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Abstract

We introduce the notion of wild partition to describe in combinatorial language
an important situation in the theory of p-adic fields. For Q a power of p, we get a
sequence of numbers λQ,n counting the number of certain wild partitions of n. We give
an explicit formula for the corresponding generating function ΛQ(x) =

∑
λQ,nxn and

use it to show that λ1/n
Q,n tends to Q1/(p−1). We apply this asymptotic result to support

a finiteness conjecture about number fields. Our finiteness conjecture contrasts sharply
with known results for function fields, and our arguments explain this contrast.

1 Introduction

The sequence A000041 of integers λn giving the number of partitions of n is important
throughout mathematics. Its generating function is

Λ(x) =
∞∑

n=0

λnx
n =

∞∏

e=1

1

1 − xe
= 1 + x + 2x2 + 3x3 + 5x4 + 7x5 + · · · . (1)

In this paper, we consider for any prime power Q = pn0, an analogous integer sequence
λQ,n arising in a fundamental way in the number theory of p-adic fields. We evaluate the
associated generating functions ΛQ(x) =

∑
λQ,nxn, obtain corresponding asymptotics, and

apply our results to support a finiteness conjecture about number fields. Generally speaking,
our goal is to describe how a combinatorial viewpoint clarifies an important number-theoretic
situation.
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The following two displays, incorporated in the sequence database [24] as A131139 and
A131140, give a first sense of the functions ΛQ(x) and the corresponding sequences λQ,n:

Λ2(x) =
1

1 − x
· 1 − x2

(1 − 2x2)2 · 1

1 − x3
· (1 − x4) (1 − 4x4)2

(1 − 8x4)4 · 1

1 − x5
· 1 − x6

(1 − 8x6)2 · · · ·

= 1 + x + 4x2 + 5x3 + 36x4 + 40x5 + 145x6 + 180x7 + 1572x8 + 1712x9 + · · · ,

Λ3(x) =
1

1 − x
· 1

1 − x2
· (1 − x3)

2

(1 − 3x3)3 · 1

1 − x4
· 1

1 − x5
· (1 − x6)

2

(1 − 9x6)3 · · · ·

= 1 + x + 2x2 + 9x3 + 11x4 + 19x5 + 83x6 + 99x7 + 172x8 + 1100x9 + · · · .

In general, ΛQ(x), like its model Λ(x), is given by a product over positive integers e. For p
not dividing e, the corresponding factor is 1/(1 − xe) again. However for p dividing e, this
factor is more complicated. In the number-theoretic context, the former factors reflect tame
ramification and the latter reflect wild ramification.

The paper is organized so its starts in combinatorics and ends in number theory. The
main combinatorial objects, wild partitions, are defined so that they correspond bijectively
to the main number theoretic objects, geometric classes of p-adic algebras. We do not pursue
it here, but a future goal is to specify one bijection as the conventional one, so that the very
simple objects, wild partitions, index the more complicated objects, geometric classes of
p-adic algebras. Such a labeling of p-adic algebras could be incorporated into the database
of local fields [12] and would considerably facilitate the p-adic analysis of number fields.

Sections 2-4 are our combinatoric sections. For a factorization n0 = e0f0, we define
(p, e0, f0)-wild partitions and a corresponding complicated three-variable generating function
Λp,e0,f0(x, y, z). Our definitions are not particularly motivated from a purely combinatoric
point of view. Rather, as indicated above, they are chosen to mimic the structure of p-adic
fields. For the sake of comparison, we consider first the specialization (y, z) = (1, p−f0) and
get the remarkable simplification

Λp,e0,f0(x, 1, p−f0) = Λ(x). (2)

As we’ll indicate, this identity is related to the Serre mass formula [23]. Our main interest
is in the new specialization (y, z) = (1, 1). We define ΛQ(x) by an explicit formula and find

Λp,e0,f0(x, 1, 1) = ΛQ(x), (3)

independently of the factorization n0 = e0f0. Our explicit formula allows us to consider
arbitrary real powers Q = pν ≥ 1 so that Q no longer determines p and we accordingly write
Λp,Q(x). One has Λp,1(x) = Λ(x), independently of p. Thus another point of view is that for
each prime p we have a Q-analog of Λ(x).

Sections 5 and 6 consider analytic number theory associated to Λp,Q(x). We express
Λp,Q(x) directly in terms of Λ(x) and observe that as a consequence

lim
n→∞

λ1/n
p,Q,n = Q1/(p−1). (4)
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Thus λp,Q,n grows exponentially with growth factor Q1/(p−1). Equation (4) contrasts with the

famous Hardy-Ramanujan statement [8] of subexponential growth, λn ∼ eπ
√

2n/3/(4n
√

3). It
quantifies the extent to which wild ramification predominates over tame ramification in num-
ber theory. Another contrast between ordinary partitions and our Q-analogs is that λn/λn−1

tends to 1 while λp,Q,n/λp,Q,n−1 has oscillatory behavior which becomes more pronounced as
Q increases. We conjecture an asymptotic of the form

λp,Q,n ∼ cp,Q(n)Cp(Q)nBp(Q)eAp(Q)
√

nQn/(p−1), (5)

with an explicit factor cp,Q(n) capturing the oscillatory behavior of λp,Q,n/λp,Q,n−1.
Sections 7-10 are set in the framework of local algebraic number theory. The material

here is somewhat more technical, but we have arranged our presentation so that the only
prerequisite is familiarity with basic facts about p-adic fields. Section 7 sets up the general
situation and illustrates it for the fields R and C, getting simple functions ΛR(x) = ex and
ΛC(x) = ex+x2/2 which serve as analogs of our ΛQ(x). For Sections 8-10, we let F be an
extension field of the p-adic field Qp, of ramification index e0, inertial degree f0, and thus
degree n0 = e0f0 and residual cardinality q = pf0 . Section 9 explains how the coefficient
λn,ct,cw of xnyctzcw gives the “total mass” of algebras K over F having relative degree n,
tame conductor ct, and wild conductor cw. Section 10 works over the maximal unramified
extension F un of F . It explains how λn,ct,cw also counts extension algebras of F un with the
corresponding invariants. The perspective of Section 9 is more directly connected with the
literature, while the perspective of Section 10 explains why the coefficients of Λp,e0,f0(x, y, z)
are integers. Summing over the possible ct and cw, one gets that the total mass λF,n of degree
n extension algebras of F is λQ,n, where Q = pn0 .

Section 11 shifts to global algebraic number theory, working over an arbitrary number
field F . It addresses a question raised in [16] on the size of sets Fieldsbig

F,n,S of relative degree

n number fields K/F . To be in Fieldsbig
F,n,S, the extension K/F must have associated Galois

group An or Sn and ramification contained within the prescribed finite set of places S of F
including the Archimedean places. A recent heuristic of Bhargava [4] yields

1

2

∏

v∈S

λFv,n (6)

as a first guess (after slight modifications in degrees ≤ 3) for the size of Fieldsbig
F,n,S. The

Archimedean factors λR,n, λC,n decay superexponentially and we have proved that the re-
maining λFv,n grow only exponentially. Thus (6) leads to the prediction that for fixed (F, S),
the set Fieldsbig

F,n,S is empty for sufficiently large n. In other words Fieldsbig
F,S =

∐
n Fieldsbig

F,n,S

is finite. This finiteness statement has a certain irony to it: normally one considers An

and especially Sn to be the “generic expectation” for Galois groups of number fields; the
statement says that in the setting of prescribed ramification, these groups are in fact the
exceptions.

Finally, Section 12 considers positive characteristic analogs of all the previous consider-
ations. In positive characteristic, our finiteness statement fails very badly. The theory we
present here explains this failure as due to two sources, either one of which suffices to void
our argument for the finiteness statement. One source is that Q must be considered ∞ and
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this forces all the λFv,n appearing in (6) to be infinite for n ≥ p. Another source is that there
are no Archimedean places of F , and thus no superexponentially decaying factors in (6).

Readers who want to quickly see the main ideas in a streamlined setting are invited to
first focus on the special case e0 = f0 = 1. Then n0 = 1 too, p = q = Q, and later E = e.
The ground fields F of Sections 7-10 are then only the completions of Q, i.e. R and the Qp.
The ground fields F of Section 11 are then limited to simply Q itself. However by explicit
examples with n0 = 2 in Sections 2, 3, 6, and 11, we try to assist readers in appreciating the
case of general (e0, f0). Sections 7-11 make clear that general (e0, f0) is the natural setting
from a number-theoretic point of view. The naturality of this setting is emphasized by
Sections 5 and 6 which interpolate n0 = e0f0 ∈ Z≥1 with general reals ν ≥ 0. The naturality
of the general setting is further underscored by Section 12, which is based on the limiting
case e0 = ∞.

2 Wild partitions

Basic notation. An ordinary partition is an element of the free abelian monoid generated
by the set of allowed parts P = {1, 2, 3, . . .}, for example

µordinary = 9 + 7 + 3 + 3 + 2 + 2 + 2 + 1. (7)

Wild partitions are more complicated in two ways. First, the set P is replaced by a set
P (p, e0) mapping surjectively to P , with infinite fibers above multiples of p. Second, nec-
essary for obtaining finiteness, an invariance condition with respect to an operator σ = σf0

p

enters.
As just indicated, our notion of wild partition depends not only on a prime p, but also

on two positive integers e0 and f0. Let q = pf0 and n0 = e0f0. Our notations e0, f0, n0 and
q come from standard notations in the number-theoretic situation of Sections 8-10 inspiring
our definitions. The quantity Q = pn0 is important for us, but does not have a standard
number-theoretic notation.

Strictly speaking, our sets of wild partitions depend also on a choice of algebraic closure
Fp of the prime field Fp = Z/pZ. However all algebraic closures are isomorphic and so our
final formulas counting certain wild partitions are independent of this choice. As usual, for
a power pu of p we denote by Fpu the unique subfield of Fp of cardinality pu. We denote by
σp the Frobenius element k (→ kp in Gal(Fp/Fp). Similarly, we denote by σpu the element
σu

p ; it is a topological generator of Gal(Fp/Fpu). Most important for us is the operator σq,
which we abbreviate by simply σ.

We reserve e for our main variable running over P . As a standing convention, we sys-
tematically write e = pwt with pw the largest power of p dividing e. We think of w as the
wildness of e, pw as the wild part of e, and t as the tame part of e. As another standing
convention, we abbreviate e0e by E.

Ore numbers and their associated dimensions and spaces. An important notion in
number theory is the set of Ore numbers

Ore(p, e0, e) ⊆ {0, 1, . . . , wE − 1, wE}. (8)
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To understand the set Ore(p, e0, e), it is convenient present it as an array, as for the case
(p, e0, e) = (3, 2, 9) for which w = 2:

.

. 8 7 . 5 4 . 2 1

. 17 16 . 14 13 . 11 10

. 26 25 24 23 22 21 20 19
36 35 34 33 32 31 30 29 28

(9)

In general, the array Ore(p, e0, e) consists of a degenerate zeroth block, followed by w full
blocks. The zeroth block has only a single spot, filled by 0 if w = 0 and empty otherwise.
The full blocks each have e0 rows and e columns. For 1 ≤ j ≤ w − 1, the jth block consists
of the integers in the interval [(j − 1)E + 1, jE] which are not multiples of pj. The wth

block consists of these entries together with wE. Considering the table as a whole, we
refer to all the entries as non-maximal, except for wE which is maximal. Our array format,
including the right-to-left order, is intended to facilitate the discussion in Section 8, where
the number-theoretic origin of Ore(p, e0, e) is explained.

An important quantity in our situation is the dimension d(p, e0, e, s) associated to an
Ore number s ∈ Ore(p, e0, e). It is the number of integers in [0, s − 1] which are not in
Ore(p, e0, e). Thus d(3, 2, 9, 20) = 7, as there are seven omitted numbers less than 20 on
the displayed Ore table (9). The way dimensions arise in number theory is explained in
Section 9.

An Ore number s ∈ Ore(p, e0, e) determines a subset W (p, e0, e, s) of the vector space

Fd(p,e0,e,s)
p as follows. For non-maximal s, the set W (p, e0, e, s) consists of the subset of

vectors with non-zero first coordinate. In the maximal case s = wE, the subset W (p, e0, e, s)

is defined to be all of Fd(p,e0,e,s)
p . The Frobenius element σ = σf0

p acts coordinate-wise on
each W (p, e0, e, s), as indeed σp itself acts. The number of fixed points of σ is clearly
qd(p,e0,e,s)(1 − 1/q) for non-maximal s and qd(p,e0,e,s) for the maximal s = wE. The explicit
σ-sets W (p, e0, e, s) just introduced are isomorphic to less explicit σ-sets arising naturally
in number theory, as explained in Section 10. We use s as our variable running over Ore
numbers, because Ore numbers are also called Swan conductors.

Wild partitions and associated invariants. We are now in a position to make the main
definition of the combinatorial part of this paper.

Definition 2.1. A (p, e0, f0)-wild partition is an element of the free abelian monoid on the
set

P (p, e0) =
∐

e∈Z≥0

∐

s∈Ore(p,e0,e)

W (p, e0, e, s) (10)

which is fixed by σ = σf0
p .

Usually (p, e0, f0) is fixed and clear from the context. Then we just say “wild partition”
rather than (p, e0, f0)-wild partition.

We denote elements of P (p, e0) as doubly-subscripted integers es;ω, with s ∈ Ore(p, e0, e)
and ω ∈ W (p, e0, e, s). If p does not divide e, then the only possible subscript is “0;0” and so
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we allow ourselves to omit it. As an example of our notation, let i be one of the two square
roots of −1 in F9. Then

µwild = 920;1,1,0,2,2,0,1 + 7 + 31;i + 31;−i + 2 + 2 + 2 + 1 (11)

is a wild partition for (p, e0, f0) = (3, 2, 1). To check that µwild is indeed formed according
to our rules, note that d(3, 2, 9, 20) = |{0, 3, 6, 9, 12, 15, 18}| = 7 from (9), and so it is proper
that first subscripted ω has length 7. Also the first coordinate of this ω is non-zero, as
required. The Ore table for (p, e0, e) = (3, 2, 3) omits 0 and has first row “· 2 1”, so that
d(3, 2, 3, 1) = |{0}| = 1; thus 31;i and 31;−i are properly constructed wild parts. Finally
q = pf0 = 31 = 3 and so σ(i) = i3 = −i; thus µwild satisfies the σ-invariance condition.

By definition, one can add wild partitions just as one can add ordinary partitions. Wild
partitions have three obvious additive integer invariants, all important in the underlying
number-theoretic situation. First, as for ordinary partitions, one has the degree n, defined
as usual as the sum of the parts ei. Second, defined but often not important for ordinary
partitions, one has the tame conductor ct, the sum of the ei − 1. Third, particular to our
wild situation, one has the wild conductor cw, the sum of the first subscripts si. Thus for
the wild partition (11), one has (n, ct, cw) = (29, 21, 22).

3 The generating functions ΦF(x, y, z) and ΛF(x, y, z)

Fix for this section a triple (p, e0, f0) as in the previous section. These three quantities figure
rather passively into our current considerations. We will have other more active quantities
as well. Accordingly, we abbreviate via F = (p, e0, f0). When we are continuing the example
started in (7), (11), we will take F = (3, 2, 1).

Irreducible and isotypical partitions. We say a wild partition is irreducible if it is non-
zero and cannot be written as the sum of two non-zero wild partitions. Every wild partition
is uniquely the sum of its irreducible constituents. For example, µwild has seven irreducible
constituents,

µwild = 920;1,1,0,2,2,0,1 + 7 + (31;i + 31;−i) + 2 + 2 + 2 + 1. (12)

We similarly say that a wild partition is isotypical if it has the form mµ for µ an irreducible
wild partition and m a positive integer. Every wild partition is uniquely the sum of its
isotypical constituents. For example, µwild has five isotypical constituents,

µwild = 920;1,1,0,2,2,0,1 + 7 + (31;i + 31;−i) + (2 + 2 + 2) + 1. (13)

If the wild partition µ is irreducible, we say that the isotypical wild partition mµ has mass
1/m. In the number-theoretic settings of Sections 8-10, wild partitions correspond to ge-
ometric packets of algebras of total mass one. A packet contains fields if and only if the
corresponding wild partition is isotypical; in this case, the fields in the packets have total
mass 1/m and the non-fields total mass 1 − 1/m.
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Definition of ΦF (x, y, z) and ΛF(x, y, z). Let φF ,n,ct,cw be the total mass of F -wild
isotypical partitions of degree n, tame conductor ct, and wild conductor cw. Then the
corresponding generating function is expressible as a sum over irreducibles,

ΦF (x, y, z) =
∞∑

n=0

∞∑

ct=0

∞∑

cw=0

φF ,n,ct,cwxnyctzcw (14)

=
∑

µ

∞∑

m=1

1

m
xmn(µ)ymct(µ)zmcw(µ) (15)

=
∑

µ

log

(
1

1 − xn(µ)yct(µ)zcw(µ)

)
. (16)

Similarly, let λF ,n,ct,cw be the total number of F -wild partitions of degree n, tame conductor
ct, and wild conductor cw. Then its generating function is expressible as a product over
irreducibles,

ΛF(x, y, z) =
∞∑

n=0

∞∑

ct=0

∞∑

cw=0

λF ,n,ct,cwxnyctzcw (17)

=
∏

µ

∞∑

m=0

xmn(µ)ymct(µ)zmcw(µ) (18)

=
∏

µ

(
1

1 − xn(µ)yct(µ)zcw(µ)

)
. (19)

The presence of 1/m in (15) and the absence of a corresponding factor in (18) reflects that
(14)-(16) are in the setting of total mass while (17)-(19) are in the setting of total number.

Comparison of (14)-(16) with (17)-(19) shows that one has an exponential formula

ΛF(x, y, z) = exp (ΦF (x, y, z)) . (20)

We will have analogous exponential formulas on the level of fields and algebras in the sequel.

Computation of ΦF (x, y, z) and ΛF(x, y, z). The degree n of an isotypical partition
factors into ef , where e is the degree of any constituent part and f is the number of such parts.
Following the terminology of the number-theoretic situation from which we are abstracting,
we call e the ramification index and f the inertial degree. In our continuing example, both
(31,i + 31,−i) and (2 + 2 + 2) have degree n = 6. The corresponding (e, f) are (3, 2) in the
first case and (2, 3) in the second. The tame conductor is always ct = (e− 1)f , thus 4 in the
first case and 3 in the second. The Swan conductor s of an isotypical partition is the first
subscript on any of the parts, these first subscripts being all equal. One has cw = fs, this
equation being 2 = 2 · 1 in the first case and 0 = 3 · 0 in the second.

Let φF(e, f, s) be the total mass of isotypical F -wild partitions with ramification index
e, inertial degree f , and Swan conductor s. One has

φF(e, f, s) =
1

f
|W (p, e0, e, s)

σf | =
1

f
qf d(p,e0,e,s)

(
1 − δwE

s q−f
)
. (21)
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Here, as usual, Xg is the set of fixed points of an operator g on a set X. Also, to unify cases,
δwE
s is 1 in the non-maximal case s < wE and 0 in the maximal case s = wE.

Since (21) plays a particularly important role in this paper, we explain how it looks in
our continuing example. Take (p, e0, e, s) = (3, 2, 3, 1) so that σ = σ3 and take also f = 2.
The fixed point set of σ2 on W (p, e0, e, s) ∼= F3 − {0} is F9 − {0}. The Frobenius operator
σ on F9 − {0} has three orbits of size two, corresponding to the irreducible wild partitions
31,ω + 31,ω3 for ω ∈ {i, 1 + i, 2 + i}. Similarly, σ has two orbits of size one, corresponding to
the isotypical but non-irreducible F -wild partitions 31,ω+31,ω for ω ∈ {1, 2}; the multiplicity
of these isotypical partitions is 2, so each contributes only 1/2 towards the total mass. So
in this case the three quantities equated in (21) are all 4.

The concepts of ramification index and inertial degree together with the key formula (21)
let us evaluate our first generating function explicitly:

ΦF(x, y, z) =
∞∑

e=1

∑

s∈Ore(p,e0,e)

∞∑

f=1

φF(e, f, s)xefy(e−1)fzsf (22)

=
∞∑

e=1

∑

s∈Ore(p,e0,e)

∞∑

f=1

1

f
qd(p,e0,e,s)f

(
1 − δwE

s q−f
)
xefy(e−1)fzsf (23)

=
∞∑

e=1

∑

s∈Ore(p,e0,e)

log

(
1 − δwE

s qd(p,e0,e,s)−1xeye−1zs

1 − qd(p,e0,e,s)xeye−1zs

)
. (24)

The logarithm appearing in (24) is very welcome because it cancels the exponential in (20)
to yield the main result of this section:

ΛF(x, y, z) =
∞∏

e=1

∏

s∈Ore(p,e0,e)

(
1 − δwE

s qd(p,e0,e,s)−1xeye−1zs

1 − qd(p,e0,e,s)xeye−1zs

)
. (25)

4 The generating function ΛQ(x)

Formula (25) is somewhat complicated, as it involves a product over the set Ore(p, e0, e) and
makes reference to the numbers d(p, e0, e, s). In this section, we evaluate the two special-
izations mentioned in the introduction. In both cases, the set Ore(p, e0, e) and the numbers
d(p, e0, e, s) each disappear from the final formula.
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The specialization (y, z) = (1, 1/q). Equality (2), namely Λp,e0,f0(x, 1, 1/q) = Λ(x), is
established by reducing the e-factor of Λp,e0,f0(x, 1, 1/q) to the e-factor of Λ(x):

Λp,e0,f0;e(x, 1,
1

q
) =




∏

s∈Ore(p,e0,e)−{wE}

1 − qd(p,e0,e,s)−1−sxe

1 − qd(p,e0,e,s)−sxe



 1

1 − qd(p,e0,e,wE)−wExe

=




wE−d(p,e0,e,wE)−1∏

k=0

1 − q−k−1xe

1 − q−kxe



 1

1 − qd(p,e0,e,wE)−wExe

=
1

1 − xe
.

Here the first equality is simply a specialization of (25). The second equality holds because as
s increases through Ore(p, e0, e), the new index k = s−d(p, e0, e, s) increases by uniform steps
of 1 from 0 to wE − d(p, e0, e, wE), as at each step (s, d(p, e0, e, s)) increases by either (1, 0)
or (2, 1). The third equality holds because each numerator cancels the next denominator,
leaving only the denominator of the initial k = 0 factor.

The specialization (y, z) = (1, 1/q) in the context of p-adic fields and algebras corresponds
to counting fields and algebras, but weighting wildly ramified algebras less, in accordance
with their wild conductor. In the context of fields, this method of weighting was first
introduced by Serre [23]. Serre’s mass formula was translated into the context of algebras
by Bhargava [4]. The technique of generating functions was first used in this context by
Kedlaya [13]. The specialization (y, z) = (1, 1/q) is the relevant one for the application to
number fields made by Bhargava [4], [3]. However to support our Conjecture 11.1 below, we
need another specialization.

Our specialization. Our specialization is (y, z) = (1, 1). In fact, if we did not take the
detour to evaluate Serre’s specialization, it would have sufficed to take z = y throughout
this paper and work with two-variable generating functions. Following the model provided
by Serre’s case, we evaluate Λp,e0,f0(x, 1, 1) by evaluating each e-factor separately. As for
Serre’s case, the main point is that Λp,e0,f0;e(x, 1, 1) is given by a telescoping product. In our
case, however, the cancellation is not as complete.

Theorem 4.1. The quantity Λp,e0,f0;e(x, 1, 1) depends only on Q = pe0f0 and is equal to

ΛQ;e(x) =

∏w−1
j=0 (1 − Q(pw−pw−j)t/(p−1)xe)(p−1)pj

(1 − Q(pw−1)t/(p−1)xe)pw . (26)

Proof. Let D(k) = d(p, e0, e, kE − 1) be the number of integers in {0, . . . , kE − 1} which are
not in Ore(p, e0, e). This quantity is best understood by thinking in terms of the jth shifted
block [(j − 1)E, jE − 1] rather that the jth block [(j − 1)E + 1, jE]. In these terms, D(k)
is the number of omitted entries in the first k shifted blocks of the corresponding Ore table.
The jth block contains exactly those integers in [(j − 1)E, jE − 1] which are not multiples
of pj . So

D(k) = E
k∑

j=1

p−j = E
p−1 − p−k−1

1 − p−1
= e0tp

w 1 − p−k

p − 1
= e0t

pw − pw−k

p − 1
. (27)
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The e-factor Λp,e0,f0;e(x, 1, 1) then simplifies to the e-factor of ΛQ(x) as follows:

Λp,e0,f0;e(x, 1, 1) =




∏

s∈Ore(p,e0,e)−{wE}

1 − qd(p,e0,e,s)−1xe

1 − qd(p,e0,e,s)xe



 1

1 − qd(p,e0,e,wE)xe

=




w∏

j=1

D(j)∏

d=D(j−1)+1

(
1 − qd−1xe

1 − qdxe

)pj−1


 1

1 − qD(w)xe

=

(
w∏

j=1

(
1 − qD(j−1)xe

1 − qD(j)xe

)pj−1
)

1

1 − qD(w)xe

=

∏w
j=1(1 − qD(j−1)xe)(p−1)pj−1

(1 − qD(w)xe)pw

=

∏w
j=1(1 − Q(pw−pw−j+1)t/(p−1)xe)(p−1)pj−1

(1 − Q(pw−1)t/(p−1)xe)pw .

Here the first equality is simply a specialization of (25). The second equality holds because
as s increases through Ore(p, e0, e), the quantity d = d(p, e0, e, s) increases from 1 to D(w)
by steps of 0 or 1. If d occurs in the kth shifted block, then it occurs exactly pk − 1 times,
yielding the same factor each time. The third equality makes cancellations within a shifted
block of Ore numbers. The fourth equality makes cancellations between adjacent shifted
blocks. The fifth equality uses (27) and the fact that qe0 = Q. The statement of the theorem
is then obtained by the index shift j (→ j − 1. (The indexing in the statement is preferable
in the sequel; otherwise, e.g., the three pj in (29) would all have to be pj−1.)

For wildness w in {0, 1, 2, 3}, Formula (26) simplifies to

ΛQ;t(x) =
1

1 − x
,

ΛQ;pt(x) =
(1 − xe)p−1

(1 − Qtxe)p
,

ΛQ;p2t(x) =
(1 − xe)p−1(1 − Qptxe)p2−p

(1 − Q(p+1)txe)p2 ,

ΛQ;p3t(x) =
(1 − xe)p−1(1 − Qp2txe)p2−p(1 − Q(p2+p)txe)p3−p2

(1 − Q(p2+p+1)txe)p3 .

These cases more than suffice for the factors of Λ2(x) and Λ3(x) displayed in the introduction.
In general, to pass from Λp;e(x) to Λpn0 ;e(x), each written in this form, one simply replaces
each factor of the form 1 − cxe by a new factor 1 − cn0xe.

For Q regarded as a formal variable, the right side of (26) defines an element of Z[Q][[x]],
i.e. a formal power series in x with coefficients in the polynomial ring Z[Q]. Accordingly,
we could allow Q to be any complex number. To not stray too far from our main focus, we
allow Q only to be real number ≥ 1, so that Q = pν for some ν ≥ 0. As remarked already in
the introduction, Q no longer determines p in our enlarged context. Accordingly, we write
Λp,Q(x) rather than Λp(x).
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The new flexibility gained by allowing Q to vary offers new insights into our situation.
To start, note that if Q = 1 then all factors on the right side of (26) reduce to 1 − xe, with
pw − 1 such factors on the top and pw on the bottom. Thus (26) reduces to 1/(1 − xe)
independent of the wildness w, and so Λp,1(x) = Λ(x) for all p. This observation further
justifies our terminology “wild partitions,” because wild partitions are now continuously
related to ordinary partitions.

5 Relation with p-cores

In this section and the next, we continue with the set-up just introduced, so that Q ≥ 1
is a real number independent from p. Our results in these sections go through even when
p is allowed to be any integer larger than one, as long as one still defines wildness by the
equation e = tpw and the condition that p does not divide t. However to not superfluously
complicate our exposition, we will stick with our requirement that p is prime.

p-cores. Define

Θp(x) =
Λ(x)

Λ(xp)p
=




∏

ordp(e)≥1

(1 − xe)p−1








∏

ordp(e)=0

1

1 − xe



 . (28)

The series Θp(x) is the generating function for the sequence of p-cores, i.e. partitions without
hook-lengths a multiple of p, as studied in [6]. In the cases p = 2 and 3, respectively, Θp(x)
is the generating function for A010054 and A033687:

Θ2(x) =
∞∑

j=−∞

x2j2−j = 1 + x + x3 + x6 + x10 + x15 + x21 + x28 + · · ·

Θ3(x) =
∞∑

j=−∞

∞∑

k=−∞

x3(j2+jk+k2)−j−2k = 1 + x + 2x2 + 2x4 + x5 + 2x6 + x8 + 2x9 + · · ·

The reference [6] similarly identifies Θp(x) as a theta-series of a quadratic form on Zp−1. By
either the combinatoric interpretation or the theta-series interpretation, one gets that Θp(x)
has non-negative coefficients, something not obvious from (28).

The analytic properties of Θp(x) are relevant for the asymptotics of the next section.
Figure 1 provides a guide. For all p, the radius of convergence is 1. In fact, the sum of the first
n coefficients of Θp(x)k is approximately the volume of a ball of radius ρ =

√
2np1/2+1/(2p−2)

in Euclidean space of dimension m = (p− 1)k, thus πm/2ρm/(m/2)!. Because all coefficients
are non-negative, for fixed 0 < r < 1 the function |Θp(reiθ)| takes on its unique maximum
at θ = 0.

Λp,Q(x) as a product over p-cores.
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Figure 1: Contour plots of |Θ2(x)| on the left and |Θ3(x)| on the
right, both on the open unit disk |x| < 1, with dark shading indicating
large values. The arguments indicated by dots are the ones relevant for
Table 1. They give the main contribution to the numbers in Table 2.

Corollary 5.1. One has the identity

Λp,Q(x) =
∞∏

j=0

Θp(Q
(pj−1)/(p−1)xpj

)pj
. (29)

Before beginning the general proof, it is worth noting that the right side of (29) in the case
of Q = 1 is a telescoping product, namely

Θp(x)Θp(x
p)pΘp(x

p2
)p2 · · · =

Λ(x)

Λ(xp)p

Λ(xp)p

Λ(xp2)p2

Λ(xp2
)p2

Λ(xp3)p3 · · · = Λ(x). (30)

This remark establishes (29) in the case Q = 1, as we have already remarked at the end of
the previous section that Λp,1(x) = Λ(x).

Proof. Substituting Q(pj−1)/(p−1)xpj
in for x in (28), we get that the factor on the right of

(29) with index j is

Θp(Q
(pj−1)/(p−1)xpj

)pj

=




∏

ordp(e)>0

(1 − Q(pj−1)e/(p−1)xpje)




pj+1−pj 


∏

ordp(e)=0

1

1 − Q(pj−1)e/(p−1)xpje




pj

=




∏

ordp(e)>j

(1 − Q(1−p−j)e/(p−1)xe)




pj+1−pj 


∏

ordp(e)=j

1

1 − Q(1−p−j)e/(p−1)xe




pj

(31)
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Let e = pwt as usual. Then the e-factor of the left side of (29) is given by (26) and the
e-factor of the right side of (29) is the product of (31) for j = 0, . . . , w. The w numerator
factors of (26) match the numerator factors in (31) for j = 0, . . . , w − 1. The denominator
factor of (26) matches the denominator factor in (31) for j = w.

6 Asymptotics

In this section we study the asymptotic behavior of the coefficients λp,Q,n of the power series
Λp,Q(x).

A change of variables. Abbreviate Q−1/(p−1) by r ∈ (0, 1] and change variables via
x = ry. Define Λp,Q(y) = Λp,Q(ry) =

∑∞
n=0 λp,Q,ny

n so that λp,Q,n = rnλp,Q,n. Then (29)
takes on the simpler form

Λp,Q(y) =
∞∏

j=0

Θp(ry
pj

)pj
. (32)

As the radius of convergence of Θp(x) is 1, the radius of convergence of the jth factor is
r−1/pj

. So as j increases from 1, these radii decrease monotonically from 1/r with limit 1.

500 1000
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7,8,9
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Figure 2: Points (n, log(λ2,2,n;k)) on the left and (n, log(λ3,3,n;k)) on the
right, with k indicated by text.

We indicate with a subscript k the corresponding objects where the product in (32) is
taken from 0 to k. For any given k, the coefficients λp,Q,n;k eventually decay exponentially,
by the above radius of convergence remarks. Figure 2 illustrates the decay.

Radius of convergence and upper bounds for λp,Q,n. We are interested more in the
behavior of the coefficients λp,Q,n themselves, rather than the cutoff versions λp,Q,n;k. In
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general, let Θ(z) be any power series convergent at least on the closed disk of radius r with
Θ(0) = 1 and |Θ(r)| > 1. Then it is elementary that

∏∞
j=0 Θ(rypj

)pj
converges for |y| < 1.

The product does not converge for y = 1 because it formally has the form Θ(r)∞. Thus our
Λp,Q(y) have radius of convergence exactly one. In terms of Figure 2, the upper envelope of
the points plotted grows at most sub-linearly. In terms of the original λp,Q,n, one eventually
has λp,Q,n < Qn/(p−1)+ε for any positive ε.

Root growth. Sharpening the statement lim sup λ1/n
p,Q,n = Q1/(p−1) just observed is the

following.

Proposition 6.1. lim
n→∞

λ1/n
p,Q,n = Q1/(p−1).

Proof. We need only show that the sequence λ1/n
p,Q,n has no limit points smaller than Q1/(p−1).

In other words, we need only show that the sequence λ1/n
p,Q,n has no limit points smaller than

1. From (28), we know that the expansion of Θp(x) begins with
∑p−1

n=0 λnxn which is term-
by-term at least

∑p−1
n=0 xn. The jth factor Θp(ryp)pj

of (29) is coefficient-wise bounded from
below by Θp(ryp) which is in turn coefficient-wise bounded from below by

∑p−1
a=0 rayapj

. So

Λp,Q(y) is coefficient-wise bounded from below by
∏∞

j=0

∑p−1
a=0 rayapj

. If n =
∑logp(n)

i=0 aipi

with 0 ≤ ai ≤ p − 1, then

λp,Q,n ≥
logp(n)∏

i=0

rai ≥ r(1+logp(n))(p−1)

so that
λ1/n

p,Q,n ≥ r(1+logp(n))(p−1)/n. (33)

The right side of (33) tends to 1 with n, proving that indeed λ1/n
p,Q,n has no limit points smaller

than 1.

Expected refined asymptotics. Proposition 6.1 is more than we need to support Con-
jecture 11.1 below. However the extreme crudeness of the bounds in its proof suggests that
stronger statements are provable. Rather than proceed incrementally, in the rest of this
section we present numerical evidence and heuristic argument leading up to the very strong
statement (37), conjecturally extending the Hardy-Ramanujan asymptotic for λn.

Another model of the type of statement sought is given in the next section for analogous
quantities λF,n for F = R and F = C. There, (42) gives an asymptotic equivalent to the

root decay factor λ1/n
F,n , analogous to our Proposition 6.1. More subtly, (42) also says that

the ratio decay factor λF,n/λF,n−1 has the same asymptotic equivalent. Finally (41) is the
sharpest statement, giving asymptotic equivalents to λF,n itself.

Ratio oscillation. In contrast to both ordinary partitions and the Archimedean cases,
evidence strongly suggests that λp,Q,n/λp,Q,n−1 does not have a limiting value for Q > 1.
Figure 3 graphs log(λp,Q,n) for p = 2, 3 and Q = pj with j = 1, 2. One sees smooth growth
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Figure 3: Points (n, log(λ2,2,n)) on the left and (n, log(λ3,3,n)) on the
right, for 0 ≤ n ≤ 100. Also points (n, log(λ2,4,n)) on the left and
(n, log(λ3,9,n)) on the right, for 36 ≤ n ≤ 100. The oscillatory behavior
modulo eight on the left and modulo nine on the right matches Table 2
well.

with oscillatory behavior superimposed. The corresponding picture for n out through 4000
shows no damping. In general, oscillatory behavior is barely visible for Q near 1 and increases
in amplitude with Q. There seem to be dominant oscillations with period p, secondary
oscillations with period p2, tertiary oscillations with period p3, and so on. The situation
clearly calls for a Fourier analysis.

Figure 4 illustrates with two examples the magnitude of Λp,Q(y) as a function of the
complex variable y. The needed Fourier analysis is connected with the limiting behavior of
Λp,Q(y) as |y| increases to 1. For r < 1, consider the function

ĉp,Q(y) =
∞∏

j=0

(
Θp(rypj

)

Θp(r)

)pj

(34)

defined on the unit circle. One has ĉp,Q(1) = 1 as indeed all factors are 1. For y satisfying
ypk

= 1 but not ypk−1
= 1 the infinite product reduces to the product of its first k factors,

all of which are non-zero with absolute value less than one; thus 0 < |ĉp,Q(y)| < 1 for these
y. Finally if y is otherwise, the infinite product converges to 0.

We view ĉp,Q(y) as giving the normalized boundary values of Λp,Q(y). Intuitively, we can
view Λp,Q(y) as having its most important singularity at 1. This singularity is echoed in
quantitatively smaller singularities at primitive pth roots of unity. It is echoed in still smaller
singularities at primitive roots of unity of order p2, and so on, as illustrated by Figure 4.
Table 1 gives a more numerical illustration, and includes also the cases (p, Q) = (2, 4) and
(p, Q) = (3, 9). For given p, the echoes decay more slowly with larger Q.
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Figure 4: Contour plots of |Λ2,2(y)| on the left and |Λ3,3(y)| on the
right, both on the open unit disk |y| < 1, with dark shading indicating
large values.

The function ĉp,Q(y) enters into our Fourier analysis as follows. Taking an inverse Fourier
transform, define

cp,Q(n) =
∑

y

y−nĉp,Q(y), (35)

the sum being over all pth power roots of unity. One can check that the sum in (35) indeed
converges. Moreover, let Zp be the p-adic integers, i.e. the completion of Z with respect to
the sequence of finite quotients Z/pjZ. Then cp,Q, thought of as a function from Z to R,
extends continuously to a function from Zp to R. Table 2 gives some values. We expect that

α ĉ2,2(e2πiα) ĉ2,4(e2πiα) α ĉ3,3(e2πiα) ĉ3,9(e2πiα)
0/1 1. 1. 0/1 1. 1.
1/8 0.0005 + 0.0009i 0.0567 + 0.0405i 1/9 0.0004 + 0.0010i 0.0542 + 0.0569i
1/4 0.0341 + 0.0130i 0.2660 + 0.0624i 2/9 0.0006 + 0.0002i 0.0560 − 0.0029i
3/8 0.0007 − 0.0001i 0.0490 − 0.0119i 1/3 0.1191 + 0.0210i 0.4476 + 0.0718i
1/2 0.2385 0.5803 4/9 0.0007 + 0.0001i 0.0463 + 0.0205i

Table 1: Some normalized boundary values ĉp,Q(y) of Λp,Q(y), rounded
to the nearest ten-thousandth. Only values in the upper half plane are
given, because ĉp,Q(ȳ) = ĉp,Q(y).
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n c2,2(n) c2,4(n) n c3,3(n) c3,9(n)
0 1.309 2.324 0 1.242 2.208
1 0.788 0.596 1 0.918 0.774
2 1.172 1.153 2 0.847 0.496
3 0.737 0.324 3 1.238 1.878
4 1.304 1.901 4 0.918 0.679
5 0.787 0.493 5 0.845 0.426
6 1.168 0.944 6 1.235 1.600
7 0.734 0.265 7 0.915 0.577

8 0.842 0.362

Table 2: Some values of cp,Q(n), rounded to the nearest thousandth.
To the nearest thousandth, c2,2(n) depends only on n modulo 8 while
c3,3(n) depends only on n modulo 9. Similarly, to the nearest hun-
dredth, c2,4(n) and c3,9(n) depend only on n to the respective moduli 8
and 9.

the function cp,Q(n) fully captures the oscillatory behavior in the sense that

λp,Q,n/cp,Q(n)

λp,Q,n−1/cp,Q(n − 1)
∼ Q1/(p−1). (36)

Computations such as those illustrated by Figure 5 support this expectation.

Towards an asymptotic equivalent to λp,Q,n. The smooth part of λp,Q,n presents more
of a mystery. Computations are consistent with the conjecture given as (5) in the introduc-
tion, namely

λp,Q,n ∼ cp,Q(n)Cp(Q)nBp(Q)eAp(Q)
√

nQn/(p−1) (37)

for quantities Ap(Q), Bp(Q), and Cp(Q) to be thought of as functions on the Q-interval
[1,∞).

For Q = 1, the oscillatory factor cp,Q(n) reduces to 1. One has

(Ap(1), Bp(1), Cp(1)) = (π

√
2

3
,−1,

1

4
√

3
) ≈ (2.56,−1.00, 0.144),

independently of p, by the Hardy-Ramanujan asymptotic for partitions [8]. Figure 5 graphs
functions Ap(Q)

√
n + Bp(Q) log n + log Cp(Q) with (Ap(Q), Bp(Q), Cp(Q)) deduced from a

least squares fit to log(λp,Q,n/cp,Q(n)) over [20, 4000]. The drawn lines are thick enough
so that they contain all the actual points (n, log(λp,Q,n/cp,Q(n))). For the most important
quantity Ap(Q), the fit yields

A2(2) ≈ 1.66 , A3(3) ≈ 1.68 ,

A2(4) ≈ 1.18 , A3(9) ≈ 1.21 .

Numeric computations are not accurate enough to suggest an analytic form for Ap(Q), Bp(Q),
and Cp(Q); a more theoretical approach is needed.
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Figure 5: Least square fits to points (n, log(λ2,2j ,n/c2,2j (n))) on the left
and (n, log(λ3,3j ,n/c3,3j (n))) on the right, for j ∈ {1, 2} and 20 ≤ n ≤
4000.

7 Fields, algebras, and the cases F = R and F = C
In this section, we introduce some concepts associated to field and algebra extensions of a
given ground field F . These concepts will play a major role in the rest of the paper. Also
we illustrate these concepts with the ground fields F = R and F = C. These ground fields
are particularly simple and familiar. Moreover, they play an essential role in the global
considerations of Section 11.

Fields and algebras. For F a field, let FieldsF,n be the set of isomorphism classes of
separable degree n field extensions of F . Our main interest is in characteristic zero, where all
fields are separable; accordingly we drop the adjective “separable.” Similarly, let AlgebrasF,n

be the set of isomorphism classes of degree n algebra extensions which are products of field
extensions. For both fields and algebras, we allow ourselves also to drop the phrase “of
isomorphism classes” since it always understood. Similarly we write just K instead of say
[K] to indicate the isomorphism class of an algebra K.

An algebra K has an automorphism group Aut(K/F ). We define, as is standard, its
mass to be 1/|Aut(K/F )|. For some fields F , all the sets FieldsF,n are finite. Exactly in this
case, all the larger sets AlgebrasF,n are finite too. For these F , we define φF,n and λF,n to be
the total masses of FieldsF,n and AlgebrasF,n respectively. Let

ΦF (x) =
∞∑

n=1

φF,nx
n = x + · · · , ΛF (x) =

∞∑

n=0

λF,nx
n = 1 + x + · · ·

be the corresponding generating functions. Then one has the exponential formula [25, Chap-
ter 5]

ΛF (x) = exp(ΦF (x)), (38)

from the definition of mass and the way algebras are built from fields.

The cases F = R and F = C. With the above definitions, FieldsR,1 = {R}, FieldsR,2 =
{C}, and otherwise FieldsR,n = ∅. Also AlgebrasR,n = {RrCs : r +2s = n}, with the mass of
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RrCs being 1/(r!s!2s). Even more simply, the only non-empty FieldsC,n is FieldsC,1 = {C}.
One has AlgebrasC,n = {Cn}, with the mass of Cn being 1/n!. Thus

ΛR(x) =
∞∑

n=0

λR,nx
n = ex+x2/2 = 1 + x +

2

2
x2 +

4

6
x3 +

10

24
x4 +

26

120
x5 + · · · , (39)

ΛC(x) =
∞∑

n=0

λC,nx
n = ex = 1 + x +

1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + · · · . (40)

The numbers n!λR,n form the sequence A000085 giving, among other interpretations, the
number of involutions in the symmetric group Sn. One has the asymptotic formulas

λR,n ∼ e
n
2 +

√
n− 1

4 n−n
2 −

1
2

2
√
π

, λC,n ∼ en

nn+ 1
2

√
2π

, (41)

the first due to Moser and Wyman [17] and the second being Stirling’s approximation. On
the level of ratio and root behavior, one has

λR,n

λR,n−1
∼ λ1/n

R,n ∼
√

e

n
,

λC,n

λC,n−1
∼ λ1/n

C,n ∼ e

n
, (42)

thus superexponential decay.

8 Eisenstein polynomials

For this and the next two sections, fix a prime number p. Let Qp be the field of p-adic
numbers. Its ring of integers Zp already arose naturally in Section 6. The maximal ideal of
Zp is generated by the prime number p, and the corresponding residue field is Fp = Zp/p.
For background on p-adic numbers, see e.g. [7]. We need mainly the algebraic theory of finite
degree field extensions of Qp, i.e. Chapter 5 of [7].

The ground field F . For this and the next two sections, fix also an extension field F of
degree n0 over Qp. So F can be presented as Qp[x]/g0(x) for some irreducible polynomial
g0(x) in Qp[x] of degree n0. We have no need to consider g0(x) again, as we will simply
regard F as given. Let O be the ring of integers of F , let Π be its maximal ideal, and let
κ = O/Π. The ramification index of F/Qp is the positive integer e0 such that Πe0 = (p).
The inertial degree of F/Qp is the positive integer f0 such that q := |κ| = pf0 . One has
e0f0 = n0.

It is often clearer to avoid the language of ideals. To do this we fix a uniformizer π of F ,
i.e. a generator of Π. For a ∈ O − {0}, we write ordπ(a) = b to mean that a generates the
ideal (πb). We define ordπ on all of O by writing ordπ(0) = ∞.

Extensions of F and their numerical invariants. Likewise, one can consider field ex-
tensions K = F [x]/g(x) of F . The degree n of such an extension factors into its ramification
index e and its inertial degree f . Another important invariant of a field extension K/F is its
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discriminant d(K/F ), which is an ideal Πc in O. We focus on the discriminant-exponent c,
which we call the conductor. If K = F [x]/g(x), then the ideal generated by the polynomial
discriminant

D(g) = (−1)n(n−1)/2Resx(g(x), g′(x)) (43)

has the form Πc+2d for d a non-negative integer, called the defect of g(x).
The conductor of K/F is naturally written as c = ct + cw, where ct is the tame conductor

and cw is the wild conductor. Very simply, ct = f(e − 1). The wild conductor cw is more
complicated, but has the form fs, where s ∈ Ore(p, e0, e) is a non-negative integer called the
Swan conductor, as detailed below.

We seek to understand the sets FieldsF,n introduced in the previous section. The decom-
position

FieldsF,n =
∐

ef=n

∐

s∈Ore(p,e0,e)

FieldsF (e, f, s) (44)

is a natural starting point. In the rest of this section, we explain how Eisenstein polynomials
give an explicit understanding of the totally ramified part FieldsF (e, 1, s). The cases f > 1
are easily reduced to the case f = 1, as explained in the next section.

Eisenstein polynomials. Consider monic polynomials of degree e with coefficients in O.
Such a polynomial

g(x) = xe + ae−1x
e−1 + · · · + a1x + a0 (45)

is called an Eisenstein polynomial if and only if π divides all the coefficients ai and moreover
π2 does not divide a0. Let Eis(O, e) be the space of degree e Eisenstein polynomials over O.

If g(x) is an Eisenstein polynomial then K = F [x]/g(x) is a totally ramified field extension
of F . Moreover O[x]/g(x) is its ring of integers which means that the defect d of g(x) is
zero. The element x ∈ O[x]/g(x) is a uniformizer, meaning that it generates the maximal
ideal of O[x]/g(x).

Conversely, suppose a totally ramified K is given. Then one can consider for each of
its uniformizers ω the characteristic polynomial gω(x) of ω acting by multiplication on K,
where K is considered as an e-dimensional vector space over F . The resulting map

ω (→ gω(x) (46)

is |Aut(K/F )|-to-1 over its image Eis(O, e)K ⊆ Eis(O, e).

Conductors of Eisenstein polynomials. The conductor c = ct + cw of the Eisen-
stein polynomial (45) is ordx(g′(x)), where x here is understood as the given uniformizer
of O[x]/g(x) [22, III.6]. The tame conductor ct is e − 1. Thus

cw = ordx(g
′(x)) − (e − 1). (47)

For i = 1, . . . , e, define the ith index of an Eisenstein polynomial (45) to be

indi(g(x)) = ordx(iaix
i−1) − (e − 1) = e ordπ(iai) + i − e =






e ordπ(i
ai

π
) + i, if i < e,

ee0w = wE, if i = e.
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One has indi(g(x)) ≡ i modulo e, and so the indi(g(x)) are all different. The conclusion
of these considerations is that the wild conductor cw of g(x) is the smallest of the indices
indi(g(x)).

In words, if i < e then indi(g(x)) is either greater than wE, and hence irrelevant, or the
ordπ(ai)th number in column i of the corresponding Ore array Ore(p, e0, e). Display (48),
a copy of (9) except that Column i has been headed by the corresponding coefficient ai,
illustrates this viewpoint.

a9 a8 a7 a6 a5 a4 a3 a2 a1

.

. 8 7 . 5 4 . 2 1

. 17 16 . 14 13 . 11 10

. 26 25 24 23 22 21 20 19
36 35 34 33 32 31 30 29 28

(48)

For this displayed case (p, e0, e) = (3, 2, 9), the wild conductor is the number to the right of
the first condition that holds:

ordπ(a1) = 1 1
ordπ(a2) = 1 2
ordπ(a4) = 1 4
ordπ(a5) = 1 5

...
...

ordπ(a6) = 2 33
ordπ(a7) = 4 34
ordπ(a8) = 4 35
ordπ(a9) = 0 36

(49)

One has a natural decomposition

Eis(O, e) =
∐

s∈Ore(p,e0,e)

Eis(O, e, s) (50)

=
∐

s∈Ore(p,e0,e)

∐

K∈FieldsF (e,1,s)

Eis(O, e, s)K (51)

where Eis(O, e, s) consists of all Eisenstein polynomials over O of degree e and wild conductor
s and Eis(O, e, s)K is the subset consisting of polynomials which define K.

9 p-adic algebras: masses

Let FieldsF,n,ct,cw be the set of fields over F with degree n, tame conductor ct, and wild
conductor cw. Let φF,n,ct,cw be the total mass of FieldsF,n,ct,cw . Let AlgebrasF,n,ct,cw

be the
corresponding set of algebras and let λF,n,ct,cw be its total mass. One has the corresponding
generating functions, satisfying ΛF (x, y, z) = exp(ΦF (x, y, z)).
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Let F = (p, e0, f0) be the invariants of F . This section explains how the equality

ΦF (x, y, z) = ΦF (x, y, z) (52)

follows from the Krasner mass formula. It is this equality which renders the directly defined
power series ΦF(x, y, z) of interest in algebraic number theory. By exponentiating both sides
of (52) one immediately gets ΛF (x, y, z) = ΛF(x, y, z). Besides our given F = F1, there may
be non-isomorphic F2, . . . , Fm with the same invariants (p, e0, f0). Our notation encourages
one to also think of F as representing the numerical equivalence class {F1, . . . , Fm}. Note
that if p|e0 then the different Fi have Swan conductors s0 varying over Ore(p, 1, e0), but that
not even s0 enters our considerations.

Volumes. The space of all monic polynomials of degree e with coefficients in O is naturally
identified with Oe via the coefficients. The quotient space (O/Πi)e is a discrete set of size
qie. We view Oe as a measure space of mass one by requiring that for all i, each fiber of
Oe → (O/Πi)e, has mass 1/qie. In this measure, Eis(O, e) clearly has volume q−e(1 − q−1).

As in Section 2, for s ∈ Ore(p, e0, e) let d(p, e0, e, s) be the number of integers in {0, . . . , s}
which are not in Ore(p, e0, e). As illustrated by (49), for a random polynomial to be in
Eis(O, e, s) it has to fail s− d(p, e0, e, s) successive tests, each of which is failed with proba-
bility 1/q. If s < wE, then it moreover has to pass the next test. Accordingly,

volume(Eis(O, e, s)) = q−e−s+d(p,e0,e,s)(1 − q−1)(1 − δwE
s q−1), (53)

with δwE
s either 1 or 0 according to whether s < wE or s = wE, as in Section 3.

The Krasner mass formula and proof of (52). For K ∈ FieldsF (e, 1, s), let UK be its
set of uniformizers and let Eis(O, e, s)K be the set of its defining Eisenstein polynomials.
Consider again the degree |Aut(K/F )| cover UK → Eis(O, e, s)K of (46). By a Jacobian
computation [23], one has

mass(K) = qs+evolume(Eis(O, e, s)K)

1 − q−1
. (54)

Summing (54) over K ∈ FieldsF (e, 1, s) and eliminating volumes via (53) gives

φF (e, 1, s) = qd(p,e0,e,s)(1 − δwE
s q−1). (55)

which is the Krasner mass formula [15].
The case of general f reduces to the totally ramified case f = 1 via

FieldsF (e, f, s) = FieldsFf
(e, 1, s), (56)

where Ff is the unique up to isomorphism degree f extension of F . One has

φF (e, f, s) =
1

f
φFf

(e, 1, s) =
1

f
qf d(p,e0,e,s)(1 − δwE

s q−f ). (57)
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Here the first equality of (57) holds because of (56) and the fact that |Aut(Ff/F )| = f . The
second equality of (57) holds because of (55), with F replaced by Ff on the left and hence
q replaced by qf on the right.

The quantities φF(e, f, s) and φF (e, f, s) agree because their explicit formulas in (21)
and (57) agree. Replacing F by F in the evaluation (22)-(24) of ΦF(x, y, z) then shows that
ΦF (x, y, z) evaluates to the same explicit formula.

10 p-adic algebras: geometric packets

One obvious difference between the standard ΛR(x), ΛC(x) and our more complicated ΛQ(x)
is that the coefficients of the former decay while the coefficients of the latter grow. Another
important difference is that the former have non-integral coefficients while the latter, and
even the underlying Λp,e0,f0(x, y, z), have integer coefficients. In this section, we take a
new perspective which explains this integrality conceptually. While the previous section
justifies our definitions in Section 2 and 3 numerically, this section goes farther and justifies
our combinatorial definitions set-theoretically, explaining the natural objects to which wild
partitions correspond.

Algebras over F un. For the new perspective, we fix a maximal unramified extension
F un/F , with ring of integers Oun and associated residual extension κ/κ. We let σ ∈
Gal(κ/κ) = Gal(F un/F ) be the Frobenius element.

The theory of Eisenstein series over O goes through without change over Oun. Accord-
ingly, the important set FieldsF un,e of degree e field extensions of F un is identified with
the quotient of Eis(Oun, e) modulo an equivalence relation ∼, where g1(x) ∼ g2(x) if and
only if F un[x]/g1(x) and F un[x]/g2(x) are isomorphic. One likewise has FieldsF un(e, s) =
Eis(Oun, e, s)/ ∼, these sets being non-empty exactly for s ∈ Ore(p, e0, e). Thus

FieldsF un =
∞∐

e=1

∐

s∈Ore(p,e0,e)

FieldsF un(e, s). (58)

The Frobenius element σ acts compatibly on both sides of (58) by taking K = F un[x]/
∑

aixi

to Kσ = F un[x]/
∑

aσi xi. In turn, as for any ground field, AlgebrasF un is the free abelian
monoid generated by FieldsF un. We denote by AlgebrasσF un the set of σ-fixed points, as usual.

Geometric packets. The mass formulas of the previous section transfer to cardinality for-
mulas in our new context as follows. If K ∈ AlgebrasF , then one has its corresponding base-
changed algebra Kun ∈ AlgebrasσF un. Explicitly, if K = F [x]/g(x) then Kun = F un[x]/g(x).
The fiber of the map

AlgebrasF → AlgebrasσF un (59)

above a point L ∈ AlgebrasσF un is the set of all K ∈ AlgebrasF with Kun ∼= L, i.e. the set of
all models of L. These fibers are the geometric packets of the section title. If K1 and K2 are
in the same fiber, one says they are geometrically equivalent.
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The main point letting one convert mass formulas to cardinality formulas is that every
geometric packet has total mass one. This is a standard fact from descent theory, but we
review the proof here because of the critical role it plays for us. Fix L ∈ AlgebrasF un and
let A = Aut(L/F un). Let A = Aut(L/F ). Then one has a short-exact sequence

A ↪→ A ! Gal(κ/κ). (60)

Let A1 be the set of preimages of σ in A. So A acts by conjugation on A1. Then each ρ ∈ A1

determines a model Lρ/F of L/F un. In fact, Lρ is just the fixed algebra of the subgroup
of A generated by ρ. Also elements of A1 determine isomorphic models if and only if they
differ by conjugation by an element of A; thus the isomorphism class of Lρ is determined by
the conjugacy class [ρ] of ρ. Also, the automorphism group of Lρ/F is the subgroup of A
which fixes ρ. Finally, one has always

∑

ρ

1

|Aut(Lρ/F )|
=

∑

ρ

|[ρ]|
|A|

= 1, (61)

each sum being over representatives of the conjugacy classes in A1. The last equality in (61)
follows because A1 is partitioned into the classes [ρ] and |A| = |A1|.

Wild partitions and F un-algebras. We have established
∣∣W (p, e0, e, s)

σm∣∣ =
∣∣FieldsF un(e, s)σ

m∣∣ (62)

as both sides are qf d(p,e0,e,s)(1 − δwE
s q−f), the left side via (21) and the right side via (57)

and the mass one principle. As all orbits on both sides are finite, this implies

W (p, e0, e, s) ∼= FieldsF un(e, s) (63)

as σ-sets. A choice of bijections (63) induces a bijection from (p, e0, f0)-wild partitions
to AlgebrasσF un. In particular, λF,n,ct,cw is the number of F un-algebras of degree n, tame
conductor ct, and wild conductor cw; this is the promised conceptual explanation of the
integrality of λF,n,ct,cw .

Explicit bijections For wild partitions to truly index geometric algebras, one would need
to choose explicit σ-invariant bijections from W (p, e0, e, s) to FieldsF un(e, s) for each (e, s).
We do not need explicit bijections for our purposes, but we describe the simple case F = Qp

and e = p to give a first indication of how the general case would look. Our description
is taken from [2], which also describes the case e = p for general F . In our setting, the
possible Swan conductors are Ore(p, 1, p) = {1, . . . , p}. Always the associated dimension is
d(p, 1, p, s) = 1. If s < p then an explicit σ-equivariant bijection is

W (p, 1, p, s) = F×
p → FieldsF un(p, s),

a → Qun
p [x]/(xp + pãxs + p).

For s = p, an explicit σ-equivariant bijection is

W (p, 1, p, p) = Fp → FieldsF un(p, p),

a → Qun
p [x]/(xp + p + p2ã).

In each case, ã ∈ Zun
p is any lift of a.
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Internal structure of geometric packets. Let L ∈ AlgebrasσF un. In many cases, the
corresponding geometric packet {K1, . . . , Kg} ⊂ AlgebrasF consists of a single algebra of
mass one. For example, suppose L has degree p and Swan conductor not divisible by p − 1.
Then automatically K1/F is not a Galois extension [2] and this forces |Aut(K1/F )| = 1.

On the other hand, in many other cases g > 1. For example, let L be a product of m
factors of F un. Then the geometric packet of models for L consists of algebras Fµ, where µ
is a partition of m. Here if µ = µ1 + · · · + µh then Fµ = Fµ1 × · · · × Fµh

, where, as before,
Ff denotes the degree f unramified extension of F . Then |Aut(Fµ/F )| =

∏
k kmkmk!, where

mk is the number of times k appears in µ and Equation (61) becomes the class equation for
the symmetric group Sm.

When a packet {K1, . . . , Kg} contains a totally ramified field then all its elements are
totally ramified fields. The database of local fields [12] contains many instances. For example,
suppose K1 is a sextic field with automorphism group S3 and hence mass 1/6. Then its
packet is {K1, K2, K3} where K2 has mass 1/2 and K3 has mass 1/3. For i = 1, 2, 3, the
corresponding Galois closures Kg

i have Galois group Gal(Kg
i /F ) with S3 as inertia subgroup

and the cyclic group Ci as corresponding quotient. For F = Q3, the database presents five
such packets.

The packets just discussed correspond to the irreducible partitions of Section 2. More
generally suppose a packet {K1, . . . , Kg} contains a field with residual degree f . Then the
Ki which are fields all have residual degree f and their total mass is 1/f . These packets
correspond to the isotypical partitions of Section 2.

11 Number fields

The sets FieldsF,n,S. Let F [x] = Q[x]/g0(x) be a number field. Let S(F ) be its set of
places, indexing the set of completions of F . Thus S(Q) = {∞, 2, 3, 5, . . .} and S(F ) maps
surjectively to S(Q).

For S ⊆ S(F ), let FieldsF,n,S be the set of isomorphism classes of degree n field extensions
K/F ramified entirely within S. The ramification condition is then that for all v ∈ S(F )−S,
and all w ∈ S(K) over S, the local extension Kw/Fv is unramified. In this context, we view
C/R as ramified.

An extension K/F has a Galois closure Kg and hence a Galois group Gal(Kg/F ); if
K = F [x]/g(x), then Kg is by definition a splitting field of g(x). The largest that Gal(Kg/F )
can be is the full symmetric group Sn, with n = [K : F ]. For n ≥ 3, the second largest that
Gal(Kg/F ) can be is the alternating group An. We have a decomposition

FieldsF,n,S = Fieldssym
F,n,S

∐
Fieldsalt

F,n,S

∐
Fieldssmall

F,n,S (64)

and also write Fieldsbig
F,n,S to indicate the union of the first two parts. We write also

Fieldss
F,S =

∐
n Fieldss

F,n,S for any superscript s. In practice, it is easy to decide whether a
given field F [x]/g(x) has big or small Galois group. One quick way is to factor g(x) in suffi-
ciently many completions Fv and use information from the degrees of the factor fields Kw; for
most v, this reduces to a calculation in the residue field of Fv. For n ≥ 8, a group-theoretical
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result of Jordan [9] suffices: the Galois group is big if and only if

the degree of Kw/Fv is a prime in (n/2, n − 2) (65)

for some Kw/Fv. Many other criteria can be brought to bear as well. The computations are
guided by the principle that the factor partitions for v not ramified in K are equidistributed
in the set of partitions of n according to the measure induced from the Haar measure on
Gal(Kg/F ).

We are interested in the case of S finite. Then a classical fact is that the sets FieldsF,n,S

are all finite. Analogously to the local situation, it is natural to define the mass of a field K
to be 1/|Aut(K/F )|. From (64) we have φF,n,S = φbig

F,n,S +φsmall
F,n,S. Our main concern is φbig

F,n,S,

which is just the cardinality of Fieldsbig
F,n,S when n ≥ 4.

For S all of S(F ), a principle in number theory is that the group Sn is very common,
in many rigorous senses. One might at first expect that the sets FieldsF,n,S would behave
like smaller versions of the set FieldsF,n,S(F ), so that most fields in FieldsF,n,S would be in
Fieldssym

F,n,S. This section argues that the evidence points in the opposite direction, at least
when one fixes S and considers all n simultaneously.

Ease of constructing fields in Fieldssmall
F,S . One has FieldsQ,S = {Q} for S = {} or

S = {∞}. Otherwise, FieldsQ,S is infinite, as it at least contains the real cyclotomic fields
Q[x]/Φ+

pk(x) for all p in S and all positive k. Since the Galois group of Q[x]/Φ+
pk(x) is abelian,

these fields are in Fieldssmall
Q,S whenever their degree is ≥ 4.

There is an elaborate theory for describing the part of Fieldssmall
F,S consisting of fields K

such that Gal(Kg/Q) is solvable [14, 18]. This theory says that as soon as S is large enough,
Fieldssmall

F,S is very large indeed. For example, let L be a maximal pro-2-extension of Q ramified
only within S = {∞, 2}. Then Markshaitis’ theorem [14, Example 11.18] says Gal(L/Q) is
the free pro-2 product of Z/2 and Z2. Accordingly φsmall

Q,2k,{∞,2} grows exponentially with

n = 2k.
There are also general techniques for constructing non-solvable fields in Fieldssmall

F,S . For
example using modular forms gives fields with Galois groups with PSL2(F)f ) as a sim-
ple subquotient. Already this technique shows that the Galois group corresponding to
any FieldsQ,{∞,p,)} has infinitely many simple subquotients different from An. The ABC-
construction of [20] shows that one can likewise expect infinitely many simple subquotients
of the form PSp2k(F)) involved in FieldsQ,S for S large enough, e.g. S = {∞, 2, 3}.

Difficulty of constructing fields in Fieldsbig
F,S. All known constructional techniques for

fields with Galois group all of An or Sn have only modest control over ramifying primes.
The most well-known technique, and one of the best, is uses trinomials. For example, take
F = Q and for t ∈ Q − {0, 1} consider the polynomial

gn,t(x) = xn − ntx + (n − 1)t. (66)

Its discriminant is

Dn,t = (−1)(n−1)(n−2)/2nn(n − 1)n−1tn−1(t − 1). (67)
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Its Galois group is generically Sn or An according to whether or not Dn,t is a square. If one
chooses t such that the denominator of t and the numerator of t and t− 1 are only divisible
by primes dividing n(n − 1), then only these primes can ramify in Kn,t = Q[x]/gn,t(x). The
problem here is that only finitely many n keep ramification within any given S. Even in the
more general context of arbitrary trinomials described in [20, Section 10], with two relatively
prime parameters n > m, there are only finitely many (n, m) such that all primes dividing
nm(n −m) are within S. The recent technique of Chebyshev covers [21] gives larger degree
fields, but still to get fields ramified within a given S, one needs an appropriate “numerical
accident” such as 23 + 1 = 32 for S = {∞, 2, 3}.

The finiteness conjecture. Based on the considerations just presented, we make the
following conjecture.

Conjecture 11.1. Let F be a number field and let S be a finite set of places of F . Then
the set Fieldsbig

F,S is finite.

In other words, while φsmall
F,S is usually infinite, we expect φbig

F,S to always be finite.

Heuristic support for the finiteness conjecture. Bhargava [4] has a heuristic formula
for the “expected number” of An and Sn fields in a given degree n with a given discriminant
d. The asymptotic behavior of Bhargava’s heuristic as |d| → ∞ agrees with the previously
known Davenport-Heilbronn theorem in n = 3. In fundamental work, Bhargava has proven
the analogous theorem for n = 4 [3] and has announced it for n = 5, giving one moderate
confidence in the heuristic formula for general n.

Applying Bhargava’s heuristic to our situation gives the following “expected number”

φbig
F,n,S ≈ 1

2

∏

v∈S

λFv,n, (68)

where here we require that all Archimedean places are in S. Both λR,n and λC,n decrease
superexponentially with n, according to (42). For each ultrametric place v of F , the sequence

λFv,n increases only exponentially, with growth factor Q1/(pv−1)
v . All together,

∏
v∈S λFv,n

decreases superexponentially with n. This is much more than the mere convergence of∑
n

∏
v∈S λFv,n which would be enough to heuristically support Conjecture 11.1. Note that

one has a heuristic product formula (68) only when one appropriately separates by Galois
groups. For example, Bhargava’s results show that S4 and D4 need to be treated separately.

We understand the factor 1/2 in (68) in two different ways, depending on whether n = 2 or
n ≥ 3. The case n = 2 is best first explained in the simplified setting F = Q and {∞, 2} ⊆ S.
Then λQv,2 is 1, 4, or 2 according to whether v is ∞, 2, or otherwise. The set FieldsQ,2,S has
exactly 2|S| − 1 elements, each with mass 1/2. So its total mass is 2|S|−1 − 2−1 while (68) is
2|S|−1. The agreement would be perfect if we worked instead with AlgebrasQ,2,S to account
for the trivial alternating group A2. For general F , the 1/2 in the case n = 2 likewise comes
from the fact that fields in FieldsF,2,S have mass 1/2 rather than the usual 1. For the cases
n ≥ 3, one uses the local signs (2, dv)HW (Kv) associated to K/F ∈ AlgebrasF,n,S and a
place v ∈ S. While these signs are all 1 in the case n = 2, in general they can be 1 or −1.
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For n ≥ 3, the 1/2 in the mass formula corresponds to the fact that the product of the local
signs is 1 for any K in FieldsF,n,S. For more explicit information on these signs in the case
F = Q, see [12, Section 3.3].

Comparison with computational results over Q. Figure 6 summarizes known facts
about the case (F, S) = (Q, {∞, 2, 3}). For n = 1, 2, 3, 4, 5, 6, and 7, Jones and Roberts
[10], [11] evaluated φbig

Q,{2,3,∞} to 1, 3.5, 8.3, 22, 5, 54, and 10. Roberts [20] found more fields

in degrees n = 8, 9 and also the S32 field Q[x]/(x32 + 21635x5 + 21339) with discriminant
21913112. Jones is finding more fields in degrees 8 and 9 by an ongoing computer search.
Malle and Roberts [16] found 300 more fields in degree 9 ≤ n ≤ 33 and discussed the issue
of finiteness of φbig

Q,S noncommittally as an open question. Roberts [21] found 43 more fields
in degrees 12 ≤ n ≤ 64.
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Figure 6: Evaluations (black) and lower bounds (gray) for φbig
Q,n,{∞,2,3},

compared with 1
2λR,nλ2,nλ3,n, with logarithmic vertical scale.

Low discriminant phenomena and exceptional fields. Figure 6 also compares the
above computational results with the more theoretical quantity 1

2λR,nλ2,nλ3,n. Although we
are confident in Conjecture 11.1 on a qualitative level, the situation remains enigmatic on a
quantitative level.

We interpret the poor agreement in degrees ≤ 7 as reflecting the fact that Bhargava’s
heuristic does not take into account low discriminant phenomena. Experimentally, these low
discriminant phenomena always seem to give fewer fields, with the case of cubics quanti-
tatively explained by Roberts [19] using a negative secondary term. Our guess is that the
very poor agreement in medium degrees is due to two factors, the same low discriminant
phenomena and the incompleteness of the current list of fields.

On the other hand, the poor agreement in degree 64 is in the other direction. We interpret
this disagreement as an indication that the constructional method of [21] is very special in
nature. Define a field in Fieldsbig

F,n,S to be exceptional if φbig
F,n′,S < 1 for all n′ ≥ n. The
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starting point N(F, S) of the exceptional range is not as artificial as may first seem, because
the decay of φbig

F,n,S is rapid once it begins.
For F = Q and S = {∞, 2, 3}, {∞, 3, 5}, and {∞, 2, 5} the exceptional range starts at

N(Q, S) = 62, 38, and 49 respectively. The field constructed in [21] of degree 100, Galois
group A100, and discriminant of the form 3a5b is well into the exceptional range. Similarly,
the five fields constructed there of degrees 2666 through 15875 and discriminant of the form
±2a5b are exceptional if, as strongly expected, their Galois groups are the full symmetric
group on the degree.

Comparison with computational results over quadratic fields. In general, let S be
a set of rational places containing ∞. Let F be any degree n0 number field. For v a place of
Q, let λFv,n =

∏
λFw,n, the product being over places w mapping to v. Then λ1/n

F∞,n ∼ (e/n)n0 ,

independently of the splitting behavior of ∞ in F . Similarly, λ1/n
Fp,n ∼ pn0/(p−1) independently

of the splitting behavior of p. However, looking at the subexponential factors suggests that
λFv,n is at its lowest if Fv is a field and increases substantially as Fv tends towards the split
algebra Qn0

v .
To illustrate this in practice, let F be the field Fd = Q(

√
d), where d varies over the set

{−6,−3,−2,−1, 2, 3, 6}. Let Sd ⊂ S(Fd) be the set of places mapping to ∞, 2, or 3 in S(Q).
So |Sd| = 3 for d ∈ {−6,−3,−1} as none of ∞, 2, or 3 is split in Fd. In contrast, |Sd| = 4 if
d ∈ {−2, 2, 3, 6} as 3 is split in F−2 and ∞ is split in the remaining cases.

Table 3: Evaluations and lower bounds for φbig

Q(
√

d),n,{∞,2,3}d
in italics

under d compared with 1
2λQ(

√
d)∞,nλQ(

√
d)2,nλQ(

√
d)3,n in plain type under∏

.

No v split 3 split ∞ split
n C R · R 4 2 · 2 9 3 · 3 −6 −3 −1

∏
−2

∏
2 3 6

∏

2 0.500 1.000 8 16 2 4 3 .5 3 .5 3 .5 4 7 .5 8 7 .5 7 .5 7 .5 8
3 0.167 0.444 9 25 27 81 14 .3 14 .3 14 .3 20 46 .3 61 40 .3 40 .3 40 .3 54
4 0.042 0.174 272 1296 29 121 87 87 87 164 343 686 385 385 385 685
5 0.008 0.047 280 1600 55 361 17 21 64 421 ≥ 87 361

Table 3 compares the two sides of (68) in degrees 2 ≤ n ≤ 5. The first pair of columns
gives λC,n < λ2

R,n to three decimal places. The next two pairs of columns likewise give
λ4,n < λ2

2,n and λ9,n < λ2
3,n. The column λ2

2,n is given for the sake of uniformity, but is not

needed as 2 does not split in any of the Fd. Next follow masses φbig

Q(
√

d),n,{∞,2,3}d
in italics,

with the corresponding product 1
2λQ(

√
d)∞,nλQ(

√
d)2,nλQ(

√
d)3,n rounded to the nearest integer in

regular type to its right. The italicized masses are computed from [10] for n = 2, 3 fields and
from [5] and associated ongoing searches for n = 4, 5. For each n, the references list degree
2n extensions of Q with a corresponding degree 2n permutation group G. We extracted
those with subfields isomorphic to Fd. Each such field K gives either a single extension of
Fd or two conjugate extensions, according to whether the Galois closure Kg of K over Fd is

29



Galois or not over Q. The Galois groups G giving one and two fields are as follows:

2n One field Two conjugate fields
4 C4, V D4

6 A3C∗
2 , St

3C
∗
2 , S3C2 T5∗, T9, T10, T13

8 A4C∗
2 , St

4C
∗
2 , S4C2 T33∗, T34, T41, T42∗, T45, T46, T47

10 A5C∗
2 , St

5C
∗
2 , S5C2 T40∗, T41, T42, T43

Here the last group on each list is always S2
n.C2. The starred groups are the ones giving rise

to Gal(Kg/Q(
√

d)) ∼= An. This distinction plays a role in the construction of Table 3 only
for n = 3, as in this case A3 fields are counted with mass 1/3; if we were counting the total
number of fields then the n = 3 entries left to right would be 17 , 23 , 17 , 49 , 41 , 41 , and
43 .

Table 3 reflects again how (68) does not take into account low discriminant phenomena
and consequently 1

2

∏
v∈S λQ(

√
d)v ,n is an overestimate for the total mass φbig

Fd,n,Sd
. However,

Table 3 also illustrates a uniformity in the overestimation, as in degrees 2, 3, 4, and 5 the
factor is approximately 1, 1.3, 2, and 3.5, independent of d. Thus the principle that splitting
primes in the base field increase the number of fields is clearly visible at the level of actual
fields.

12 Contrast with positive characteristic

It is standard in number theory to talk about global fields, meaning either number fields as in
Section 11 or function fields in one variable over a finite field. By the latter, one means fields
F which can be presented as finite extensions of some rational function field Fq(t). One can
talk uniformly about completions of these global fields, getting local fields. In characteristic
zero, the local fields are exactly the ones considered in Sections 7-10. In positive characteristic
p, all local fields are isomorphic to the Laurent series field Fq((u)), for q some power of p.
Often in number theory, the characteristic zero and the positive characteristic situations are
quite similar; this principle is well illustrated by our comments on the Serre mass formula
below. However with regards to both our specialization (y, z) = (1, 1) and our finiteness
conjecture, the case of positive characteristic presents a sharp contrast.

Allowing e0 = ∞. To accommodate positive characteristic, Sections 2 and 3 can be ex-
tended by allowing e0 = ∞ also. Ore numbers in this situation are simpler. Namely, as
before, Ore(p,∞, e) is {0} in the tame case when e is not a multiple of p. However in the
complementary wild case, the Ore table consists of a single block with infinitely many rows.
Thus Ore(p,∞, e) is always the complete set of positive integers which are not multiples
of p; this is a radical difference because now the number of Ore numbers is infinite. The
dimension associated to an Ore number s is simply d(p,∞, e, s) = 0s/p1. Since all Ore num-

bers s are non-maximal, W (p,∞, e, s) always consists of the vectors in Fd(p,∞,e,s)
p with first

component nonzero. The function Λp,∞,f0(x, y, z) is defined as before. Writing s = s0p + s1,
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with 1 ≤ s1 ≤ p − 1, it takes the explicit form

Λp,∞,f0(x, y, z) =
∞∏

s0=0

p−1∏

s1=1

1 − qs0xeye−1zps0+s1

1 − qs0+1xeye−1zps0+s1
, (69)

with q = pf0 , as always.

A contrast between the two specializations. The two situations in Section 4 now
present a sharp contrast. The Serre mass formula continues to hold: Λp,∞,f0(x, 1, 1/q) = Λ(x),
with essentially the same proof. Our formula Λp,∞,f0(x, 1, 1) = ΛQ(x) becomes completely
degenerate as Q = pe0f0 needs to be regarded as ∞. The coefficient of xn on both sides is
λn if n < p and ∞ otherwise. There is no reasonable analog of Section 5 or 6.

Similar local behavior. Section 7-10 go through in the positive characteristic setting
so that in particular the field-theoretic quantity ΛF (x, y, z) agrees with the directly defined
Λp,∞,f0(x, y, z) of (69). Ramification can be understood from a different perspective in the
characteristic p setting. Namely if K/F = Fq((v))/Fq((u)), then one can write u =

∑∞
i=1 bivi.

The smallest i such that bi 2= 0 is just the degree n = e. The smallest i not divisible by p
such that bi 2= 0 is 1 + c, where c = ct + cw = (n − 1) + cw; this i is just the first exponent
such that the corresponding derivative ibivi−1 is non-zero.

Ease of constructing of fields in Fieldsbig
F,n,S. The statement of Conjecture 11.1 makes

sense with “number field” replaced by “function field” but it is false in general. As a general
source of field extensions of F = Fp(t), take

g(x) = a(x)p + x + b(t) (70)

with a(x) and b(t) running over polynomials with coefficients in Fp. One has always g′(x) = 1
and so the polynomial discriminant (43) is (−1)n(n−1)/2 with n the degree of g(x). Thus
F [x]/g(x) defines a separable algebra which can only be ramified at the the “infinite” place
F∞ = Fp((1/t)) of Fp(t). If the algebra F∞[x]/g(x) has conductor c then F [x]/g(x) is the
function field of a curve of genus 1 − n + c/2 by the Riemann-Hurwitz formula.

As a simple counterexample to the analog of Conjecture 11.1, consider the very special
case gk(x) = x2 + x + t2k+1 for k a non-negative integer. Changing variables via x = 1/(ysk)
and t = 1/s the equation becomes y2 + sk+1y + s. This is an Eisenstein polynomial over the
ring F2[[s]] with conductor c = ct+cw = (1)+(2k+1) = 2k+2. So F [x]/(x2+x+t2k+1) is the
function field of a genus k curve. Thus the F [x]/gk(x) form an infinite collection of fields in
Fieldsbig

F,2,{∞}. For general p and a(x) of degree k = 1, the polynomial g(x) = a(x)p +x+ b(t)
likewise defines an Artin-Schreier extension of Fp(t). For k > 1 we expect that “almost all”
specializations of the family (70) to extensions of Fp(t) have Galois group all of An or Sn.

Another simple specialization of (70) is gp,k(x) = xkp−x+t for p a prime and k a positive
integer. Changing variables via x = 1/y and t = 1/s, the equation becomes ykp − sykp−1 + s.
This is an Eisenstein polynomial with conductor c = ct + cw = (kp−1)+ (kp−1) = 2kp−2.
Thus Fp(t)[x]/gp,k(x) is the function field of a genus zero curve, a fact which is also clear by
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the single global observation that F [x]/gp,k(x) = Fp(x), as t = −xkp − x. If k = pj then one
has gp,pj(x) = hj(x) + t with hj(x) the Artin-Schreier polynomial h1(x) = xp − x composed
with itself j times. Thus the Galois group of gp,pj(x) is solvable. In the complementary
case, computations with Frobenius elements using Jordan’s criterion (65) suggest that the
Galois group of gp,k(x) is all of Apk or Spk except in the cases g3,4(x) = x12 − x + t and
g2,12(x) = x24 − x + t. Here the Galois groups are known to be the Mathieu group M11 in
its degree 12 representation and the Mathieu group M24, respectively [1, Theorems 6.6 and
6.3]. So the evidence is strong that for each p, the field Fp(t)[x]/gp,k(x) is in Fieldsbig

Fp(t),pk,{∞}
for infinitely many k. Abhyankar has studied many similar genus zero families; typically the
focus is extracting rare examples with small Galois groups from families with generic Galois
group An or Sn.

The same heuristic which supports Conjecture 11.1 in characteristic zero gives two reasons
why the corresponding statement fails in positive characteristic. Again one can interpret
1
2

∏
v∈S λFv,n as the expected total mass of fields in Fieldsbig

F,n,S. But in the function field case
if n ≥ p then each of the factors λFv,n is itself infinite; this is the phenomenon behind the
existence of the family gk(x) above. Even if one bounds ramification somehow so that each
λFv,n is replaced by a finite number λ∗Fv,n, the numbers 1

2

∏
v∈S λ

∗
Fv,n can still increase due to

the lack of Archimedean places. This is the phenomenon behind the existence of the family
of polynomials gp,k(x).
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