be decomposed in a unique way via the so called grafting operation defined for
all p, q, r ∈ N as follows,

∨ : p × q × r −→ p+q+r+1,

(t1, t2, t3) 7−→ t1 ∨ t2 ∨ t3.

Over the K-vector space K[ ∞] := K | ⊕ ˆK[ ∞], where ˆK[ ∞] :=
⊕

n>0K n, recall the
recursive definitions we wrote down in Subsection 4.1.

Proposition 5.1. Equipped with these three binary operations, ˆK[ ∞] is an involutive
3-dendriform algebra generated by .

Proof: We proceed by induction on the degree of trees. Observe that the involution † on 2

acts as expected since ( ≺ )† = ≻ and so on. By induction, one checks that † is an
involutive map. For instance, if r = r1∨r2∨r3 and t are trees, then (r ≺ t)† = (r1∨r2∨ (r3 ⋆
t))† = (r3 ⋆ t)

† ∨ r†2 ∨ r
†
1 by definition and (r3 ⋆ t)

† ∨ r†2 ∨ r
†
1 = (t† ⋆ r†3) ∨ r

†
2 ∨ r

†
1 by induction.

Therefore, (r ≺ t)† = r† ≻ t†. Let us check the 6 axioms. Let r, s, t be ternary trees. We get:
(r ≺ s) ≺ t = r1∨r2∨(r3⋆s)⋆t = r1∨r2∨r3⋆(s⋆t) by induction, therefore Axiom 1 holds and
Axiom 3 as well via involution on Axiom 1. Axiom 2 is straightforward. Axiom 4 leads to:
(r ≺ s)•t = r1∨r2∨(r3⋆s)•t = r1∨(r2∨((r3⋆s)⋆t1)∨t2)∨t3 = r1∨(r2∨(r3⋆(s⋆t1))∨t2)∨t3
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by induction, hence Axiom 4 holds. Axiom 5 and 6 are straightforward. Therefore, ˆK[ ∞]
is an involutive 3-dendriform algebra. We introduce the middle map m : p −→ p+1 for

all p ∈ N, such that t 7→| ∨t∨ |. We now prove that ˆK[ ∞] is generated by by induction
on the degree of trees. Indeed, the result holds in small dimension (checked by hand up to
p = 3). Moreover we have for a tree t,

t := t1 ∨ t2 ∨ t3 = if t1 = t2 = t3 =|,

= ≺ t3 if t1 = t2 =|, t3 6=|,

= t1 ≻ if t1 6=|, t2 =|= t3,

= t1 ≻ (m((t2)1) • ((t2)2 ≻ m((t2)3))) ≺ t3 otherwise.

�

Proposition 5.2. The unique 3-dendriform algebra map 3-Dend(K) −→ ˆK[ ∞] :=
⊕

n>0K[ n]
sending the generator x of 3-Dend(K) to is an isomorphism.

Proof: We will check that ( ˆK[ ∞],≺,≻, •) verifies the universal condition to be the free
3-dendriform algebra on one generator. Let T be a 3-dendriform algebra and let a ∈ T . By
induction, we construct a linear map α : ˆK[ ∞] −→ T on its values on ternary trees as
follows. Let t = t1 ∨ t2 ∨ t3 ∈ p and set:

α(t1 ∨ t2 ∨ t3) = a if t1 = t2 = t3 =|,

= a ≺ α(t3) if t1 = t2 =|, t3 6=|,

= α(t1) ≻ a if t1 6=|, t2 =|= t3,

= α(t1) ≻ (α(m((t2)1)) • (α((t2)2) ≻ α(m((t2)3)))) ≺ α(t3) otherwise.

The map α is unique since ˆK[ ∞] is generated by and that α( ) = a. It is a morphism
of 3-dendriform algebras as one can show by induction on the degree of trees. For instance,

α(r ≺ t) := α(r1) ≻ (α(m((r2)1)) • (α((r2)2) ≻ α(m((r2)3)))) ≺ α(r3 ⋆ t)

= α(r1) ≻ (α(m((r2)1)) • (α((r2)2) ≻ α(m((r2)3)))) ≺ (α(r3) ⋆ α(t)) by induction

= (α(r1) ≻ (α(m((r2)1)) • (α((r2)2) ≻ α(m((r2)3)))) ≺ α(r3)) ≺ α(t) by Axiom 1

:= α(r) ≺ α(t).

The relation α(r•t) = α(r)•α(t) follows from the following general equality: Let a, b, c, a′, b′, c′ ∈
T , where T is any 3-dendriform algebra. Then,

(a ≻ b ≺ c) • (a′ ≻ b′ ≺ c′) = a ≻ (b • ((c ⋆ a′) ≻ b′) ≺ c′,

holds. Therefore, ( ˆK[ ∞],≺,≻, •) is the free dendriform algebra on one generator. �

Theorem 5.3 (Free 3-dendriform algebra). Let V be a K-vector space. The unique 3-
dendriform algebra map 3-Dend(V ) −→

⊕
n>0K[ n] ⊗ V ⊗n, which sends the generator

v ∈ V to ⊗ v is an isomorphism.
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Proof: Define on
⊕

n>0K[ n] ⊗ V ⊗n the following 3-dendriform algebra structure:

t⊗ ω ≺ t′ ⊗ ω′ := t ≺ t′ ⊗ ωω′,

t⊗ ω ≻ t′ ⊗ ω′ := t ≻ t′ ⊗ ωω′,

t⊗ ω • t′ ⊗ ω′ := t • t′ ⊗ ωω′.

Since the relations defining 3-dendriform algebras are regular, the free 3-dendriform algebra
over V is then determined by the free 3-dendriform algebra on one generator, hence 3-
Dend(V ) :=

⊕
n>0 3-Dend(K)n ⊗ V ⊗n =

⊕
n>0K[ n] ⊗ V ⊗n by Proposition 5.2. �

5.2 (Co)Homology of 3-dendriform algebras

We now show the existence of a chain complex of Hochschild type for any 3-dendriform
algebra and define a (co)homology theory for this category. Let T be a 3-dendriform algebra.
For all n ∈ N, define Xn := {(k, j); 0 ≤ k ≤ j ≤ n} and the module of n-chains of T as
C3−Dend

n (T ) := K(Xn) ⊗ T⊗n. Introduce the differential operator d :=
∑

1≤i≤n−1 (−1)i+1di,

where di : C3−Dend
n (T ) −→ C3−Dend

n−1 (T ), 1 ≤ i ≤ n− 1, are the face operators and act on Xn

as follows:
Step 1: Set di(k, j) := (d̃i(k), d̃i(j)) where d̃i : {1, . . . , n} −→ {1, . . . , n − 1} is such that
d̃i(r) := r − 1 if i ≤ r and d̃i(r) := r if i ≥ r + 1. The face maps are extended linearly to
maps di : K[Xn] −→ K[Xn−1].
Step 2: Introduce now the symbol:

◦
(k,j)
i :=





• if i− 1 ∈ {k, j}; i ∈ {k, j},

≻ if i− 1 /∈ {k, j}; i ∈ {k, j},

≺ if i− 1 ∈ {k, j}; i /∈ {k, j},

⋆ if i− 1 /∈ {k, j}; i /∈ {k, j}.

We now explicit the action of the face maps di : C3−Dend
n (T ) −→ C3−Dend

n−1 (T ), 1 ≤ i ≤ n− 1

by di((k, j);x1 ⊗ . . .⊗ xn) := (di(k, j);x1 ⊗ . . .⊗ xi−1 ⊗ xi ◦
(k,j)
i xi+1 ⊗ . . .⊗ xn).

Proposition 5.4. The face maps di, 1 ≤ i ≤ n − 1 satisfy the simplicial relations didj =
dj−1di for i < j. Therefore (C3−Dend

∗ (T ), d) is a chain-complex.

Proof: We prove first that d1d2 = d1d1 on C3−Dend
3 (T ). Let x, y, z ∈ T .

{
d1d2((0, 0);x⊗ y ⊗ z) = d1((0, 0);x⊗ y ⋆ z) = ((0, 0);x ≺ (y ⋆ z)),

d1d1((0, 0);x⊗ y ⊗ z) = d1((0, 0);x ≺ y ⊗ z) = ((0, 0); (x ≺ y) ≺ z),

hence the equality via Axiom 1.

{
d1d2((1, 1);x⊗ y ⊗ z) = d1((1, 1);x⊗ y ≺ z) = ((0, 0);x ≻ (y ≺ z)),

d1d1((1, 1);x⊗ y ⊗ z) = d1((0, 0);x ≻ y ⊗ z) = ((0, 0); (x ≻ y) ≺ z),

16



hence the equality via Axiom 2.
{
d1d2((2, 2);x⊗ y ⊗ z) = d1((1, 1);x⊗ y ≻ z) = ((0, 0);x ≻ (y ≻ z)),

d1d1((2, 2);x⊗ y ⊗ z) = d1((1, 1);x ⋆ y ⊗ z) = ((0, 0); (x ⋆ y) ≻ z),

hence the equality via Axiom 3.
{
d1d2((0, 2);x⊗ y ⊗ z) = d1((0, 1);x⊗ y ≻ z) = ((0, 0);x • (y ≻ z)),

d1d1((0, 2);x⊗ y ⊗ z) = d1((0, 1);x ≺ y ⊗ z) = ((0, 0); (x ≺ y) • z),

hence the equality via Axiom 4.
{
d1d2((1, 2);x⊗ y ⊗ z) = d1((1, 1);x⊗ y • z) = ((0, 0);x ≻ (y • z)),

d1d1((1, 2);x⊗ y ⊗ z) = d1((0, 1);x ≻ y ⊗ z) = ((0, 0); (x ≻ y) • z),

hence the equality via Axiom 5.
{
d1d2((0, 1);x⊗ y ⊗ z) = d1((0, 1);x⊗ y ≺ z) = ((0, 0);x • (y ≺ z)),

d1d1((0, 1);x⊗ y ⊗ z) = d1((0, 0);x • y ⊗ z) = ((0, 0); (x • y) ≺ z),

hence the equality via Axiom 6. The sequel of the proof splits into two cases. The case
j > i+ 1 is straightforward and the case j = i+ 1 depends on the computations above and
the fact that ⋆ is associative. �

5.3 The operad Triang

We obtained a (co)homology of 3-dendriform algebras by studying the dual, in the sense of
Ginzburg and Kapranov, of the operad 3-Dend. Recall a triangular algebra T is a K-vector
space equipped with three binary operations ⊥,⊢,⊣: T⊗2 −→ T verifying for all x, y, z ∈ T ,
the following 12 axioms.





1. (x ⊣ y) ⊣ z = x ⊣ (y ⊣ z), 6. (x ⊣ y) ⊥ z = x ⊥ (y ⊢ z),

2. (x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), 7. (x ⊢ y) ⊥ z = x ⊢ (y ⊥ z),

3. (x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), 8. (x ⊥ y) ⊣ z = x ⊥ (y ⊣ z),

4. (x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), 9. (x ⊥ y) ⊥ z = 0
10.
= x ⊥ (y ⊥ z),

5. (x ⊢ y) ⊢ z = x ⊢ (y ⊢ z), 11. (x ⊥ y) ⊢ z = 0
12.
= x ⊣ (y ⊥ z).

(13)

Example 5.5. Any associative algebra (A, ·) is a triangular algebra by setting ⊢= · =⊣
and ⊥= 0. In the non-graded setting, let (A, d) be a differential associative algebra, that is
d(ab) = d(a)b + ad(b) and d2 = 0. Set a ⊣ b := ad(b), a ⊢ b := d(a)b and a ⊥ b := d(a)d(b).
Then, (A,⊢,⊣,⊥) turns to be a triangular algebra.

Theorem 5.6. The operad Triang is dual in the sense of [3] to the operad 3-Dend, that is
Triang=3-Dend! and 3-Dend=Triang!.
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Proof: We compute the dual of 3-Dend. Since our operads are regular, we know that the
action of the symmetric group can be forgotten. We consider then only Pn. The K-vector
space generating operations is 3-Dend2 := K ≺ ⊕ K ≻ ⊕ K•. Set OP := {≺,≻, •}. The
K-vector space made out of three variables is K[OP × OP ] ⊕K[OP × OP ]. Its dimension
is 18. The operad 3-Dend. is completely determined by some subspace R ⊂ K[OP ×
OP ] ⊕ K[OP × OP ]. Denote by (◦1)◦2 (resp., ◦1(◦2)), ◦i ∈ OP , the basis vector of the
first (resp., the second) summand K[OP × OP ]. Observe that R is spanned by 6 vectors
of the form (◦1) ◦2 − ◦1 (◦2) obtained from axioms of 3-dendriform algebras. Identify the
dual of K[OP ] with itself by identifying a basis vector with its dual. According to [3], the
dual operad 3-Dend. is then completely determined by R⊥ ⊂ K[OP ×OP ]⊕K[OP ×OP ],

where R⊥ is the orthogonal space of R under the quadratic form

(
Id 0
0 −Id

)
. Identify now

≺ with ⊣, ≻ with ⊢ and • with ⊥. The K-vector space R⊥ becomes the space R! spanned
by the 12 vectors obtained from axioms of triangular algebras. For instance, consider the
vector (⊣) ⊣ − ⊣ (⊣) of R!, identified with (≺) ≺ − ≺ (≺) and observe that for instance
〈 (≺) ≺ − ≺ (≺); (≺) ≺ − ≺ (⋆) 〉 = 1 − 1 = 0 and so on. �

5.4 The free triangular algebra: Explicit proofs

Let V be a K-vector space. A tensor v1⊗ . . .⊗vp will be denoted sometimes, for commodity
by v1, . . . , vp or by v1 . . . vp, when no confusion is possible. The algebraic object to consider
is V ⊗ T (V )⊗3. For esthetic reasons, we will work with an isomorphism copy written in an
unusual way as:

△(V ) :=
T (V )
⊗

T (V ) ⊗ V ⊗ T (V )

Let ψ : T (V ) −→ K and Ψ : T (V )⊗2 −→ K be the canonical projections. Define now three
binary operations ⊢,⊣,⊥: △⊗2(V ) −→ △(V ) as follows,

H H ′ ψ(H)H ′

⊗ ⊢ ⊗ = ⊗
L ⊗ v ⊗ R L′ ⊗ v′ ⊗ R′ LvRL′ ⊗ v′ ⊗ R′,

H H ′ Hψ(H ′)
⊗ ⊣ ⊗ = ⊗

L ⊗ v ⊗ R L′ ⊗ v′ ⊗ R′ L ⊗ v ⊗ RL′vR′,

and

H H ′ Ψ(H,H ′)RL′v′

⊗ ⊥ ⊗ = ⊗
L ⊗ v ⊗ R L′ ⊗ v′ ⊗ R′ L ⊗ v ⊗ R′,

for any R ∈ V ⊗p1 , L ∈ V ⊗p2 , R ∈ V ⊗p3 , R′ ∈ V ⊗p4 , L′ ∈ V ⊗p5 , H ′ ∈ V ⊗p6 and any v, v′ ∈ V
and extended by bilinearity then.
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Theorem 5.7. Let V be a K-vector space. The K-vector space △(V ) equipped with the
three operations just defined is the free triangular algebra on V .

Proof: Checking axioms of triangular algebras for △(V ) is left to the reader. The map
i : V →֒ △(V ) is the composite:

V ≃
K
⊗

K ⊗ V ⊗ K
→֒ △(V ).

Let f : V −→ T be a linear map, where T is a triangular algebra. We construct φ as follows.
First on monomials from △(V ), second we extend it by K-linearity. Therefore, define its
universal extension φ : △(V ) −→ T by:

φ(X) := f(v−p) ⊢ . . . ⊢ f(v−1) ⊢ [f(v0) ⊥ (f(w1) ⊢ . . . ⊢ f(wk))] ⊣ f(v1) ⊣ . . . ⊣ f(vq),

if,

X :=
w1 ⊗ . . .⊗ wk

⊗
v−p ⊗ . . .⊗ v−1 ⊗ v0 ⊗ v1 ⊗ . . .⊗ vq

and obviously by,

φ(X) := f(v−p) ⊢ . . . ⊢ f(v−1) ⊢ f(v0) ⊣ f(v1) ⊣ . . . ⊣ f(vq),

if,

X :=
1
⊗

v−p ⊗ . . .⊗ v−1 ⊗ v0 ⊗ v1 ⊗ . . .⊗ vq.
According to dimonoid calculus rules [6], the writings at the right hand sides do have a
meaning. Observe that the bracket [. . .] can be dropped and is just used here to recall the
symmetry shape of △(V ). We prove now, that so defined, φ is a morphism of triangular
algebras. Let us start with the binary operation ⊥. We replace, with a slight abuse of
notation, tensors by capital letters so as to ease proofs. On the one hand,

A := φ(
H
⊗

L ⊗ v ⊗ R
) ⊥ φ(

H ′

⊗
L′ ⊗ v′ ⊗ R′

) :=

= (f(L) ⊢ [f(v) ⊥ f(H)] ⊣ f(R)) ⊥ (f(L′) ⊢ [f(v′) ⊥ f(H ′)] ⊣ f(R′)).

Set z := f(L′) ⊢ [f(v′) ⊥ f(H ′)] ⊣ f(R′), y = [f(v) ⊥ f(H)] ⊣ f(R), we get A = (f(L) ⊢
y) ⊥ z = f(L) ⊢ (y ⊥ z) via Axiom 7. However, y ⊥ z = ([f(v) ⊥ f(H)] ⊣ f(R)) ⊥ z =
(f(v) ⊥ [f(H) ⊣ f(R)]) ⊥ z = 0 via Axiom 8 first and Axiom 9 then. The case H = 1
and H ′ 6= 1 give the same result and is left to the reader (apply Axioms 8, 7 and 10). If
H = H ′ = 1, then we get, A := (f(L) ⊢ f(v) ⊣ f(R)) ⊥ (f(L′) ⊢ f(v′) ⊣ f(R′)). Set
z := f(L′) ⊢ f(v′) ⊣ f(R′), y = f(v) ⊣ f(R). Then, by applying Axiom 7 we get (f(L) ⊢
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y) ⊥ z = f(L) ⊢ (y ⊥ z). However, y ⊥ z := (f(v) ⊣ f(R)) ⊥ z = f(v) ⊥ (f(R) ⊢ z)
by Axiom 6. Moreover, f(R) ⊢ z := f(R) ⊢ ((f(L′) ⊢ f(v′)) ⊣ f(R′)) = (f(R) ⊢ (f(L′) ⊢
f(v′))) ⊣ f(R′) via Axiom 3, which is equal to (f(R) ⊢ f(L′) ⊢ f(v′)) ⊣ f(R′) via Axiom 5.
Set x := f(R) ⊢ f(L′) ⊢ f(v′), we have f(v) ⊥ (x ⊣ f(R′)) = (f(v) ⊥ x) ⊣ f(R′) via Axiom
8. Summarising our computations, we find,

A := f(L) ⊢ (f(v) ⊥ (f(R) ⊢ f(L′) ⊢ f(v′))) ⊣ f(R′).

On the other hand,

B := φ(
H
⊗

L ⊗ v ⊗ R
⊥

H ′

⊗
L′ ⊗ v′ ⊗ R′

) :=

= f(L) ⊢ [f(v) ⊥ (f(R) ⊢ (f(L′) ⊢ f(v′))] ⊣ f(R′).

if H = H ′ = 1 and vanishes otherwise. Hence A = B.
Concerning the binary operation ⊢, we get on the one hand:

B := φ(
H
⊗

L ⊗ v ⊗ R
⊢

H ′

⊗
L′ ⊗ v′ ⊗ R′

) :=

= f(L) ⊢ f(v) ⊢ f(R) ⊢ f(L′) ⊢ [f(v′) ⊥ f(H ′)] ⊣ f(R′),

if H = 1 and vanishes otherwise. On the other hand,

A := φ(
H
⊗

L ⊗ v ⊗ R
) ⊢ φ(

H ′

⊗
L′ ⊗ v′ ⊗ R′

) :=

= (f(L) ⊢ [f(v) ⊥ f(H)] ⊣ f(R)) ⊢ (f(L′) ⊢ [f(v′) ⊥ f(H ′)] ⊣ f(R′)).

Setting z := f(L′) ⊢ [f(v′) ⊥ f(H ′)] ⊣ f(R′), we get by applying successively Axioms 3,4,5
and 11,

A = ((f(L) ⊢ [f(v) ⊥ f(H)]) ⊣ f(R)) ⊢ z = (f(L) ⊢ [f(v) ⊥ f(H)] ⊢ f(R)) ⊢ z

= (f(L) ⊢ ([f(v) ⊥ f(H)] ⊢ f(R))) ⊢ z = 0.

If H = 1, then it is easy to check the required equality. Therefore, A = B. Proceeding the
same way for the binary operation ⊣, shows that φ is a morphism of triangular algebras.
Consequently, φ so constructed is unique since it has to coincide with f on V . This completes
the proof. �
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5.5 On the construction of the homology of 3-dendriform algebras

Set V := Kv the vector space spanned by v and

χ :=
1
⊗

1 ⊗ v ⊗ 1.

Let us describe in more detail the free triangular algebra on the generator χ. For all

n > 0, introduce the set Tab(n) := {
p3

p1 1 p2
; p1 + p2 + p3 = n − 1}. Check that the

cardinality of Tab(n) is n(n+1)
2

. We can turn the K-vector space Tab∞ :=
⊕∞

n=1KTab(n)
into a triangular algebra by using the following bijection,

v⊗p3

⊗
v⊗p1 ⊗ v ⊗ v⊗p2

7−→
p3

p1 1 p2
,

where by convention v⊗0 = 1. Consequently, Tab∞ :=
⊕∞

n=1KTab(n) is also the free

triangular algebra on the generator still denoted by χ =
0

0 1 0
.

We now relate these results to the construction of the homology of 3-dendriform algebras.
Recall that for all n ∈ N, we defined Xn := {(k, j); 0 ≤ k ≤ j ≤ n}. The map η : Tab(n) −→
Xn defined for all n by,

p3

p1 1 p2
7−→

{
(p1, p3) if p1 ≤ p3,

(p1, n− 1 − p3) if p1 > p3,

is clearly a bijection and explain why we constructed the chain-complex of 3-dendriform
algebras as we did, according to Ginzburg and Kapranov’s results [3].

6 Conclusions and open questions

In the following array, we sum up our results just coming from a simple symmetry on an
action of the unit on the most general quadratic relation we can write.

Dual
OperadsOperads Numbers

Poincaré series Poincaré series
Numbers

numbers numbers(Loday)

Catalan numbers

Generalized
m−

numbers

P
Combinatorial

k
k−Gonal

1,2,5,...  Catalan 1,2,3,4,... Natural 

k−gonal

numbers
objects  to be

discovered.

m−tetrahedral

Dend

Dend m−Tetra

Dias
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We conjecture that all these operads are Koszul. Indeed, if an operad P , with dual P !,
is Koszul then their Poincaré series are related by fP ◦ fP ! = id. A hint is to observe that
this is the case for our operads.

What are the combinatorial objects behind operads kP , for k > 4? For instance, the
inverse of the Poincaré series of the operad 5-Tetra is a series whose coefficients begin with
1, 5, 38, 347, 3507, 37788, 425490, . . .. Observe that operads could be also used indirectely to
enumerate discrete structures. Unfortunately, for the time being no known sequence seems
to have this starting.

We have also proposed an operadic point of view to recover m-ary trees from the most
simple one and operations and also polygonal numbers from 1, played by χ, and operations.

References

[1] F. Chapoton. Construction de certaines opérades et bigèbres associées aux polytopes
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